This patch updates DuplicateInstructionsInSplitBetween to update a DTU
instead of applying updates to the DT directly.
Given that there only are 2 users, also updated them in this patch to
avoid churn.
I slightly moved the code in CallSiteSplitting around to reduce the
places where we have to pass in DTU. If necessary, I could split those
changes in a separate patch.
This fixes missing DT updates when dealing with musttail calls in
CallSiteSplitting, by using DTU->deleteBB.
Reviewers: junbuml, kuhar, NutshellySima, indutny, brzycki
Reviewed By: NutshellySima
llvm-svn: 346769
This patch allows internalising globals if all accesses to them
(from live functions) are from non-volatile load instructions
Differential revision: https://reviews.llvm.org/D49362
llvm-svn: 346584
In SimplifyCFG when given a conditional branch that goes to BB1 and BB2, the hoisted common terminator instruction in the two blocks, caused debug line records associated with subsequent select instructions to become ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53390
llvm-svn: 346481
This eliminates the outlining penalty for llvm.trap/unreachable, because
callers no longer have to emit cleanup/ret instructions after calling an
outlined `noreturn` function.
rdar://45523626
llvm-svn: 346421
The lowering for a call to eh_typeid_for changes when it's moved from
one function to another.
There are several proposals for fixing this issue in llvm.org/PR39545.
Until some solution is in place, do not allow CodeExtractor to extract
calls to eh_typeid_for, as that results in serious miscompilations.
llvm-svn: 346256
When CodeExtractor moves instructions to a new function, debug
intrinsics referring to those instructions within the parent function
become invalid.
This results in the same verifier failure which motivated r344545, about
function-local metadata being used in the wrong function.
llvm-svn: 346255
Clang's -Wimplicit-fallthrough implementation warns on this. I built
clang with GCC 7.3 in +asserts and -asserts mode, and GCC doesn't warn
on this in either configuration. I think it is unnecessary. I separated
it from the large mechanical patch (https://reviews.llvm.org/D53950) in
case I am wrong and it has to be reverted.
llvm-svn: 345876
As K has to dominate I, IIUC I's range metadata must be a subset of
K's. After Eli's recent clarification to the LangRef, loading a value
outside of the range is undefined behavior.
Therefore if I's range contains elements outside of K's range and we would load
one such value, K would cause undefined behavior.
In cases like hoisting/sinking, we still want the most generic range
over all code paths to/from the hoist/sink point. As suggested in the
patches related to D47339, I will refactor the handling of those
scenarios and try to decouple it from this function as follow up, once
we switched to a similar handling of metadata in most of
combineMetadata.
I updated some tests checking mostly the merging of metadata to keep the
metadata of to dominating load. The most interesting one is probably test8 in
test/Transforms/JumpThreading/thread-loads.ll. It contained a comment
about the alias metadata preventing us to eliminate the branch, but it
seem like the actual problem currently is that we merge the ranges of
both loads and cannot eliminate the icmp afterwards. With this patch, we
manage to eliminate the icmp, as the range of the first load excludes 8.
Reviewers: efriedma, nlopes, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D51629
llvm-svn: 345456
When SimplifyCFG changes the PHI node into a select instruction, the debug line records becomes ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D53287
llvm-svn: 345250
The current splitting algorithm works in three stages:
1) Identify cold blocks, then
2) Use forward/backward propagation to mark hot blocks, then
3) Grow a SESE region of blocks *outside* of the set of hot blocks and
start outlining.
While testing this pass on Apple internal frameworks I noticed that some
kinds of control flow (e.g. loops) are never outlined, even though they
unconditionally lead to / follow cold blocks. I noticed two other issues
related to how cold regions are identified:
- An inconsistency can arise in the internal state of the hotness
propagation stage, as a block may end up in both the ColdBlocks set
and the HotBlocks set. Further inconsistencies can arise as these sets
do not match what's in ProfileSummaryInfo.
- It isn't necessary to limit outlining to single-exit regions.
This patch teaches the splitting algorithm to identify maximal cold
regions and outline them. A maximal cold region is defined as the set of
blocks post-dominated by a cold sink block, or dominated by that sink
block. This approach can successfully outline loops in the cold path. As
a side benefit, it maintains less internal state than the current
approach.
Due to a limitation in CodeExtractor, blocks within the maximal cold
region which aren't dominated by a single entry point (a so-called "max
ancestor") are filtered out.
Results:
- X86 (LNT + -Os + externals): 134KB of TEXT were outlined compared to
47KB pre-patch, or a ~3x improvement. Did not see a performance impact
across two runs.
- AArch64 (LNT + -Os + externals + Apple-internal benchmarks): 149KB
of TEXT were outlined. Ditto re: performance impact.
- Outlining results improve marginally in the internal frameworks I
tested.
Follow-ups:
- Outline more than once per function, outline large single basic
blocks, & try to remove unconditional branches in outlined functions.
Differential Revision: https://reviews.llvm.org/D53627
llvm-svn: 345209
Summary:
The current default of appending "_"+entry block label to the new
extracted cold function breaks demangling. Change the deliminator from
"_" to "." to enable demangling. Because the header block label will
be empty for release compile code, use "extracted" after the "." when
the label is empty.
Additionally, add a mechanism for the client to pass in an alternate
suffix applied after the ".", and have the hot cold split pass use
"cold."+Count, where the Count is currently 1 but can be used to
uniquely number multiple cold functions split out from the same function
with D53588.
Reviewers: sebpop, hiraditya
Subscribers: llvm-commits, erik.pilkington
Differential Revision: https://reviews.llvm.org/D53534
llvm-svn: 345178
Summary:
In several places in the code we use the following pattern:
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, TLI.getName(LibFunc_tan), B, Attrs);
[...]
}
In short, we check if there is a lib-function for a certain type, and then
we _always_ fetch the name of the "double" version of the lib function and
construct a call to the appropriate function, that we just checked exists,
using that "double" name as a basis.
This is of course a problem in cases where the target doesn't support the
"double" version, but e.g. only the "float" version.
In that case TLI.getName(LibFunc_tan) returns "", and
emitUnaryFloatFnCall happily appends an "f" to "", and we erroneously end
up with a call to a function called "f".
To solve this, the above pattern is changed to
if (hasUnaryFloatFn(&TLI, Ty, LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
[...]
Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
LibFunc_tanl, B, Attrs);
[...]
}
I.e instead of first fetching the name of the "double" version and then
letting emitUnaryFloatFnCall() add the final "f" or "l", we let
emitUnaryFloatFnCall() fetch the right name from TLI.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, bjope, llvm-commits
Differential Revision: https://reviews.llvm.org/D53370
llvm-svn: 344725
Summary:
Extend LCSSA so that debug values outside loops are rewritten to
use the PHI nodes that the pass creates.
This fixes PR39019. In that case, we ran LCSSA on a loop that
was later on vectorized, which left us with something like this:
for.cond.cleanup:
%add.lcssa = phi i32 [ %add, %for.body ], [ %34, %middle.block ]
call void @llvm.dbg.value(metadata i32 %add,
ret i32 %add.lcssa
for.body:
%add =
[...]
br i1 %exitcond, label %for.cond.cleanup, label %for.body
which later resulted in the debug.value becoming undef when
removing the scalar loop (and the location would have probably
been wrong for the vectorized case otherwise).
As we now may need to query the AvailableVals cache more than
once for a basic block, FindAvailableVals() in SSAUpdaterImpl is
changed so that it updates the cache for blocks that we do not
create a PHI node for, regardless of the block's number of
predecessors. The debug value in the attached IR reproducer
would not be properly rewritten without this.
Debug values residing in blocks where we have not inserted any
PHI nodes are currently left as-is by this patch. I'm not sure
what should be done with those uses.
Reviewers: mattd, aprantl, vsk, probinson
Reviewed By: mattd, aprantl
Subscribers: jmorse, gbedwell, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D53130
llvm-svn: 344589
Variable updates within the outlined function are invisible to
debuggers. This could be improved by defining a DISubprogram for the
new function. For the moment, simply erase the debug intrinsics instead.
This fixes verifier failures about function-local metadata being used in
the wrong function, seen while testing the hot/cold splitting pass.
rdar://45142482
Differential Revision: https://reviews.llvm.org/D53267
llvm-svn: 344545
by `getTerminator()` calls instead be declared as `Instruction`.
This is the biggest remaining chunk of the usage of `getTerminator()`
that insists on the narrow type and so is an easy batch of updates.
Several files saw more extensive updates where this would cascade to
requiring API updates within the file to use `Instruction` instead of
`TerminatorInst`. All of these were trivial in nature (pervasively using
`Instruction` instead just worked).
llvm-svn: 344502
This requires updating a number of .cpp files to adapt to the new API.
I've just systematically updated all uses of `TerminatorInst` within
these files te `Instruction` so thta I won't have to touch them again in
the future.
llvm-svn: 344498
LLVM APIs. There weren't very many.
We still have the instruction visitor, and APIs with TerminatorInst as
a return type or an output parameter.
llvm-svn: 344494
InstCombine keeps a worklist and assumes that optimizations don't
eraseFromParent() the instruction, which SimplifyLibCalls violates. This change
adds a new callback to SimplifyLibCalls to let clients specify their own hander
for erasing actions.
Differential Revision: https://reviews.llvm.org/D52729
llvm-svn: 344251
There is a transform that may replace `lshr (x+1), 1` with `lshr x, 1` in case
if it can prove that the result will be the same. However the initial instruction
might have an `exact` flag set, and it now should be dropped unless we prove
that it may hold. Incorrectly set `exact` attribute may then produce poison.
Differential Revision: https://reviews.llvm.org/D53061
Reviewed By: sanjoy
llvm-svn: 344223
When SimplifyCFG changes the PHI node into a select instruction, the debug line records becomes ambiguous. It causes the debugger to display unreachable source lines.
Differential Revision: https://reviews.llvm.org/D52887
llvm-svn: 344120
Summary:
At some point in the past the recursion in DominatesMergePoint used to pass null for AggressiveInsts as part of the recursion. It no longer does this. So there is no way for AggressiveInsts to be null.
This passes it by reference and removes the null check to make this explicit.
Reviewers: efriedma, reames
Reviewed By: efriedma
Subscribers: xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D52575
llvm-svn: 343828
Summary:
The llvm::SimplifyCFG function creates a SimplifyCFGOpt object and calls run on it. There were numerous places reached from this run function that called back out llvm::SimplifyCFG which would create another SimplifyCFGOpt object. This is an inefficient use of stack space at minimum. We are also not passing along the LoopHeaders pointer passed into the outer llvm::SimplifyCFG call. So if its not null we lose it on the first recursion and get nullptr from there on.
This patch adds an outer loop around the main BasicBlock simplifying code and adds a flag to the SimplifyCFGOpt class that can be set by to request another iteration. I don't think we can iterate based just on the change flag alone since some of the simplifications delete a basic block entirely leaving nothing to iterate on.
Reviewers: bogner, eli.friedman, reames
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52760
llvm-svn: 343816
getNumUses is linear in the number of uses. Since we're looking for a specific use count, we can use hasNUses which will stop as soon as it determines there are more than N uses instead of walking all of them.
llvm-svn: 343550
There are a few leftovers in rL343163 which span two lines. This commit
changes these llvm::sort(C.begin(), C.end, ...) to llvm::sort(C, ...)
llvm-svn: 343426
In this patch, I'm adding an extra check to the Latch's terminator in llvm::UnrollRuntimeLoopRemainder,
similar to how it is already done in the llvm::UnrollLoop.
The compiler would crash if this function is called with a malformed loop.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D51486
llvm-svn: 342958
This is still unsafe for long double, we will transform things into tanl
even if tanl is for another type. But that's for someone else to fix.
llvm-svn: 342542
When SimplifyCFG changes the PHI node into a select instruction, the debug information becomes ambiguous. It causes the debugger to display wrong variable value.
Differential Revision: https://reviews.llvm.org/D51976
llvm-svn: 342527
Previously the alignment on the newly created switch table data was not set,
meaning that DataLayout::getPreferredAlignment was free to overalign it to 16
bytes. This causes unnecessary code bloat.
Differential Revision: https://reviews.llvm.org/D51800
llvm-svn: 342039
Summary:
The InductionDescriptor and RecurrenceDescriptor classes basically analyze the IR to identify the respective IVs. So, it is better to have them in the "Analysis" directory instead of the "Transforms" directory.
The rationale for this is to make the Induction and Recurrence descriptor classes available for analysis passes. Currently including them in an analysis pass produces link error (http://lists.llvm.org/pipermail/llvm-dev/2018-July/124456.html).
Induction and Recurrence descriptors are moved from Transforms/Utils/LoopUtils.h|cpp to Analysis/IVDescriptors.h|cpp.
Reviewers: dmgreen, llvm-commits, hfinkel
Reviewed By: dmgreen
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D51153
llvm-svn: 342016
Summary:
Move InductionDescriptor::transform() routine from LoopUtils to its only uses in LoopVectorize.cpp.
Specifically, the function is renamed as InnerLoopVectorizer::emitTransformedIndex().
This is a child to D51153.
Reviewers: dmgreen, llvm-commits
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D51837
llvm-svn: 341776
Summary:
Block splitting is done with either identical edges being merged, or not.
Only critical edges can be split without merging identical edges based on an option.
Teach the memoryssa updater to take this into account: for the same edge between two blocks only move one entry from the Phi in Old to the new Phi in New.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D51563
llvm-svn: 341709
Load Hardening.
Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.
Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.
While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.
This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.
Differential Revision: https://reviews.llvm.org/D51157
llvm-svn: 341363
Generalize the simplification of `pow(2.0, y)` to `pow(2.0 ** n, y)` for all
scalar and vector types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D49273
llvm-svn: 341095
This reverts commit r340997.
This change turned out not to be NFC after all, but e.g. causes
clang to crash when building the linux kernel for aarch64.
llvm-svn: 341031
These classes don't make any changes to IR and have no reason to be in
Transform/Utils. This patch moves them to Analysis folder. This will allow
us reusing these classes in some analyzes, like MustExecute.
llvm-svn: 341015
The cost modeling was not accounting for the fact we were duplicating the instruction once per predecessor. With a default threshold of 1, this meant we were actually creating #pred copies.
Adding to the fun, there is *absolutely no* test coverage for this. Simply bailing for more than one predecessor passes all checked in tests.
llvm-svn: 341001
Expand the simplification of `pow(exp{,2}(x), y)` to all FP types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D51195
llvm-svn: 340948
Generalize the simplification of `pow(2.0, y)` to `pow(2.0 ** n, y)` for all
scalar and vector types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D49273
llvm-svn: 340947
We have multiple places in code where we try to identify whether or not
some instruction is a guard. This patch factors out this logic into a separate
utility function which works uniformly in all places.
Differential Revision: https://reviews.llvm.org/D51152
Reviewed By: fedor.sergeev
llvm-svn: 340921
This patch creates file GuardUtils which will contain logic for work with guards
that can be shared across different passes.
Differential Revision: https://reviews.llvm.org/D51151
Reviewed By: fedor.sergeev
llvm-svn: 340914
Summary:
This fixes PR31105.
There is code trying to delete dead code that does so by e.g. checking if
the single predecessor of a block is the block itself.
That check fails on a block like this
bb:
br i1 undef, label %bb, label %bb
since that has two (identical) predecessors.
However, after the check for dead blocks there is a call to
ConstantFoldTerminator on the basic block, and that call simplifies the
block to
bb:
br label %bb
Therefore we now do the call to ConstantFoldTerminator before the check if
the block is dead, so it can realize that it really is.
The original behavior lead to the block not being removed, but it was
simplified as above, and then we did a call to
Dest->replaceAllUsesWith(&*I);
with old and new being equal, and an assertion triggered.
Reviewers: chandlerc, fhahn
Reviewed By: fhahn
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D51280
llvm-svn: 340820
Fix the issue of duplicating the call to `exp{,2}()` when it's nested in
`pow()`, as exposed by rL340462.
Differential revision: https://reviews.llvm.org/D51194
llvm-svn: 340784
We have a class `ImplicitControlFlowTracking` which allows us to keep track of
instructions that can abnormally exit and answer queries like "whether or not
there is side-exiting instruction above this instruction in its block".
We may want to have the similar tracking for other types of "special" instructions,
for example instructions that write memory.
This patch separates ImplicitControlFlowTracking into two classes, isolating all
general logic not related to implicit control flow into its parent class. We can
later make another child of this class to keep track of instructions that write
memory.
The motivation for that is that we want to make these checks efficiently in the
patch https://reviews.llvm.org/D50891.
NOTE: The naming of the parent class is not super cool, but the other options we
have are hardly better. Please feel free to rename it as NFC if you think you've
found a more informative name for it.
Differential Revision: https://reviews.llvm.org/D50954
Reviewed By: fedor.sergeev
llvm-svn: 340728
This is a bit awkward in a handful of places where we didn't even have
an instruction and now we have to see if we can build one. But on the
whole, this seems like a win and at worst a reasonable cost for removing
`TerminatorInst`.
All of this is part of the removal of `TerminatorInst` from the
`Instruction` type hierarchy.
llvm-svn: 340701
`isExceptionalTermiantor` and implement it for opcodes as well following
the common pattern in `Instruction`.
Part of removing `TerminatorInst` from the `Instruction` type hierarchy
to make it easier to share logic and interfaces between instructions
that are both terminators and not terminators.
llvm-svn: 340699
The core get and set routines move to the `Instruction` class. These
routines are only valid to call on instructions which are terminators.
The iterator and *generic* range based access move to `CFG.h` where all
the other generic successor and predecessor access lives. While moving
the iterator here, simplify it using the iterator utilities LLVM
provides and updates coding style as much as reasonable. The APIs remain
pointer-heavy when they could better use references, and retain the odd
behavior of `operator*` and `operator->` that is common in LLVM
iterators. Adjusting this API, if desired, should be a follow-up step.
Non-generic range iteration is added for the two instructions where
there is an especially easy mechanism and where there was code
attempting to use the range accessor from a specific subclass:
`indirectbr` and `br`. In both cases, the successors are contiguous
operands and can be easily iterated via the operand list.
This is the first major patch in removing the `TerminatorInst` type from
the IR's instruction type hierarchy. This change was discussed in an RFC
here and was pretty clearly positive:
http://lists.llvm.org/pipermail/llvm-dev/2018-May/123407.html
There will be a series of much more mechanical changes following this
one to complete this move.
Differential Revision: https://reviews.llvm.org/D47467
llvm-svn: 340698
This patch makes the DoesKMove argument non-optional, to force people
to think about it. Most cases where it is false are either code hoisting
or code sinking, where we pick one instruction from a set of
equal instructions among different code paths.
Reviewers: dberlin, nlopes, efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47475
llvm-svn: 340606
Most users won't have to worry about this as all of the
'getOrInsertFunction' functions on Module will default to the program
address space.
An overload has been added to Function::Create to abstract away the
details for most callers.
This is based on https://reviews.llvm.org/D37054 but without the changes to
make passing a Module to Function::Create() mandatory. I have also added
some more tests and fixed the LLParser to accept call instructions for
types in the program address space.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D47541
llvm-svn: 340519
Currently CodeExtractor tries to use the next node after an invoke to
place the store for the result of the invoke, if it is an out parameter
of the region. This fails, as the invoke terminates the current BB.
In that case, we can place the store in the 'normal destination' BB, as
the result will only be available in that case.
Reviewers: davidxl, davide, efriedma
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D51037
llvm-svn: 340331
DAGCombiner doesn't pay attention to whether constants are opaque before doing the div by constant optimization. So BypassSlowDivision shouldn't introduce control flow that would make DAGCombiner unable to see an opaque constant. This can occur when a div and rem of the same constant are used in the same basic block. it will be hoisted, but not leave the block.
Longer term we probably need to look into the X86 immediate cost model used by constant hoisting and maybe not mark div/rem immediates for hoisting at all.
This fixes the case from PR38649.
Differential Revision: https://reviews.llvm.org/D51000
llvm-svn: 340303
This is a follow-up suggested with rL339604.
For tan(), we don't have a corresponding LLVM
intrinsic -- unlike sin/cos -- so this is the
only way/place that we can do this fold currently.
llvm-svn: 339958
Expand the number of cases when `pow(x, 0.5)` is simplified into `sqrt(x)`
by considering the math semantics with more granularity.
Differential revision: https://reviews.llvm.org/D50036
llvm-svn: 339887
Summary:
Previously, `eraseFromParent()` calls `delete` which invalidates the value of the pointer. Copying the value of the pointer later is undefined behavior in C++11 and implementation-defined (which may cause a segfault on implementations having strict pointer safety) in C++14.
This patch removes the BasicBlock pointer from related SmallPtrSet before `delete` invalidates it in the SimplifyCFG pass.
Reviewers: kuhar, dmgreen, davide, trentxintong
Reviewed By: kuhar, dmgreen
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50717
llvm-svn: 339773
Even though this code is below a function called optimizeFloatingPointLibCall(),
we apparently can't guarantee that we're dealing with FPMathOperators, so bail
out immediately if that's not true.
llvm-svn: 339618
This is a very partial fix for the reported problem. I suspect
we do not get this fold in most motivating cases because most of
the time, the libcall would have been replaced by an intrinsic,
and that optimization is handled elsewhere...but maybe it should
be handled here?
llvm-svn: 339604
Pulled out a separate function for some code that calculates
if an inner loop iteration count is invariant to it's outer
loop.
Differential Revision: https://reviews.llvm.org/D50063
llvm-svn: 339500
In combineMetadata, we should be able to preserve K's nonnull metadata,
if K does not move. This condition should hold for all replacements by
NewGVN/GVN, but I added a bunch of assertions to verify that.
Fixes PR35038.
There probably are additional kinds of metadata that could be preserved
using similar reasoning. This is follow-up work.
Reviewers: dberlin, davide, efriedma, nlopes
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47339
llvm-svn: 339149
This function is shared between both implementations. I am not sure if
Utils/Local.h is the best place though.
Reviewers: davide, dberlin, efriedma, xbolva00
Reviewed By: efriedma, xbolva00
Differential Revision: https://reviews.llvm.org/D47337
llvm-svn: 339138
Logic for tracking implicit control flow instructions was added to GVN to
perform PRE optimizations correctly. It appears that GVN is not the only
optimization that sometimes does PRE, so this logic is required in other
places (such as Jump Threading).
This is an NFC patch that encapsulates all ICF-related logic in a dedicated
utility class separated from GVN.
Differential Revision: https://reviews.llvm.org/D40293
llvm-svn: 339086
Properly shrink `pow()` to `powf()` as a binary function and, when no other
simplification applies, do not discard it.
Differential revision: https://reviews.llvm.org/D50113
llvm-svn: 339046
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969