This currently shows up as a selection fallback since the dest regs were given
GPR banks but the source was a vector FPR reg.
Differential Revision: https://reviews.llvm.org/D57408
llvm-svn: 352545
Windows ARM64 has PIC relocation model and uses jump table kind
EK_LabelDifference32. This produces jump table entry as
".word LBB123 - LJTI1_2" which represents the distance between the block
and jump table.
A new relocation type (IMAGE_REL_ARM64_REL32) is needed to do the fixup
correctly if they are in different COFF section.
This change saves the jump table to the same COFF section as the
associated code. An ideal fix could be utilizing IMAGE_REL_ARM64_REL32
relocation type.
Patch by Tom Tan!
Differential Revision: https://reviews.llvm.org/D57277
llvm-svn: 352465
Summary:
Avoids duplicating generated static helpers for calling convention
analysis.
This also means you can modify AArch64CallingConv.td without recompiling
the AArch64ISelLowering.cpp monolith, so it provides faster incremental
rebuilds.
Saves 12K in llc.exe, but adds a new object file, which is large.
Reviewers: efriedma, t.p.northover
Subscribers: mgorny, javed.absar, kristof.beyls, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56948
llvm-svn: 352430
This adds support for legalizing G_FLOG into a RTLib call.
It adds a legalizer test, and updates the existing floating point tests.
https://reviews.llvm.org/D57347
llvm-svn: 352429
This adds instruction selection support for @llvm.log10 in AArch64. It teaches
GISel to lower it to a library call, updates the relevant tests, and adds a
legalizer test for log10.
https://reviews.llvm.org/D57341
llvm-svn: 352418
The 'apple-latest' alias is supposed to provide a CPU that contains the
latest Apple processor model supported by LLVM.
This is supposed to be used by tools like lldb to provide a target that
supports most of the CPU features.
For now, this is mapped to Cyclone.
Differential Revision: https://reviews.llvm.org/D56384
llvm-svn: 352412
This contains all of the legalizer changes from D57197 necessary to select
G_FCOS and G_FSIN. It also updates several existing IR tests in
test/CodeGen/AArch64 that verify that we correctly lower the G_FCOS and G_FSIN
instructions.
https://reviews.llvm.org/D57197
3/3
llvm-svn: 352402
This patch adds support for vector @llvm.ceil intrinsics when full 16 bit
floating point support isn't available.
To do this, this patch...
- Implements basic isel for G_UNMERGE_VALUES
- Teaches the legalizer about 16 bit floats
- Teaches AArch64RegisterBankInfo to respect floating point registers on
G_BUILD_VECTOR and G_UNMERGE_VALUES
- Teaches selectCopy about 16-bit floating point vectors
It also adds
- A legalizer test for the 16-bit vector ceil which verifies that we create a
G_UNMERGE_VALUES and G_BUILD_VECTOR when full fp16 isn't supported
- An instruction selection test which makes sure we lower to G_FCEIL when
full fp16 is supported
- A test for selecting G_UNMERGE_VALUES
And also updates arm64-vfloatintrinsics.ll to show that the new ceiling types
work as expected.
https://reviews.llvm.org/D56682
llvm-svn: 352113
As part of speculation hardening, the stack pointer gets masked with the
taint register (X16) before a function call or before a function return.
Since there are no instructions that can directly mask writing to the
stack pointer, the stack pointer must first be transferred to another
register, where it can be masked, before that value is transferred back
to the stack pointer.
Before, that temporary register was always picked to be x17, since the
ABI allows clobbering x17 on any function call, resulting in the
following instruction pattern being inserted before function calls and
returns/tail calls:
mov x17, sp
and x17, x17, x16
mov sp, x17
However, x17 can be live in those locations, for example when the call
is an indirect call, using x17 as the target address (blr x17).
To fix this, this patch looks for an available register just before the
call or terminator instruction and uses that.
In the rare case when no register turns out to be available (this
situation is only encountered twice across the whole test-suite), just
insert a full speculation barrier at the start of the basic block where
this occurs.
Differential Revision: https://reviews.llvm.org/D56717
llvm-svn: 351930
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses
The problem with this is that these code blocks typically bloat code
size significantly.
An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
This means that the backend must spill all temporary registers as
required by the platform's C calling convention, even though the
check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.
The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.
To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.
Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.
Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.
The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.
I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:
Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972 | 6.24%
16 | 171765192 | 7.03%
8 | 172917788 | 5.82%
4 | 177054016 | 6.89%
Differential Revision: https://reviews.llvm.org/D56954
llvm-svn: 351920
For AMDGPU the shift amount is never 64-bit, and
this needs to use a 32-bit shift.
X86 uses i8, but seemed to be hacking around this before.
llvm-svn: 351882
This broke the RISCV build, and even with that fixed, one of the RISCV
tests behaves surprisingly differently with asserts than without,
leaving there no clear test pattern to use. Generally it seems bad for
hte IR to differ substantially due to asserts (as in, an alloca is used
with asserts that isn't needed without!) and nothing I did simply would
fix it so I'm reverting back to green.
This also required reverting the RISCV build fix in r351782.
llvm-svn: 351796
Not sure this is the best fix, but it saves an instruction for certain
constructs involving variable shifts.
Differential Revision: https://reviews.llvm.org/D55572
llvm-svn: 351768
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
EXPENSIVE_CHECKS buildbots are failing due to r351404.
Add x1 as live in to the funclet basic block for SEH funclets, as well as
-verify-machineinstrs to the test case that triggered the failure.
llvm-svn: 351472
Summary:
This patch supports MS SEH extensions __try/__except/__finally. The intrinsics localescape and localrecover are responsible for communicating escaped static allocas from the try block to the handler.
We need to preserve frame pointers for SEH. So we create a new function/property HasLocalEscape.
Reviewers: rnk, compnerd, mstorsjo, TomTan, efriedma, ssijaric
Reviewed By: rnk, efriedma
Subscribers: smeenai, jrmuizel, alex, majnemer, ssijaric, ehsan, dmajor, kristina, javed.absar, kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D53540
llvm-svn: 351370
https://reviews.llvm.org/D52803
This patch adds support to continuously CSE instructions during
each of the GISel passes. It consists of a GISelCSEInfo analysis pass
that can be used by the CSEMIRBuilder.
llvm-svn: 351283
Otherwise, with D56544, the intrinsic will be expanded to an integer
csel, which is probably not what the user expected. This matches the
general convention of using "v1" types to represent scalar integer
operations in vector registers.
While I'm here, also add some error checking so we don't generate
illegal ABS nodes.
Differential Revision: https://reviews.llvm.org/D56616
llvm-svn: 351141
This feature enables the fusion of some arithmetic and logic instructions
together.
Differential revision: https://reviews.llvm.org/D56572
llvm-svn: 351139
Summary:
This patch changes the legalization action for some half-precision floating-
point vector intrinsics (FSIN, FLOG, etc.) from Promote to Expand. These ops
are not supported in hardware for half-precision vectors, but promotion is
not always possible (for v8f16 operands). Changing the action to Expand fixes
an assertion failure in the legalizer when the frontend produces such ops.
In addition, a quick microbenchmark shows that, in the v4f16 case,
expanding introduces fewer spills and is therefore slightly faster than
promoting.
Reviewers: t.p.northover, SjoerdMeijer
Reviewed By: SjoerdMeijer
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D56296
llvm-svn: 350825
Summary:
D55896 and D56029 add support to emit fixups for :abs_g0: , :abs_g1_s: , etc.
This patch adds the necessary enums and MCExpr needed for lowering these.
Reviewers: rnk, mstorsjo, efriedma
Reviewed By: efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D56037
llvm-svn: 350798
This is an initial implementation for Speculative Load Hardening for
AArch64. It builds on top of the recently introduced
AArch64SpeculationHardening pass.
This doesn't implement (yet) some of the optimizations implemented for
the X86SpeculativeLoadHardening pass. I thought introducing the
optimizations incrementally in follow-up patches should make this easier
to review.
Differential Revision: https://reviews.llvm.org/D55929
llvm-svn: 350729
Follow up patch of rL350385, for adding predres
command line option. This patch renames the
feature as to keep it aligned with the option
passed by/to clang
Differential Revision: https://reviews.llvm.org/D56484
llvm-svn: 350702
We have code to split vector splats (of zero and non-zero) for performance
reasons, but it ignores the fact that a store might be truncating.
Actually, truncating stores are formed for vNi8 and vNi16 types. Since the
truncation is from a legal type, the size of the store is always <= 64-bits and
so they don't actually benefit from being split up anyway, so this patch just
disables that transformation.
llvm-svn: 350620
SB (Speculative Barrier) is only mandatory from 8.5
onwards but is optional from Armv8.0-A. This patch adds a command
line option to enable SB, as it was previously only possible to
enable by selecting -march=armv8.5-a.
This patch also moves to FeatureSB the old FeatureSpecRestrict.
Reviewers: pbarrio, olista01, t.p.northover, LukeCheeseman
Differential Revision: https://reviews.llvm.org/D55921
llvm-svn: 350126