Summary:
We have seen performance regression when v_add3 is generated. The major reason is that the v_mad pattern
is broken when v_add3 is generated. We also see the register pressure increased. While we could not properly
estimate register pressure during instruction selection, we can give mad a higher priority.
In this work, we raise the priority for mad24 in selection and resolve the performance regression.
Reviewers:
rampitec
Differential Revision:
https://reviews.llvm.org/D56745
llvm-svn: 351273
Summary:
This allows moving the condition from the intrinsic to the standard ICmp
opcode, so that LLVM can do simplifications on it. The icmp.i1 intrinsic
is an identity for retrieving the SGPR mask.
And we can also get the mask from and i1, or i1, xor i1.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52060
llvm-svn: 351150
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
This re-submit of the change also includes a slight modification in
SIISelLowering.cpp to work-around a compiler bug for the powerpc_le
platform that caused a buildbot failure on a previous submission.
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
Work around for ppcle compiler bug
Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b
llvm-svn: 351054
This commit fixes the dwordx3/southern-islands failures that were found
in bugzilla https://bugs.llvm.org/show_bug.cgi?id=40129, by not
generating the dwordx3 variants of load/store instructions that were
added to the ISA after southern islands.
Differential Revision: https://reviews.llvm.org/D56434
llvm-svn: 350838
That is, remove many of the calls to Type::getNumContainedTypes(),
Type::subtypes(), and Type::getContainedType(N).
I'm not intending to remove these accessors -- they are
useful/necessary in some cases. However, removing the pointee type
from pointers would potentially break some uses, and reducing the
number of calls makes it easier to audit.
llvm-svn: 350835
Fixed issue with identity values and other cases, f32/f16 identity values to be added later. fma/mac instructions is disabled for now.
Test is fully reworked, added comments. Other fixes:
1. dpp move with uses and old reg initializer should be in the same BB.
2. bound_ctrl:0 is only considered when bank_mask and row_mask are fully enabled (0xF). Othervise the old register value is checked for identity.
3. Added add, subrev, and, or instructions to the old folding function.
4. Kill flag is cleared for the src0 (DPP register) as it may be copied into more than one user.
Differential revision: https://reviews.llvm.org/D55444
llvm-svn: 350721
This removes check for single use from general ShrinkDemandedConstant
to the BE because of the AArch64 regression after D56289/rL350475.
After several hours of experiments I did not come up with a testcase
failing on any other targets if check is not performed.
Moreover, direct call to ShrinkDemandedConstant is not really needed
and superceed by SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D56406
llvm-svn: 350684
I'm not entirely sure this is the correct thing
to do with the global isel philosophy, but I think
this is necessary to handle how differently SGPRs
are used normally vs. from a condition.
For example, it makes sense to allow a copy
from a VGPR to an SGPR, but it makes no sense
to allow a copy from VGPRs to SGPRs used as
select mask.
This avoids regbankselecting strange code with
a truncate feeding directly into a condition field.
Now a copy is forced from sgpr(s1) to vcc, which is
more sensible to handle.
Some of these issues could probably avoided with making enough
operations resulting in i1 illegal. I think we can't avoid
this register bank for legality.
For example, an i1 and where one source is from a truncate, and
one source is a compare needs some kind of copy inserted to
make sure both are in condition registers.
llvm-svn: 350611
If a copy was needed to handle the condition of brcond, it was being
inserted before the defining instruction. Add tests for iterator edge
cases.
I find the existing code here suspect for the case where it's looking
for terminators that modify the register. It's going to insert a copy
in the middle of the terminators, which isn't allowed (it might be
necessary to have a COPY_terminator if anybody actually needs this).
Also legalize brcond for AMDGPU.
llvm-svn: 350595
As we saw in D56057 when we tried to use this function on X86, it's unsafe. It allows the operand node to have multiple users, but doesn't prevent recursing past the first node when it does have multiple users. This can cause other simplifications earlier in the graph without regard to what bits are needed by the other users of the first node. Ideally all we should do to the first node if it has multiple uses is bypass it when its not needed by the user we started from. Doing any other transformation that SimplifyDemandedBits can do like turning ZEXT/SEXT into AEXT would result in an increase in instructions.
Fortunately, we already have a function that can do just that, GetDemandedBits. It will only make transformations that involve bypassing a node.
This patch changes AMDGPU's simplifyI24, to use a combination of GetDemandedBits to handle the multiple use simplifications. And then uses the regular SimplifyDemandedBits on each operand to handle simplifications allowed when the operand only has a single use. Unfortunately, GetDemandedBits simplifies constants more aggressively than SimplifyDemandedBits. This caused the -7 constant in the changed test to be simplified to remove the upper bits. I had to modify computeKnownBits to account for this by ignoring the upper 8 bits of the input.
Differential Revision: https://reviews.llvm.org/D56087
llvm-svn: 350560
Summary:
If a divergent branch instruction is marked as divergent by propagation
rule 2 in DivergencePropagator::exploreSyncDependency() and its condition
is uniform, that branch would incorrectly be assumed to be uniform.
Reviewers: arsenm, tstellar
Reviewed By: arsenm
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D56331
llvm-svn: 350532
Detailed description: SIFoldOperands::foldInstOperand iterates over the
operand uses calling the function that changes def-use iteratorson the
way. As a result loop exits immediately when def-use iterator is
changed. Hence, the operand is folded to the very first use instruction
only. This makes VGPR live along the whole basic block and increases
register pressure significantly. The performance drop observed in SHOC
DeviceMemory test is caused by this bug.
Proposed fix: collect uses to separate container for further processing
in another loop.
Testing: make check-llvm
SHOC performance test.
Reviewers: rampitec, ronlieb
Differential Revision: https://reviews.llvm.org/D56161
llvm-svn: 350350
Summary:
The commit rL348922 introduced a means to set Metadata
section kind for a global variable, if its explicit section
name was prefixed with ".AMDGPU.metadata.".
This patch changes that prefix to ".AMDGPU.comment.",
as "metadata" in the section name might lead to
ambiguity with metadata used by AMD PAL runtime.
Change-Id: Idd4748800d6fe801441d91595fc21e5a4171e668
Reviewers: kzhuravl
Reviewed By: kzhuravl
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D56197
llvm-svn: 350292
Summary:
Don't peel of the offset if the resulting base could possibly be negative in Indirect addressing.
This is because the M0 field is of unsigned.
This patch achieves the similar goal as https://reviews.llvm.org/D55241, but keeps the optimization
if the base is known unsigned.
Reviewers:
arsemn
Differential Revision:
https://reviews.llvm.org/D55568
llvm-svn: 349951
It seems better to avoid using the callback if possible since
there are coverage assertions which are disabled if this is used.
Also fix missing tests. Only test the legal cases since it seems
legalization for build_vector is quite lacking.
llvm-svn: 349878
Summary:
Using HI here makes no logical sense, since the dword is only
32 bits to begin with.
Current Mesa master does not look at the relocation type at all,
so this change is fine. Future Mesa will rely on this, however.
Change-Id: I91085707834c4ac0370926602b93c94b90e44cb1
Reviewers: arsenm, rampitec, mareko
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D55369
llvm-svn: 349620
Summary:
Fix an issue where VGPR/SGPR bounds are not properly extended when brackets are merged.
This manifests as missing waitcnt insertions when multiple brackets are forwarded to a successor block and the first forward has lower VGPR/SGPR bounds.
Irreducible loop test has been extended based on a CTS failure detected for GFX9.
Reviewers: nhaehnle
Reviewed By: nhaehnle
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D55602
llvm-svn: 349611
Summary: 32bit operand sizes are guaranteed by the opcode check AMDGPU::V_ADD_I32_e64 and
AMDGPU::V_ADDC_U32_e64. Therefore, we don't any additional operand size-check-assert.
Author: FarhanaAleen
llvm-svn: 349529
Using regular abs() causes the following warning
error: absolute value function 'abs' given an argument of type 'int64_t' (aka 'long') but has parameter of type 'int' which may cause truncation of value [-Werror,-Wabsolute-value]
(uint32_t)abs(Dist) > MaxDist) {
^
lib/Target/AMDGPU/SILoadStoreOptimizer.cpp:1369:19: note: use function 'std::abs' instead
which causes a bot to fail:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/18284/steps/bootstrap%20clang/logs/stdio
llvm-svn: 349224
Updated the annotate-kernel-features pass to support the propagation of uniform-work-group attribute from the kernel to the called functions. Once this pass is run, all kernels, even the ones which initially did not have the attribute, will be able to indicate weather or not they have uniform work group size depending on the value of the attribute.
Differential Revision: https://reviews.llvm.org/D50200
llvm-svn: 348971
Continue to present HSA metadata as YAML in ASM and when output by tools
(e.g. llvm-readobj), but encode it in Messagepack in the code object.
Differential Revision: https://reviews.llvm.org/D48179
llvm-svn: 348963
I've extended the load/store optimizer to be able to produce dwordx3
loads and stores, This change allows many more load/stores to be combined,
and results in much more optimal code for our hardware.
Differential Revision: https://reviews.llvm.org/D54042
llvm-svn: 348937
Summary:
This patch provides a means to set Metadata section kind
for a global variable, if its explicit section name is
prefixed with ".AMDGPU.metadata."
This could be useful to make the global variable go to
an ELF section without any section flags set.
Reviewers: dstuttard, tpr, kzhuravl, nhaehnle, t-tye
Reviewed By: dstuttard, kzhuravl
Subscribers: llvm-commits, arsenm, jvesely, wdng, yaxunl, t-tye
Differential Revision: https://reviews.llvm.org/D55267
llvm-svn: 348922
This patch restricts the capability of G_MERGE_VALUES, and uses the new
G_BUILD_VECTOR and G_CONCAT_VECTORS opcodes instead in the appropriate places.
This patch also includes AArch64 support for selecting G_BUILD_VECTOR of <4 x s32>
and <2 x s64> vectors.
Differential Revisions: https://reviews.llvm.org/D53629
llvm-svn: 348788
This commit changes which l1 flush instruction is used for AMDPAL and
MESA3d workloads to flush the entire l1 cache instead of just the
volatile lines.
Differential Revision: https://reviews.llvm.org/D55367
llvm-svn: 348771
A new pass to manage the Mode register.
Currently this just manages the floating point double precision
rounding requirements, but is intended to be easily extended to
encompass all Mode register settings.
The immediate motivation comes from the requirement to use the
round-to-zero rounding mode for the 16 bit interpolation
instructions, where the rounding mode setting is shared between
16 and 64 bit operations.
llvm-svn: 348754
Summary:
`llvm::AttributeList` and `llvm::AttributeSet` are immutable, and so methods
defined on these classes, such as `addAttribute`, return a new immutable
object with the attribute added. In https://reviews.llvm.org/D55217 I attempted
to annotate methods such as `addAttribute` with `LLVM_NODISCARD`, since
calling these methods has no side-effects, and so ignoring the result
that is returned is almost certainly a programmer error.
However, committing the change resulted in new warnings in the AMDGPU target.
The AMDGPU simplify libcalls pass added in https://reviews.llvm.org/D36436
attempts to add the readonly and nounwind attributes to simplified
library functions, but instead calls the `addAttribute` methods and
ignores the result.
Modify the simplify libcalls pass to actually add the nounwind and
readonly attributes. Also update the simplify libcalls test to assert
that these attributes are actually being set.
Reviewers: rampitec, vpykhtin, rnk
Reviewed By: rampitec
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D55435
llvm-svn: 348732
We were still using the rounded down offset and alignment even though
they aren't handled because you can't trivially bitcast the loaded
value.
llvm-svn: 348658
This change attempts to shrink scalar AND, OR and XOR instructions which take an immediate that isn't inlineable.
It performs:
AND s0, s0, ~(1 << n) -> BITSET0 s0, n
OR s0, s0, (1 << n) -> BITSET1 s0, n
AND s0, s1, x -> ANDN2 s0, s1, ~x
OR s0, s1, x -> ORN2 s0, s1, ~x
XOR s0, s1, x -> XNOR s0, s1, ~x
In particular, this catches setting and clearing the sign bit for fabs (and x, 0x7ffffffff -> bitset0 x, 31 and or x, 0x80000000 -> bitset1 x, 31).
llvm-svn: 348601
Adds fatal errors for any target that does not support the Tiny or Kernel
codemodels by rejigging the getEffectiveCodeModel calls.
Differential Revision: https://reviews.llvm.org/D50141
llvm-svn: 348585
The introduction of S_{ADD|SUB}_U64_PSEUDO instructions which are decomposed
into VOP3 instruction pairs for S_ADD_U64_PSEUDO:
V_ADD_I32_e64
V_ADDC_U32_e64
and for S_SUB_U64_PSEUDO
V_SUB_I32_e64
V_SUBB_U32_e64
preclude the use of SDWA to encode a constant.
SDWA: Sub-Dword addressing is supported on VOP1 and VOP2 instructions,
but not on VOP3 instructions.
We desire to fold the bit-and operand into the instruction encoding
for the V_ADD_I32 instruction. This requires that we transform the
VOP3 into a VOP2 form of the instruction (_e32).
%19:vgpr_32 = V_AND_B32_e32 255,
killed %16:vgpr_32, implicit $exec
%47:vgpr_32, %49:sreg_64_xexec = V_ADD_I32_e64
%26.sub0:vreg_64, %19:vgpr_32, implicit $exec
%48:vgpr_32, dead %50:sreg_64_xexec = V_ADDC_U32_e64
%26.sub1:vreg_64, %54:vgpr_32, killed %49:sreg_64_xexec, implicit $exec
which then allows the SDWA encoding and becomes
%47:vgpr_32 = V_ADD_I32_sdwa
0, %26.sub0:vreg_64, 0, killed %16:vgpr_32, 0, 6, 0, 6, 0,
implicit-def $vcc, implicit $exec
%48:vgpr_32 = V_ADDC_U32_e32
0, %26.sub1:vreg_64, implicit-def $vcc, implicit $vcc, implicit $exec
Differential Revision: https://reviews.llvm.org/D54882
llvm-svn: 348132
The identity ~(x ^ y) == (~x ^ y) == (x ^ ~y) allows XNOR (XOR/NOT) to turn into NOT/XOR. Handling this case with its own split means we can make the NOT remain in the scalar unit. Previously, we split 64-bit XNOR into two 32-bit XNOR, then lowered. Now, we get three instructions (s_not, v_xor, v_xor) rather than four in the case where either of the sources is a scalar 64-bit.
Add test cases to xnor.ll to attempt XNOR Vx, Sy and XNOR Sx, Vy. Also adding test that uses the opposite identity such that (~x ^ y) on the scalar unit (or vector for gfx906) can generate XNOR. This already worked, but I didn't see a test for it.
Differential: https://reviews.llvm.org/D55071
llvm-svn: 348075
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 348050
Summary:
The VirtReg2Value mapping is crucial for getting consistently
reliable divergence information into the SelectionDAG. This
patch fixes a bunch of issues that lead to incorrect divergence
info and introduces tight assertions to ensure we don't regress:
1. VirtReg2Value is generated lazily; there were some cases where
a lookup was performed before all relevant virtual registers were
created, leading to an out-of-sync mapping. Those cases were:
- Complex code to lower formal arguments that generated CopyFromReg
nodes from live-in registers (fixed by never querying the mapping
for live-in registers).
- Code that generates CopyToReg for formal arguments that are used
outside the entry basic block (fixed by never querying the
mapping for Register nodes, which don't need the divergence info
anyway).
2. For complex values that are lowered to a sequence of registers,
all registers must be reflected in the VirtReg2Value mapping.
I am not adding any new tests, since I'm not actually aware of any
bugs that these problems are causing with trunk as-is. However,
I recently added a test case (in r346423) which fails when D53283 is
applied without this change. Also, the new assertions should provide
most of the effective test coverage.
There is one test change in sdwa-peephole.ll. The underlying issue
is that since the divergence info is now correct, the DAGISel will
select V_OR_B32 directly instead of S_OR_B32. This leads to an extra
COPY which affects the behavior of MachineLICM in a way that ends up
with the S_MOV_B32 with the constant in a different basic block than
the V_OR_B32, which is presumably what defeats the peephole.
Reviewers: alex-t, arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D54340
llvm-svn: 348049
Introduces DPP pseudo instructions and the pass that combines DPP mov with subsequent uses.
Differential revision: https://reviews.llvm.org/D53762
llvm-svn: 347993
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
This patch adds support for S_ANDN2, S_ORN2 32-bit and 64-bit instructions and adds splits to move them to the vector unit (for which there is no equivalent instruction). It modifies the way that the more complex scalar instructions are lowered to vector instructions by first breaking them down to sequences of simpler scalar instructions which are then lowered through the existing code paths. The pattern for S_XNOR has also been updated to apply inversion to one input rather than the output of the XOR as the result is equivalent and may allow leaving the NOT instruction on the scalar unit.
A new tests for NAND, NOR, ANDN2 and ORN2 have been added, and existing tests now hit the new instructions (and have been modified accordingly).
Differential: https://reviews.llvm.org/D54714
llvm-svn: 347877
My change svn-id: 347871 caused a buildbot failure due to an unused
variable def (used in an assert).
Change-Id: Ia882d18bb6fa79b4d7bbfda422b9ea5d23eab336
llvm-svn: 347876
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
Summary:
MachineLoopInfo cannot be relied on for correctness, because it cannot
properly recognize loops in irreducible control flow which can be
introduced by late machine basic block optimization passes. See the new
test case for the reduced form of an example that occurred in practice.
Use a simple fixpoint iteration instead.
In order to facilitate this change, refactor WaitcntBrackets so that it
only tracks pending events and registers, rather than also maintaining
state that is relevant for the high-level algorithm. Various accessor
methods can be removed or made private as a consequence.
Affects (in radv):
- dEQP-VK.glsl.loops.special.{for,while}_uniform_iterations.select_iteration_count_{fragment,vertex}
Fixes: r345719 ("AMDGPU: Rewrite SILowerI1Copies to always stay on SALU")
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54231
llvm-svn: 347853
Summary:
There is one obsolete reference to using -1 as an indication of "unknown",
but this isn't actually used anywhere.
Using unsigned makes robust wrapping checks easier.
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, llvm-commits, tpr, t-tye, hakzsam
Differential Revision: https://reviews.llvm.org/D54230
llvm-svn: 347852
Summary:
Instead of storing the "score" (last time point) of the various relevant
events, only store whether an event is pending or not.
This is sufficient, because whenever only one event of a count type is
pending, its last time point is naturally the upper bound of all time
points of this count type, and when multiple event types are pending,
the count type has gone out of order and an s_waitcnt to 0 is required
to clear any pending event type (and will then clear all pending event
types for that count type).
This also removes the special handling of GDS_GPR_LOCK and EXP_GPR_LOCK.
I do not understand what this special handling ever attempted to achieve.
It has existed ever since the original port from an internal code base,
so my best guess is that it solved a problem related to EXEC handling in
that internal code base.
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54228
llvm-svn: 347850
Summary:
It hides the type casting ugliness, and I happened to have to add a new
such loop (in a later patch).
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54227
llvm-svn: 347849
Summary:
Reduce the statefulness of the algorithm in two ways:
1. More clearly split generateWaitcntInstBefore into two phases: the
first one which determines the required wait, if any, without changing
the ScoreBrackets, and the second one which actually inserts the wait
and updates the brackets.
2. Communicate pre-existing s_waitcnt instructions using an argument to
generateWaitcntInstBefore instead of through the ScoreBrackets.
To simplify these changes, a Waitcnt structure is introduced which carries
the counts of an s_waitcnt instruction in decoded form.
There are some functional changes:
1. The FIXME for the VCCZ bug workaround was implemented: we only wait for
SMEM instructions as required instead of waiting on all counters.
2. We now properly track pre-existing waitcnt's in all cases, which leads
to less conservative waitcnts being emitted in some cases.
s_load_dword ...
s_waitcnt lgkmcnt(0) <-- pre-existing wait count
ds_read_b32 v0, ...
ds_read_b32 v1, ...
s_waitcnt lgkmcnt(0) <-- this is too conservative
use(v0)
more code
use(v1)
This increases code size a bit, but the reduced latency should still be a
win in basically all cases. The worst code size regressions in my shader-db
are:
WORST REGRESSIONS - Code Size
Before After Delta Percentage
1724 1736 12 0.70 % shaders/private/f1-2015/1334.shader_test [0]
2276 2284 8 0.35 % shaders/private/f1-2015/1306.shader_test [0]
4632 4640 8 0.17 % shaders/private/ue4_elemental/62.shader_test [0]
2376 2384 8 0.34 % shaders/private/f1-2015/1308.shader_test [0]
3284 3292 8 0.24 % shaders/private/talos_principle/1955.shader_test [0]
Reviewers: msearles, rampitec, scott.linder, kanarayan
Subscribers: arsenm, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits, hakzsam
Differential Revision: https://reviews.llvm.org/D54226
llvm-svn: 347848
Currently, instructions doing memory accesses through a base operand that is
not a register can not be analyzed using `TII::getMemOpBaseRegImmOfs`.
This means that functions such as `TII::shouldClusterMemOps` will bail
out on instructions using an FI as a base instead of a register.
The goal of this patch is to refactor all this to return a base
operand instead of a base register.
Then in a separate patch, I will add FI support to the mem op clustering
in the MachineScheduler.
Differential Revision: https://reviews.llvm.org/D54846
llvm-svn: 347746
It's possible in some cases to have a restore present
without a corresponding spill. Due to an apparent bug
in D54366 <https://reviews.llvm.org/D54366>, only the
restore for a register was emitted. It's probably
always a bug for this to happen, but due to how SGPR
spilling is implemented, this makes the issues appear
worse than it is.
llvm-svn: 347595
This works if DAG combiner is enabled, but without combining
we cannot select scalar_to_vector of <2 x half> and <2 x i16>.
Differential Revision: https://reviews.llvm.org/D54718
llvm-svn: 347259
This allows to avoid scratch use or indirect VGPR addressing for
small vectors.
Differential Revision: https://reviews.llvm.org/D54606
llvm-svn: 347231
Summary:
AMDGPUAsmPrinter has a getSTI function that derives a GCNSubtarget from the
TM. However, this means that overridden target features are not detected and can
result in incorrect behaviour.
Switch to using STM which is a GCNSubtarget derived from the MF (used elsewhere
in the same function).
Change-Id: Ib6328ad667b7fcdc87e9c06344e59859207db9b0
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D54301
llvm-svn: 347221
If a block had one of the _term instructions used for gluing
exec modifying instructions to the end of the block,
analyzeBranch would fail, preventing the verifier from catching
a broken successor list.
llvm-svn: 347027
Add a pass to fixup various vector ISel issues.
Currently we handle converting GLOBAL_{LOAD|STORE}_*
and GLOBAL_Atomic_* instructions into their _SADDR variants.
This involves feeding the sreg into the saddr field of the new instruction.
llvm-svn: 347008