Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
Summary:
Profile sample files include the number of times each entry or inlined
call site is sampled. This is translated into the entry count metadta
on functions.
When sample data is being read, if a call site that was inlined
in the sample program is considered cold and not inlined, then
the entry count of the out-of-line functions does not reflect
the current compilation.
In this patch, we note call sites where the function was not inlined
and as a last action of the sample profile loading, we update the
called function's entry count to reflect the calls from these
call sites which are not included in the profile file.
Reviewers: danielcdh, wmi, Kader, modocache
Reviewed By: wmi
Subscribers: davidxl, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D52845
llvm-svn: 352001
This change adds two options, -i and -inlines as aliases for the -inlining option to llvm-symbolizer to improve compatibility with the GNU addr2line utility which accepts these options.
It also modifies existing tests that use -inlining to exercise these new aliases as well.
This fixes PR40073.
Reviewed by: jhenderson, Quolyk, ruiu
Differential Revision: https://reviews.llvm.org/D57083
llvm-svn: 351999
This saves a cbz+cold call in the interceptor ABI, as well as a realign
in both ABIs, trading off a dcache entry against some branch predictor
entries and some code size.
Unfortunately the functionality is hidden behind a flag because ifunc is
known to be broken on static binaries on Android.
Differential Revision: https://reviews.llvm.org/D57084
llvm-svn: 351989
This is a fix for a regression introduced by the rL348194 commit. In
that change new type (MEK_DTPREL) of MipsMCExpr expression was added,
but in some places of the code this type of expression considered as
unexpected.
This change fixes the bug. The MEK_DTPREL type of expression is used for
marking TLS DIEExpr only and contains a regular sub-expression. Where we
need to handle the expression, we retrieve the sub-expression and
handle it in a common way.
llvm-svn: 351987
Enable full support for the debug info. Recommit to fix the emission of
the not required closing brace.
Differential revision: https://reviews.llvm.org/D46189
llvm-svn: 351972
This fixes https://bugs.llvm.org/show_bug.cgi?id=40072.
GNU addr2line's --functions switch is off by default, has a short alias
of -f, and does not take an argument. This patch changes llvm-symbolizer
to allow the second and third point (changing the default behaviour may
have negative impacts on users). If the option is missing a value, it
now treats it as "linkage".
This change does cause one previously valid command-line to behave
differently. Before --functions <value> was accepted, but now only
--functions=<value> is allowed (as well as --functions). The old
behaviour will result in the value being treated as a positional
argument.
The previous testing for --functions=short has been pulled out into a
new test that also tests the other accepted values and option formats.
Reviewed by: ruiu
Differential Revision: https://reviews.llvm.org/D57049
llvm-svn: 351968
This patch adds a new ReadAdvance definition named ReadInt2Fpu.
ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by
data transfers from the integer unit to the floating point unit.
ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all
x86 models excluding BtVer2. That means, this patch is only a functional change
for the Jaguar cpu model only.
Tablegen definitions for instructions (V)PINSR* have been updated to account for
the new ReadInt2Fpu. That read is mapped to the the GPR input operand.
On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch,
that extra delay was added to the opcode latency. In practice, the insert opcode
only executes for 1cy. Most of the actual latency is actually contributed by the
so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR*
latency is defined by expression f+1, where f is defined as a forwarding delay
from the integer unit to the fpu.
When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC
(only when flag -print-schedule is speified), we now need to account for any
extra forwarding delays. We do this by checking if scheduling classes declare
any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td:
"A negative advance effectively increases latency, which may be used for
cross-domain stalls". When computing the instruction latency for the purpose of
our scheduling tests, we now add any extra delay to the formula. This avoids
regressing existing codegen and mca schedule tests. It comes with the cost of an
extra (but very simple) hook in MCSchedModel.
Differential Revision: https://reviews.llvm.org/D57056
llvm-svn: 351965
In r287786, a bug was introduced into llvm-readelf where it didn't print
the static symbol table if both --symbols and --dyn-symbols were
specified, even if there was no dynamic symbol table. This is obviously
incorrect.
This patch fixes this issue, by delegating the decision of which symbol
tables should be printed to the final dumper, rather than trying to
decide in the command-line option handling layer. The decision was made
to follow the approach taken in this patch because the LLVM style dumper
uses a different order to the original GNU style behaviour (and GNU
readelf) for ELF output. Other approaches resulted in behaviour changes
for other dumpers which felt wrong. In particular, I wanted to avoid
changing the order of the output for --symbols --dyn-symbols for LLVM
style, keep what is emitted by --symbols unchanged for all dumpers, and
avoid having different orders of .dynsym and .symtab dumping for GNU
"--symbols" and "--symbols --dyn-symbols".
Reviewed by: grimar, rupprecht
Differential Revision: https://reviews.llvm.org/D57016
llvm-svn: 351960
This patch replaces the existing LLVMVectorSameWidth matcher with LLVMScalarOrSameVectorWidth.
The matching args must be either scalars or vectors with the same number of elements, but in either case the scalar/element type can differ, specified by LLVMScalarOrSameVectorWidth.
I've updated the _overflow intrinsics to demonstrate this - allowing it to return a i1 or <N x i1> overflow result, matching the scalar/vectorwidth of the other (add/sub/mul) result type.
The masked load/store/gather/scatter intrinsics have also been updated to use this, although as we specify the reference type to be llvm_anyvector_ty we guarantee the mask will be <N x i1> so no change in behaviour
Differential Revision: https://reviews.llvm.org/D57090
llvm-svn: 351957
Summary:
With XNACK, an smem load whose result is coalesced with an operand (thus
it overwrites its own operand) cannot appear in a clause, because some
other instruction might XNACK and restart the whole clause.
The clause breaker already realized that an smem that overwrites an
operand cannot appear in a clause, and broke the clause. The problem
that this commit fixes is that the SIFormMemoryClauses optimization
formed a bundle with early clobber, which caused the earlier code that
set up the coalesced operand to be removed as dead.
Differential Revision: https://reviews.llvm.org/D57008
Change-Id: I703c4d5b0bf7d6060222bec491f45c18bb3c0016
llvm-svn: 351950
The aux symbols were stored in an opaque std::vector<uint8_t>,
with contents interpreted according to the rest of the symbol.
All aux symbol types but one fit in 18 bytes (sizeof(coff_symbol16)),
and if written to a bigobj, two extra padding bytes are written (as
sizeof(coff_symbol32) is 20). In the storage agnostic intermediate
representation, store the aux symbols as a series of coff_symbol16
sized opaque blobs. (In practice, all such aux symbols only consist
of one aux symbol, so this is more flexible than what reality needs.)
The special case is the file aux symbols, which are written in
potentially more than one aux symbol slot, without any padding,
as one single long string. This can't be stored in the same opaque
vector of fixed sized aux symbol entries. The file aux symbols will
occupy a different number of aux symbol slots depending on the type
of output object file. As nothing in the intermediate process needs
to have accurate raw symbol indices, updating that is moved into the
writer class.
Differential Revision: https://reviews.llvm.org/D57009
llvm-svn: 351947
These are no longer necessary as the testcase now seems to run fine
on the buildbots that previously failed on this case, after SVN r351934.
llvm-svn: 351946
Currently in Arm code, we allocate LR first, under the assumption that
it needs to be saved anyway. Unfortunately this has the disadvantage
that it will require any instructions using it to be the longer thumb2
instructions, not the shorter thumb1 ones.
This switches the order when we are optimising for minsize, returning to
the default order so that more lower registers can be used. It can end
up requiring more pushed registers, but on average produces smaller code.
Differential Revision: https://reviews.llvm.org/D56008
llvm-svn: 351938
In the last stage of type promotion, we replace any zext that uses a
new trunc with the operand of the trunc. This is okay when we only
allowed one type to be optimised, but now its the case that the trunc
maybe needed to produce a more narrow type than the one we were
optimising for. So we need to check this before doing the replacement.
Differential Revision: https://reviews.llvm.org/D57041
llvm-svn: 351935
The current check in CombineToPreIndexedLoadStore is too
conversative, preventing a pre-indexed store when the base pointer
is a predecessor of the value being stored. Instead, we should check
the pointer operand of the store.
Differential Revision: https://reviews.llvm.org/D56719
llvm-svn: 351933
This was reverted since it broke a couple buildbots. The reason
for the breakage is not yet known, but this time, the test has
got more diagnostics added, to hopefully allow figuring out
what goes wrong.
Differential Revision: https://reviews.llvm.org/D57007
llvm-svn: 351931
As part of speculation hardening, the stack pointer gets masked with the
taint register (X16) before a function call or before a function return.
Since there are no instructions that can directly mask writing to the
stack pointer, the stack pointer must first be transferred to another
register, where it can be masked, before that value is transferred back
to the stack pointer.
Before, that temporary register was always picked to be x17, since the
ABI allows clobbering x17 on any function call, resulting in the
following instruction pattern being inserted before function calls and
returns/tail calls:
mov x17, sp
and x17, x17, x16
mov sp, x17
However, x17 can be live in those locations, for example when the call
is an indirect call, using x17 as the target address (blr x17).
To fix this, this patch looks for an available register just before the
call or terminator instruction and uses that.
In the rare case when no register turns out to be available (this
situation is only encountered twice across the whole test-suite), just
insert a full speculation barrier at the start of the basic block where
this occurs.
Differential Revision: https://reviews.llvm.org/D56717
llvm-svn: 351930
Two backend optimizations failed to handle cases when compiled with -g, due
to failing to consider DBG_VALUE instructions. This was in
SystemZTargetLowering::emitSelect() and
SystemZElimCompare::getRegReferences().
This patch makes sure that DBG_VALUEs are recognized so that they do not
affect these optimizations.
Tests for branch-on-count, load-and-trap and consecutive selects.
Review: Ulrich Weigand
https://reviews.llvm.org/D57048
llvm-svn: 351928
This patch relaxes restrictions on types of latch condition and range check.
In current implementation, they should match. This patch allows to handle
wide range checks against narrow condition. The motivating example is the
following:
int N = ...
for (long i = 0; (int) i < N; i++) {
if (i >= length) deopt;
}
In this patch, the option that enables this support is turned off by
default. We'll wait until it is switched to true.
Differential Revision: https://reviews.llvm.org/D56837
Reviewed By: reames
llvm-svn: 351926
#pragma clang loop pipeline(disable)
Disable SWP optimization for the next loop.
“disable” is the only possible value.
#pragma clang loop pipeline_initiation_interval(number)
Set value of initiation interval for SWP
optimization to specified number value for
the next loop. Number is the positive value
greater than 0.
These pragmas could be used for debugging or reducing
compile time purposes. It is possible to disable SWP for
concrete loops to save compilation time or to find bugs
by not doing SWP to certain loops. It is possible to set
value of initiation interval to concrete number to save
compilation time by not doing extra pipeliner passes or
to check created schedule for specific initiation interval.
That is llvm part of the fix
Clang part of fix: https://reviews.llvm.org/D55710
Patch by Alexey Lapshin!
Differential Revision: https://reviews.llvm.org/D56403
llvm-svn: 351923
Each hwasan check requires emitting a small piece of code like this:
https://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html#memory-accesses
The problem with this is that these code blocks typically bloat code
size significantly.
An obvious solution is to outline these blocks of code. In fact, this
has already been implemented under the -hwasan-instrument-with-calls
flag. However, as currently implemented this has a number of problems:
- The functions use the same calling convention as regular C functions.
This means that the backend must spill all temporary registers as
required by the platform's C calling convention, even though the
check only needs two registers on the hot path.
- The functions take the address to be checked in a fixed register,
which increases register pressure.
Both of these factors can diminish the code size effect and increase
the performance hit of -hwasan-instrument-with-calls.
The solution that this patch implements is to involve the aarch64
backend in outlining the checks. An intrinsic and pseudo-instruction
are created to represent a hwasan check. The pseudo-instruction
is register allocated like any other instruction, and we allow the
register allocator to select almost any register for the address to
check. A particular combination of (register selection, type of check)
triggers the creation in the backend of a function to handle the check
for specifically that pair. The resulting functions are deduplicated by
the linker. The pseudo-instruction (really the function) is specified
to preserve all registers except for the registers that the AAPCS
specifies may be clobbered by a call.
To measure the code size and performance effect of this change, I
took a number of measurements using Chromium for Android on aarch64,
comparing a browser with inlined checks (the baseline) against a
browser with outlined checks.
Code size: Size of .text decreases from 243897420 to 171619972 bytes,
or a 30% decrease.
Performance: Using Chromium's blink_perf.layout microbenchmarks I
measured a median performance regression of 6.24%.
The fact that a perf/size tradeoff is evident here suggests that
we might want to make the new behaviour conditional on -Os/-Oz.
But for now I've enabled it unconditionally, my reasoning being that
hwasan users typically expect a relatively large perf hit, and ~6%
isn't really adding much. We may want to revisit this decision in
the future, though.
I also tried experimenting with varying the number of registers
selectable by the hwasan check pseudo-instruction (which would result
in fewer variants being created), on the hypothesis that creating
fewer variants of the function would expose another perf/size tradeoff
by reducing icache pressure from the check functions at the cost of
register pressure. Although I did observe a code size increase with
fewer registers, I did not observe a strong correlation between the
number of registers and the performance of the resulting browser on the
microbenchmarks, so I conclude that we might as well use ~all registers
to get the maximum code size improvement. My results are below:
Regs | .text size | Perf hit
-----+------------+---------
~all | 171619972 | 6.24%
16 | 171765192 | 7.03%
8 | 172917788 | 5.82%
4 | 177054016 | 6.89%
Differential Revision: https://reviews.llvm.org/D56954
llvm-svn: 351920
Summary:
`CodeViewDebug::lowerTypeMemberFunction` used to default to a `Void`
return type if the function's type array was empty. After D54667, it
started blindly indexing the 0th item for the return type, which fails
in `getOperand` for empty arrays if assertions are enabled.
This patch restores the `Void` return type for empty type arrays, and
adds a test generated by Rust in line-only debuginfo mode.
Reviewers: zturner, rnk
Reviewed By: rnk
Subscribers: hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D57070
llvm-svn: 351910
Summary:
This patch changes a few methods to return Error instead of manually calling error/reportError to abort. This will make it easier to extract into a library.
Note that error() takes just a string (this patch also adds an overload that takes an Error), while reportError() takes string + [error/code]. To help unify things, use FileError to associate a given filename with an error. Note that this takes some special care (for now), e.g. calling reportError(FileName, <something that could be FileError>) will duplicate the filename. The goal is to eventually remove reportError() and have every error associated with a file to be a FileError, and just one error handling block at the tool level.
This change was suggested in D56806. I took it a little further than suggested, but completely fixing llvm-objcopy will take a couple more patches. If this approach looks good, I'll commit this and apply similar patche(s) for the rest.
This change is NFC in terms of non-error related code, although the error message changes in one context.
Reviewers: alexshap, jhenderson, jakehehrlich, mstorsjo, espindola
Reviewed By: alexshap, jhenderson
Subscribers: llvm-commits, emaste, arichardson
Differential Revision: https://reviews.llvm.org/D56930
llvm-svn: 351896
It might be a bit nicer to use the fancy .legalIf and co. predicates,
but this was requiring more boilerplate and disables the coverage
assertions.
llvm-svn: 351886
For AMDGPU the shift amount is never 64-bit, and
this needs to use a 32-bit shift.
X86 uses i8, but seemed to be hacking around this before.
llvm-svn: 351882
The old diagnostic form of the trace produced by -v and -vv looks
like:
```
check1:1:8: remark: CHECK: expected string found in input
CHECK: abc
^
<stdin>:1:3: note: found here
; abc def
^~~
```
When dumping annotated input is requested (via -dump-input), I find
that this old trace is not useful and is sometimes harmful:
1. The old trace is mostly redundant because the same basic
information also appears in the input dump's annotations.
2. The old trace buries any error diagnostic between it and the input
dump, but I find it useful to see any error diagnostic up front.
3. FILECHECK_OPTS=-dump-input=fail requests annotated input dumps only
for failed FileCheck calls. However, I have to also add -v or -vv
to get a full set of annotations, and that can produce massive
output from all FileCheck calls in all tests. That's a real
problem when I run this in the IDE I use, which grinds to a halt as
it tries to capture all that output.
When -dump-input=fail|always, this patch suppresses the old trace from
-v or -vv. Error diagnostics still print as usual. If you want the
old trace, perhaps to see variable expansions, you can set
-dump-input=none (the default).
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D55825
llvm-svn: 351881
Adding MC regressions tests to cover the AVX512F_SCALAR isa sets.
This patch is part of a larger task to cover MC encoding of all X86 isa sets started in revision: https://reviews.llvm.org/D39952
Differential Revision: https://reviews.llvm.org/D41174
llvm-svn: 351874
Ensure we keep avx512f/bw/dq + vl versions separate, add example broadcast tests - this should allow us to better the test coverage of test\CodeGen\X86\avx512-schedule.ll
llvm-svn: 351848
Summary: Enable full support for the debug info.
Reviewers: echristo
Subscribers: jholewinski, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46189
llvm-svn: 351846
Summary: Initial function labels must follow the debug location for the correct relocation info generation.
Reviewers: tra, jlebar, echristo
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D45784
llvm-svn: 351843
We're getting pretty close to matching/exceeding test coverage of the test\CodeGen\X86\*-schedule.ll files, which should allow us to get rid of -print-schedule and fix PR37160
llvm-svn: 351836
The existing test unintentionally shows that we have prematurely
optimized the shuffle into a vector concat and lost the undef info,
so it is not affected by a basic improvement to
SimplifyDemandedVectorElts.
llvm-svn: 351834
vecbo (insertsubv undef, X, Z), (insertsubv undef, Y, Z) --> insertsubv VecC, (vecbo X, Y), Z
This is another step in generic vector narrowing. It's also a step towards more horizontal op
formation specifically for x86 (although we still failed to match those in the affected tests).
The scalarization cases are also not optimal (we should be scalarizing those), but it's still
an improvement to use a narrower vector op when we know part of the result must be constant
because both inputs are undef in some vector lanes.
I think a similar match but checking for a constant operand might help some of the cases in
D51553.
Differential Revision: https://reviews.llvm.org/D56875
llvm-svn: 351825
For constant bit select patterns, replace one AND with a ANDNP, allowing us to reuse the constant mask. Only do this if the mask has multiple uses (to avoid losing load folding) or if we have XOP as its VPCMOV can handle most folding commutations.
This also requires computeKnownBitsForTargetNode support for X86ISD::ANDNP and X86ISD::FOR to prevent regressions in fabs/fcopysign patterns.
Differential Revision: https://reviews.llvm.org/D55935
llvm-svn: 351819
Similar to horizontal ops on D56777, the sse2 (but not mmx) bit shift ops has local forwarding disabled, adding +1cy to the use latency for the result.
Differential Revision: https://reviews.llvm.org/D57026
llvm-svn: 351817
Similar to horizontal ops on D56777, the vpermilpd/vpermilps variable mask ops has local forwarding disabled, adding +1cy to the use latency for the result.
Differential Revision: https://reviews.llvm.org/D57022
llvm-svn: 351815
First step towards PR40376, this patch adds support for getCmpSelInstrCost to use the (optional) Instruction CmpInst predicate to indicate the type of integer comparison we're performing and alter the costs accordingly.
Differential Revision: https://reviews.llvm.org/D57013
llvm-svn: 351810
When we are inserting 1 "inline" element, and zeroing 2 of the other elements then we can safely commute the insertps source inputs to improve memory folding.
Differential Revision: https://reviews.llvm.org/D56843
llvm-svn: 351807
Avoid the infinite loop caused by the target DAG combine converting ANYEXT to
SIGNEXT and the target-independent DAG combine logic converting back to
ANYEXT. Do this by not adding the new node to the worklist.
Committing directly as this definitely doesn't make the problem any worse, and
I intend to follow-up with a patch that avoids this custom combiner logic
altogether and just lowers the i32 operations to a target-specific
SelectionDAG node. This should be easier to reason about and improve codegen
quality in some cases (though may miss out on some later DAG combines).
llvm-svn: 351806
This patch adds support of guards expressed as branches by widenable
conditions in Loop Predication.
Differential Revision: https://reviews.llvm.org/D56081
Reviewed By: reames
llvm-svn: 351805
This was requested in the review of D57006.
Also add missing quotes around symbol names in error messages.
Differential Revision: https://reviews.llvm.org/D57014
llvm-svn: 351799
This broke the RISCV build, and even with that fixed, one of the RISCV
tests behaves surprisingly differently with asserts than without,
leaving there no clear test pattern to use. Generally it seems bad for
hte IR to differ substantially due to asserts (as in, an alloca is used
with asserts that isn't needed without!) and nothing I did simply would
fix it so I'm reverting back to green.
This also required reverting the RISCV build fix in r351782.
llvm-svn: 351796
In r287786, the behaviour of --dyn-symbols in llvm-readelf (but not
llvm-readobj) was changed to print the dynamic symbols as derived from
the hash table, rather than to print the dynamic symbol table contents
directly. The original change was initially submitted without review,
and some comments were made on the commit mailing list implying that the
new behavious is GNU compatible. I argue that it is not:
1) It does not include a null symbol.
2) It prints the symbols based on an order derived from the hash
table.
3) It prints an extra column indicating which bucket it came from.
This could break parsers that expect a fixed number of columns,
with the first column being the symbol index.
4) If the input happens to have both .hash and .gnu.hash section, it
prints interpretations of them both, resulting in most symbols
being printed twice.
5) There is no way of just printing the raw dynamic symbol table,
because --symbols also prints the static symbol table.
This patch reverts the --dyn-symbols behaviour back to its old behaviour
of just printing the contents of the dynamic symbol table, similar to
what is printed by --symbols. As the hashed interpretation is still
desirable to validate the hash table, it puts it under a new switch
"--hash-symbols". This is a no-op on all output forms except for GNU
output style for ELF. If there is no hash table, it does nothing,
unlike the previous behaviour which printed the raw dynamic symbol
table, since the raw dynsym is available under --dyn-symbols.
The yaml input for the test is based on that in
test/tools/llvm-readobj/demangle.test, but stripped down to the bare
minimum to provide a valid dynamic symbol.
Note: some LLD tests needed updating. I will commit a separate patch for
those.
Reviewed by: grimar, rupprecht
Differential Revision: https://reviews.llvm.org/D56910
llvm-svn: 351789
This patch may seem familiar... but my previous patch handled the
equivalent lsls+and, not this case. Usually instcombine puts the
"and" after the shift, so this case doesn't come up. However, if the
shift comes out of a GEP, it won't get canonicalized by instcombine,
and DAGCombine doesn't have an equivalent transform.
This also modifies isDesirableToCommuteWithShift to suppress DAGCombine
transforms which would make the overall code worse.
I'm not really happy adding a bunch of code to handle this, but it would
probably be tricky to substantially improve the behavior of DAGCombine
here.
Differential Revision: https://reviews.llvm.org/D56032
llvm-svn: 351776
Deopt operands are generally intended to record information about a site in code with minimal perturbation of the surrounding code. Idiomatically, they also tend to appear down rare paths. Putting these together, we have an obvious case for extending CVP w/deopt operand constant folding. Arguably, we should be doing this for all operands on all instructions, but that's definitely a much larger and risky change.
Differential Revision: https://reviews.llvm.org/D55678
llvm-svn: 351774
Not sure this is the best fix, but it saves an instruction for certain
constructs involving variable shifts.
Differential Revision: https://reviews.llvm.org/D55572
llvm-svn: 351768
Fixes two problems with GCNHazardRecognizer:
1. It only scans up to 5 instructions emitted earlier.
2. It does not take control flow into account. An earlier instruction
from the previous basic block is not necessarily a predecessor.
At the same time a real predecessor block is not scanned.
The patch provides a way to distinguish between scheduler and
hazard recognizer mode. It is OK to work with emitted instructions
in the scheduler because we do not really know what will be emitted
later and its order. However, when pass works as a hazard recognizer
the schedule is already finalized, and we have full access to the
instructions for the whole function, so we can properly traverse
predecessors and their instructions.
Differential Revision: https://reviews.llvm.org/D56923
llvm-svn: 351759
D56777 added +1cy local forwarding penalty for horizontal operations, but this penalty only affects sse2/xmm variants, the mmx variants don't suffer the penalty.
Confirmed with @andreadb
llvm-svn: 351755
These are copied from the sibling x86 file. I'm not sure which
of the current outputs (if any) is considered optimal, but
someone more familiar with AArch may want to take a look.
llvm-svn: 351754
The regression test is reduced from the example shown in D56281.
This does raise a question as noted in the test file: do we want
to handle this pattern? I don't have a motivating example for
that on x86 yet, but it seems like we could have that pattern
there too, so we could avoid the back-and-forth using a shuffle.
llvm-svn: 351753
r327630 introduced new write definitions for float/vector loads.
Before that revision, WriteLoad was used by both integer/float (scalar/vector)
load. So, WriteLoad had to conservatively declare a latency to 5cy. That is
because the load-to-use latency for float/vector load is 5cy.
Now that we have dedicated writes for float/vector loads, there is no reason why
we should keep the latency of WriteLoad to 5cy. At the moment, WriteLoad is only
used by scalar integer loads only; we can assume an optimstic 3cy latency for
them.
This patch changes that latency from 5cy to 3cy, and regenerates the affected
scheduling/mca tests.
Differential Revision: https://reviews.llvm.org/D56922
llvm-svn: 351742
This updates the AVR Select8/Select16 expansion code so that, when
inserting the two basic blocks for true and false conditions, any
existing fallthrough on the previous block is preserved.
Prior to this patch, if the block before the Select pseudo fell through
to the subsequent block, two new basic blocks would be inserted at the
prior fallthrough point, changing the fallthrough destination.
The predecessor or successor lists were not updated, causing the
BranchFolding pass at -O1 and above the rearrange basic blocks, causing
an infinite loop. Not to mention the unconditional fallthrough to the
true block is incorrect in of itself.
This patch modifies the Select8/16 expansion so that, if inserting true
and false basic blocks at a fallthrough point, the implicit branch is
preserved by means of an explicit, unconditional branch to the previous
fallthrough destination.
Thanks to Carl Peto for reporting this bug.
This fixes avr-rust bug https://github.com/avr-rust/rust/issues/123.
llvm-svn: 351721
This reverts commit r351718.
Carl pointed out that the unit test could be improved.
This patch will be recommitted once the test is made more resilient.
llvm-svn: 351719
This updates the AVR Select8/Select16 expansion code so that, when
inserting the two basic blocks for true and false conditions, any
existing fallthrough on the previous block is preserved.
Prior to this patch, if the block before the Select pseudo fell through
to the subsequent block, two new basic blocks would be inserted at the
prior fallthrough point, changing the fallthrough destination.
The predecessor or successor lists were not updated, causing the
BranchFolding pass at -O1 and above the rearrange basic blocks, causing
an infinite loop. Not to mention the unconditional fallthrough to the
true block is incorrect in of itself.
This patch modifies the Select8/16 expansion so that, if inserting true
and false basic blocks at a fallthrough point, the implicit branch is
preserved by means of an explicit, unconditional branch to the previous
fallthrough destination.
Thanks to Carl Peto for reporting this bug.
This fixes avr-rust bug https://github.com/avr-rust/rust/issues/123.
llvm-svn: 351718
There is a combine that was hiding these tests
not actually testing what they should be, although
they were producing the expected end result.
llvm-svn: 351698
This causes a couple of changes in the upgrade tests as signed/unsigned eq/ne are equivalent and we constant fold true/false codes, these changes are the same as what we already do for avx512 cmp/ucmp.
Noticed while cleaning up vector integer comparison costs for PR40376.
llvm-svn: 351697
This was crashing in the predicate function assuming the value
is a vector.
Copy more of what AArch64 uses. This probably needs more refinement
later, but I don't exactly understand what it means in some cases,
particularly since any legalization for these seems to be missing.
llvm-svn: 351693
We were upgrading these to the new style VPCOM/VPCOMU intrinsics (which includes the condition code immediate), but we'll be getting rid of those shortly, so convert these to generics first.
This causes a couple of changes in the upgrade tests as signed/unsigned eq/ne are equivalent and we constant fold true/false codes, these changes are the same as what we already do for avx512 cmp/ucmp.
Noticed while cleaning up vector integer comparison costs for PR40376.
llvm-svn: 351690
These intrinsics can always be replaced with generic integer comparisons without any regression in codegen, even for -O0/-fast-isel cases.
Noticed while cleaning up vector integer comparison costs for PR40376.
A future commit will remove/autoupgrade the existing VPCOM/VPCOMU llvm intrinsics.
llvm-svn: 351688
Prior to SSE41 (and sometimes on AVX1), vector select has to be performed as a ((X & C)|(Y & ~C)) bit select.
Exposes a couple of issues with the min/max reduction costs (which only go down to SSE42 for some reason).
The increase pre-SSE41 selection costs also prevent a couple of tests from firing any longer, so I've either tweaked the target or added AVX tests as well to the existing SSE2 tests.
llvm-svn: 351685
Prior to this patch, the AVR::LDWRdPtr instruction was always lowered to
instructions of this pattern:
ld $GPR8, [PTR:XYZ]+
ld $GPR8, [PTR]+1
This has a problem; the [PTR] is incremented in-place once, but never
decremented.
Future uses of the same pointer will use the now clobbered value,
leading to the pointer being incorrect by an offset of one.
This patch modifies the expansion code of the LDWRdPtr pseudo
instruction so that the pointer variable is not silently clobbered in
future uses in the same live range.
Bug first reported by Keshav Kini.
Patch by Kaushik Phatak.
llvm-svn: 351673
This reverts commit r351544.
In that commit, I had mistakenly misattributed the issue submitter as
the patch author, Kaushik Phatak.
The patch will be recommitted immediately with the correct attribution.
llvm-svn: 351672
The debug directory contains the rwa file address of itself,
which is updated on write. Add a testcase for this existing
functionality.
Differential Revision: https://reviews.llvm.org/D56876
llvm-svn: 351659
Followup to D55745, this time handling comparisons with ugt and ult
predicates (which are the canonical forms for non-equality predicates).
For ctlz we can convert into a simple icmp, for cttz we can convert
into a mask check.
Differential Revision: https://reviews.llvm.org/D56355
llvm-svn: 351645
This modification of the currently unused inter-procedural constant
propagation pass (IPConstantPropagation) shows how abstract call sites
enable optimization of callback calls alongside direct and indirect
calls. Through minimal changes, mostly dealing with the partial mapping
of callbacks, inter-procedural constant propagation was enabled for
callbacks, e.g., OpenMP runtime calls or pthreads_create.
Differential Revision: https://reviews.llvm.org/D56447
llvm-svn: 351628
An abstract call site is a wrapper that allows to treat direct,
indirect, and callback calls the same. If an abstract call site
represents a direct or indirect call site it behaves like a stripped
down version of a normal call site object. The abstract call site can
also represent a callback call, thus the fact that the initially
called function (=broker) may invoke a third one (=callback callee).
In this case, the abstract call side hides the middle man, hence the
broker function. The result is a representation of the callback call,
inside the broker, but in the context of the original instruction that
invoked the broker.
Again, there are up to three functions involved when we talk about
callback call sites. The caller (1), which invokes the broker
function. The broker function (2), that may or may not invoke the
callback callee. And finally the callback callee (3), which is the
target of the callback call.
The abstract call site will handle the mapping from parameters to
arguments depending on the semantic of the broker function. However,
it is important to note that the mapping is often partial. Thus, some
arguments of the call/invoke instruction are mapped to parameters of
the callee while others are not. At the same time, arguments of the
callback callee might be unknown, thus "null" if queried.
This patch introduces also !callback metadata which describe how a
callback broker maps from parameters to arguments. This metadata is
directly created by clang for known broker functions, provided through
source code attributes by the user, or later deduced by analyses.
For motivation and additional information please see the corresponding
talk (slides/video)
https://llvm.org/devmtg/2018-10/talk-abstracts.html#talk20
as well as the LCPC paper
http://compilers.cs.uni-saarland.de/people/doerfert/par_opt_lcpc18.pdf
Differential Revision: https://reviews.llvm.org/D54498
llvm-svn: 351627
Thanks to Nikita Popov for pointing out this missed case.
This is a follow-up to r351411, which disabled function merging for
vararg functions outright due to a miscompile (see llvm.org/PR40345).
Differential Revision: https://reviews.llvm.org/D56865
llvm-svn: 351624
If an inherently cold function is found, mark it as cold. For now this
means applying the `cold` and `minsize` attributes.
As a drive-by, revisit and clean up the criteria for considering a
function for splitting. Add tests.
llvm-svn: 351623
CodeExtractor permits extracting a region of blocks from a function even
when values defined within the region are used outside of it.
This is typically done by creating an alloca in the original function
and reloading the alloca after a call to the extracted function.
Wrap the reload in lifetime start/end markers to promote stack coloring.
Suggested by Sergei Kachkov!
Differential Revision: https://reviews.llvm.org/D56045
llvm-svn: 351621
This reverts commit r351618.
Compiler RT + ASAN tests are failing for PowerPC. Not sure
how would I reproduce these on macOS, so reverting (again)
until I do.
llvm-svn: 351619
r291284 added a nice mechanism to consistently pass CMake on/off toggles to
lit. This change uses it for LLVM_LIBXML2_ENABLED too (which was added around
the same time and doesn't use the new system yet).
Also alphabetically sort the list passed to llvm_canonicalize_cmake_booleans()
in llvm/test/CMakeLists.txt.
No intended behavior change.
Differential Revision: https://reviews.llvm.org/D56912
llvm-svn: 351615
This patch gives elfabi the ability to read DT_NEEDED entries from ELF binaries
to populate NeededLibs in TextAPI's ELFStub.
Differential Revision: https://reviews.llvm.org/D55852
llvm-svn: 351592
The existing tests already show a sub-optimal transform,
but this should make it clear that we can't just match
an 'and' op when creating movmsk instructions.
llvm-svn: 351590
Make sure CodeGenPrepare doesn't emit multiple inttoptr instructions of
the same integer value while sinking address computations, but rather
CSEs them on the fly: excessive inttoptr's confuse SCEV into thinking
that related pointers have nothing to do with each other.
This problem blocks LoadStoreVectorizer from vectorizing some of the
loads / stores in a downstream target.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D56838
llvm-svn: 351582
This sends these intrinsics through isel in a much more normal way. This should allow addressing mode matching in isel to make better use of the displacement field.
Differential Revision: https://reviews.llvm.org/D56827
llvm-svn: 351570
This commit adds some missing intrinsics into the isAlwaysUniform list
for the AMDGPU backend.
Differential Revision: https://reviews.llvm.org/D56845
llvm-svn: 351562
Set the test to properly require aarch64 instead of arm. Otherwise, this test fails with LLVM_TARGETS_TO_BUILD='ARM;X86'
bin/llvm-mc: : error: unable to get target for 'arm64-apple-ios7.0.0'
Committed on behalf of @easyaspi314 (Devin)
Differential Revision: https://reviews.llvm.org/D56472
llvm-svn: 351560
When -all-headers is given it is supposed to dump all headers,
but now it skips the archive headers for no reason.
The patch fixes that.
Differential revision: https://reviews.llvm.org/D56780
llvm-svn: 351547
Prior to this patch, the AVR::LDWRdPtr instruction was always lowered to
instructions of this pattern:
ld $GPR8, [PTR:XYZ]+
ld $GPR8, [PTR]+1
This has a problem; the [PTR] is incremented in-place once, but never
decremented.
Future uses of the same pointer will use the now clobbered value,
leading to the pointer being incorrect by an offset of one.
This patch modifies the expansion code of the LDWRdPtr pseudo
instruction so that the pointer variable is not silently clobbered in
future uses in the same live range.
Patch by Keshav Kini.
llvm-svn: 351544
We should not pre-scheduled the node has ADJCALLSTACKDOWN parent,
or else, when bottom-up scheduling, ADJCALLSTACKDOWN and
ADJCALLSTACKUP may hold CallResource too long and make other
calls can't be scheduled. If there's no other available node
to schedule, the scheduler will try to rename the register by
creating copy to avoid the conflict which will fail because
CallResource is not a real physical register.
llvm-svn: 351527
This change modifies the LLVM ISel lowering settings so that
8-bit/16-bit multiplication is expanded to calls into the compiler
runtime library if the MCU being targeted does not support
multiplication in hardware.
Before this, MUL instructions would be generated on CPUs like the
ATtiny85, triggering a CPU reset due to an illegal instruction at
runtime.
First raised in https://github.com/avr-rust/rust/issues/124.
llvm-svn: 351523
llvm/tools sets LLVM_TOOL_LTO_BUILD to Off if LLVM_ENABLE_PIC=OFF, but that's
not visible in llvm/test.
r289662 added the llvm_tool_lto_build lit parameter, there the intent was to
use it with an explicit -DLLVM_TOOL_LTO_BUILD=OFF, which is visible globally.
On the review for that (D27739), a mild preference was expressed for using a
lit parameter over checking the existence of libLTO.dylib. Since that works
with the LLVM_ENABLE_PIC=OFF case too and since it matches what we do for the
gold plugin, switch to that approach.
Differential Revision: https://reviews.llvm.org/D56805
llvm-svn: 351515
Prior to r348205, extracting code regions with live output values was
disabled because of a miscompilation (PR39433). Lift the restriction as
PR39433 has been addressed.
Tested on LNT+externals, on a run of check-llvm in a stage2 build, and
with a full build of iOS (with hot/cold splitting enabled).
As a drive-by, remove an errant TODO.
llvm-svn: 351492
Resuming exception unwinding is roughly as unlikely as throwing an
exception.
Tested on LNT+externals (in particular, the C++ EH regression tests
provide end-to-end test coverage), as well as with a full build of iOS.
llvm-svn: 351491
The callee address is added as an optional operand (MCSymbol) in
AdjustInstrPostInstrSelection() and then used by asm printer to insert:
'.reloc tmplabel, R_MIPS_JALR, symbol
tmplabel:'.
Controlled with '-mips-jalr-reloc', default is true.
Differential revision: https://reviews.llvm.org/D56694
llvm-svn: 351485
This gets rid of the brittle/mysterious calls to @sink()/@sideeffect()
peppered throughout the test cases. They are no longer needed to force
splitting to occur.
llvm-svn: 351480
If the sample profile has no inlining hierachy information included, we call
the sample profile is flattened. For flattened profile, in ThinLTO postlink
phase, SampleProfileLoader's hot function inlining and profile annotation will
do nothing, so it is better to save the effort to read in the profile and run
the sample profile loader pass. It is helpful for reducing compile time when
the flattened profile is huge.
Differential Revision: https://reviews.llvm.org/D54819
llvm-svn: 351476
Summary:
InstCombine's sinking algorithm only thinks about memory. It doesn't
think about non-memory constraints like stack object lifetime. It can
sink dynamic allocas across a stacksave call, which may be used with
stackrestore, which can incorrectly reduce the lifetime of the dynamic
alloca.
Fixes PR40365
Reviewers: hfinkel, efriedma
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56872
llvm-svn: 351475
EXPENSIVE_CHECKS buildbots are failing due to r351404.
Add x1 as live in to the funclet basic block for SEH funclets, as well as
-verify-machineinstrs to the test case that triggered the failure.
llvm-svn: 351472
Summary:
objdump was interpreting the function header containing the locals
declaration as instructions. To parse these without injecting target
specific code in objdump, MCDisassembler::onSymbolStart was added to
be implemented by the WebAssembly implemention.
WasmObjectFile now returns a code offset for the "address" of a symbol,
rather than the index. This is also more in-line with what other
targets do.
Also ensured that the AsmParser correctly puts each function
in its own segment to enable this test case.
Reviewers: sbc100, dschuff
Subscribers: jgravelle-google, aheejin, sunfish, rupprecht, llvm-commits
Differential Revision: https://reviews.llvm.org/D56684
llvm-svn: 351460
Summary:
If LTOUnit splitting is disabled, the module summary analysis computes
the summary information necessary to perform single implementation
devirtualization during the thin link with the index and no IR. The
information collected from the regular LTO IR in the current hybrid WPD
algorithm is summarized, including:
1) For vtable definitions, record the function pointers and their offset
within the vtable initializer (subsumes the information collected from
IR by tryFindVirtualCallTargets).
2) A record for each type metadata summarizing the vtable definitions
decorated with that metadata (subsumes the TypeIdentiferMap collected
from IR).
Also added are the necessary bitcode records, and the corresponding
assembly support.
The index-based WPD will be sent as a follow-on.
Depends on D53890.
Reviewers: pcc
Subscribers: mehdi_amini, Prazek, inglorion, eraman, steven_wu, dexonsmith, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D54815
llvm-svn: 351453
This change adds demangling support to the ELF side of llvm-readobj,
under the switch --demangle/-C.
The following places are demangled: symbol table dumps (static and
dynamic), relocation dumps (static and dynamic), addrsig dumps, call
graph profile dumps, and group section signature symbols.
Although GNU readelf doesn't support demangling, it is still a useful
feature to have, and brings it on a par with llvm-objdump's
capabilities.
This fixes https://bugs.llvm.org/show_bug.cgi?id=40054.
Reviewed by: grimar, rupprecht
Differential Revision: https://reviews.llvm.org/D56791
llvm-svn: 351450
During the transforms in LoopSimplifyCFG, when we remove a dead exiting edge, the
parent loop may stop being reachable from the child loop, and therefore they become
siblings. If the former child loop had uses of some values from its former parent loop,
now such uses will require LCSSA Phis, even if they weren't needed before. So we must
form LCSSA for all loops that stopped being ancestors of the current loop in this case.
Differential Revision: https://reviews.llvm.org/D56144
Reviewed By: fedor.sergeev
llvm-svn: 351434
Function `DeleteDeadBlock` requires that all predecessors of a block
being deleted have already been deleted, with the exception of a
single-block loop. When we use it for removal of dead subloops that
contain more than one block, we may not fulfull this requirement and
fail an assertion.
This patch replaces invocation of `DeleteDeadBlock` with a generalized
version `DeleteDeadBlocks` that is able to deal with multiple dead blocks,
even if they contain some cycles.
Differential Revision: https://reviews.llvm.org/D56121
Reviewed By: fedor.sergeev
llvm-svn: 351433
Allow varargs functions to be called, both in arm and thumb mode. This
boils down to choosing the correct calling convention, which we can
easily test by making sure arm_aapcscc is used instead of
arm_aapcs_vfpcc when the callee is variadic.
llvm-svn: 351424
In order to support codegen RV64A, this patch:
* Introduces masked atomics intrinsics for atomicrmw operations and cmpxchg
that use the i64 type. These are ultimately lowered to masked operations
using lr.w/sc.w, but we need to use these alternate intrinsics for RV64
because i32 is not legal
* Modifies RISCVExpandPseudoInsts.cpp to handle PseudoAtomicLoadNand64 and
PseudoCmpXchg64
* Modifies the AtomicExpandPass hooks in RISCVTargetLowering to sext/trunc as
needed for RV64 and to select the i64 intrinsic IDs when necessary
* Adds appropriate patterns to RISCVInstrInfoA.td
* Updates test/CodeGen/RISCV/atomic-*.ll to show RV64A support
This ends up being a fairly mechanical change, as the logic for RV32A is
effectively reused.
Differential Revision: https://reviews.llvm.org/D53233
llvm-svn: 351422
There are cases where we have multiple epilogues that have the exact same unwind
code sequence. In that case, the epilogues can share the same unwind codes in
the .xdata section. This should get us past the assert "SEH unwind data
splitting not yet implemented" in many cases.
We still need to add support for generating multiple .pdata/.xdata sections for
those functions that need to be split into fragments.
Differential Revision: https://reviews.llvm.org/D56813
llvm-svn: 351421
The function merging pass miscompiles identical vararg functions. The
forwarding thunk it emits doesn't forward the full variable-length list
of arguments. Disable merging for vararg functions for now.
I've filed llvm.org/PR40345 to track the issue.
rdar://47326238
llvm-svn: 351411
Essentially, do not treat `call` and `musttail call` as the same thing.
As a drive-by, fold CallInst and InvokeInst handling together using the
CallSite helper.
Differential Revision: https://reviews.llvm.org/D56815
llvm-svn: 351405
Summary:
Everything before the word "version" is the tool, and everything after
the word "version" is the version.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D56742
llvm-svn: 351399
Currently we do not always collapse subsequent .loc 0 0 directives. The
reason is that we were checking for a PrevInstLoc which is not set when
we emit a line-0 record. We should only check the LastAsmLine, which
seems to be created exactly for this purpose.
// When we emit a line-0 record, we don't update PrevInstLoc; so look at
// the last line number actually emitted, to see if it was line 0.
unsigned LastAsmLine =
Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
Differential revision: https://reviews.llvm.org/D56767
llvm-svn: 351395
Currently we have pgo options defined in PassManagerBuilder.cpp only for
instrument pgo, but not for sample pgo. We also have pgo options defined
in NewPMDriver.cpp in opt only for new pass manager and for all kinds of
pgo. They have some inconsistency.
To make the options more consistent and make tests writing easier, the
patch let old pass manager to share the same pgo options with new pass
manager in opt, and removes the options in PassManagerBuilder.cpp.
Differential Revision: https://reviews.llvm.org/D56749
llvm-svn: 351392
Previously we used ISD::SHL and ISD::SRL to represent these in SelectionDAG. ISD::SHL/SRL interpret an out of range shift amount as undefined behavior and will constant fold to undef. While the intrinsics are defined to return 0 for out of range shift amounts. A previous patch added a special node for VPSRAV to produce all sign bits.
This was previously believed safe because undefs frequently get turned into 0 either from the constant pool or a desire to not have a false register dependency. But undef is treated specially in some optimizations. For example, its ignored in detection of vector splats. So if the ISD::SHL/SRL can be constant folded and all of the elements with in bounds shift amounts are the same, we might fold it to single element broadcast from the constant pool. This would not put 0s in the elements with out of bounds shift amounts.
We do have an existing InstCombine optimization to use shl/lshr when the shift amounts are all constant and in bounds. That should prevent some loss of constant folding from this change.
Patch by zhutianyang and Craig Topper
Differential Revision: https://reviews.llvm.org/D56695
llvm-svn: 351381
Summary:
For these loads that write to the HI part of a register, we should chain them to the op that writes to the LO part
of the register to maintain the appropriate order.
Reviewers:
rampitec, arsenm
Differential Revision:
https://reviews.llvm.org/D56454
llvm-svn: 351379
If we're going to generate a new inverted setcc, we should make sure we will be able to remove the old setcc.
Differential Revision: https://reviews.llvm.org/D56765
llvm-svn: 351378
Summary:
This patch supports MS SEH extensions __try/__except/__finally. The intrinsics localescape and localrecover are responsible for communicating escaped static allocas from the try block to the handler.
We need to preserve frame pointers for SEH. So we create a new function/property HasLocalEscape.
Reviewers: rnk, compnerd, mstorsjo, TomTan, efriedma, ssijaric
Reviewed By: rnk, efriedma
Subscribers: smeenai, jrmuizel, alex, majnemer, ssijaric, ehsan, dmajor, kristina, javed.absar, kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D53540
llvm-svn: 351370
On Jaguar, horizontal adds/subs have local forwarding disable.
That means, we pay a compulsory extra cycle of write-back stage, and the value
is not available until the end of that stage.
This patch changes the latency of horizontal operations by adding an extra
cycle. With this patch, latency numbers now match what is reported by perf.
I plan to send another patch to also 'fix' the latency of shuffle operations (on
Jaguar, local forwarding is disabled for vector shuffles too).
Differential Revision: https://reviews.llvm.org/D56777
llvm-svn: 351366
This change gives the llvm-elfabi tool the ability to read DT_SONAME from a binary ELF file into an ELFStub.
Added:
- DynamicEntries struct for storing dynamic entries that are relevant to elfabi.
- terminatedSubstr() retrieves a null-terminated substring from a StringRef.
- appendToError() appends a string to an error, allowing more specific error messages.
Differential Revision: https://reviews.llvm.org/D55629
llvm-svn: 351361
dbg.value intrinsics can appear in blocks where their operand is not used,
meaning the operand never receives an SDNode, and thus no DBG_VALUE will
be created. Get around this by looking to see whether the operand has already
been allocated a virtual register. This allows dbg.values of Phi node and
Values that are used across basic blocks to successfully be translated into
DBG_VALUEs.
Differential Revision: https://reviews.llvm.org/D56678
llvm-svn: 351358
Summary:
Sometimes the SLP vectorizer tries to vectorize the horizontal reduction
nodes during regular vectorization. This may happen inside of the loops,
when there are some vectorizable PHIs. Patch fixes this by checking if
the node is the reduction node and thus it must not be vectorized, it must
be gathered.
Reviewers: RKSimon, spatel, hfinkel, fedor.sergeev
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56783
llvm-svn: 351349
Summary:
When llvm-nm is passed only the --size-sort option for an object file, there is no output generated.
The commit modifies the behavior to print the symbols sorted and their size which is also inline with
the output of the GNU nm tool.
Signed-off-by: Saurabh Badhwar <sbsaurabhbadhwar9@gmail.com>
Reviewers: enderby, rupprecht
Reviewed By: rupprecht
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56063
llvm-svn: 351347
I was trying to prevent shuffle regressions while matching more horizontal ops
and ended up here:
shuf (extract X, 0), (extract X, 4), Mask --> extract (shuf X, undef, Mask'), 0
The affected tests were added for:
https://bugs.llvm.org/show_bug.cgi?id=34380
This patch won't change the examples in the bug report itself, but we should be
able to extend this to catch more types.
Differential Revision: https://reviews.llvm.org/D56756
llvm-svn: 351346
This is LLVM part of D56663
Linker scripts shipped by TI require to have every
interrupt vector in a separate section with a specific name:
SECTIONS
{
__interrupt_vector_XX : { KEEP (*(__interrupt_vector_XX )) } > VECTXX
...
}
Follow the requirement emit the section for every vector
which contain address of interrupt handler:
.section __interrupt_vector_XX,"ax",@progbits
.word %isr%
Patch by Kristina Bessonova!
Differential Revision: https://reviews.llvm.org/D56664
llvm-svn: 351345
For the given test SROA detects possible replacement and creates a correct alloca. After that SROA is adding lifetime markers for this new alloca. The function getNewAllocaSlicePtr is trying to deduce the pointer type based on the original alloca, which is split, to use it later in lifetime intrinsic.
For the test we ended up with such code (rA is initial alloca [10 x float], which is split, and rA.sroa.0.0 is a new split allocation)
```
%rA.sroa.0.0.rA.sroa_cast = bitcast i32* %rA.sroa.0 to [10 x float]* <----- this one causing the assertion and is an extra bitcast
%5 = bitcast [10 x float]* %rA.sroa.0.0.rA.sroa_cast to i8*
call void @llvm.lifetime.start.p0i8(i64 4, i8* %5)
```
isAllocaPromotable code assumes that a user of alloca may go into lifetime marker through bitcast but it must be the only one bitcast to i8* type. In the test it's not a i8* type, return false and throw the assertion.
As we are creating a pointer, which will be used in lifetime markers only, the proposed fix is to create a bitcast to i8* immediately to avoid extra bitcast creation.
The test is a greatly simplified to just reproduce the assertion.
Author: Igor Tsimbalist <igor.v.tsimbalist@intel.com>
Reviewers: chandlerc, craig.topper
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D55934
llvm-svn: 351325
Summary: To avoid adding an extern function to the global ctors list, apply the changes of D56538 also to MSan.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56734
llvm-svn: 351322
Summary:
Second iteration of D56433 which got reverted in rL350719. The problem
in the previous version was that we dropped the thunk calling the tsan init
function. The new version keeps the thunk which should appease dyld, but is not
actually OK wrt. the current semantics of function passes. Hence, add a
helper to insert the functions only on the first time. The helper
allows hooking into the insertion to be able to append them to the
global ctors list.
Reviewers: chandlerc, vitalybuka, fedor.sergeev, leonardchan
Subscribers: hiraditya, bollu, llvm-commits
Differential Revision: https://reviews.llvm.org/D56538
llvm-svn: 351314
ReduceLoadWidth can trigger using a shifted mask is used and this
requires that the function return a shl node to correct for the
offset. However, the way that this was implemented meant that the
returned result could be an existing node, which would be incorrect.
This fixes the method of inserting the new node and replacing uses.
Differential Revision: https://reviews.llvm.org/D50432
llvm-svn: 351310
This allows avoiding conflicts between paths that begin with the same
chars as some llvm-rc options (which can be used with either slashes
or dashes).
Differential Revision: https://reviews.llvm.org/D56743
llvm-svn: 351305
Summary:
Check to make sure that the caller and the callee have compatible
function arguments before promoting arguments. This uses the same
TargetTransformInfo queries that are used to determine if attributes
are compatible for inlining.
The goal here is to avoid breaking ABI when a called function's ABI
depends on a target feature that is not enabled in the caller.
This is a very conservative fix for PR37358. Ideally we would have a more
sophisticated check for ABI compatiblity rather than checking if the
attributes are compatible for inlining.
Reviewers: echristo, chandlerc, eli.friedman, craig.topper
Reviewed By: echristo, chandlerc
Subscribers: nikic, xbolva00, rkruppe, alexcrichton, llvm-commits
Differential Revision: https://reviews.llvm.org/D53554
llvm-svn: 351296
InstCombine is able to transform mem transfer instrinsic to alone store or store/load pair.
It might result in generation of unaligned atomic load/store which later in backend
will be transformed to libcall. It is not an evident gain and it is better to keep intrinsic as is
and handle it at backend.
Reviewers: reames, anna, apilipenko, mkazantsev
Reviewed By: reames
Subscribers: t.p.northover, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D56582
llvm-svn: 351295
https://reviews.llvm.org/D52803
This patch adds support to continuously CSE instructions during
each of the GISel passes. It consists of a GISelCSEInfo analysis pass
that can be used by the CSEMIRBuilder.
llvm-svn: 351283
Summary:
Make recoverfp intrinsic target-independent so that it can be implemented for AArch64, etc.
Refer D53541 for the context. Clang counterpart D56748.
Reviewers: rnk, efriedma
Reviewed By: rnk, efriedma
Subscribers: javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D56747
llvm-svn: 351281
We're trying to have the vXi1 types in IR as much as possible. This prevents the need for bitcasts when the producer of the mask was already a vXi1 value like an icmp. The bitcasts can be subject to code motion and interfere with basic block at a time isel in bad ways.
llvm-svn: 351275
Summary:
We have seen performance regression when v_add3 is generated. The major reason is that the v_mad pattern
is broken when v_add3 is generated. We also see the register pressure increased. While we could not properly
estimate register pressure during instruction selection, we can give mad a higher priority.
In this work, we raise the priority for mad24 in selection and resolve the performance regression.
Reviewers:
rampitec
Differential Revision:
https://reviews.llvm.org/D56745
llvm-svn: 351273
Summary:
InvokeInst should be treated like CallInst and
assigned a separate discriminator. This is particularly
import when an Invoke is converted to a Call
during compilation and so can invalidate sample profile
data collected wtih different link time optimizations
Reviewers: twoh, Kader, danielcdh, wmi
Reviewed By: wmi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56491
llvm-svn: 351251
Summary:
Comdat groups override weak symbol behavior, allowing the linker to keep
the comdats for weak symbols in favor of comdats for strong symbols.
Fixes the issue described in:
https://bugs.chromium.org/p/chromium/issues/detail?id=918662
Reviewers: eugenis, pcc, rnk
Reviewed By: pcc, rnk
Subscribers: smeenai, rnk, bd1976llvm, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56516
llvm-svn: 351247
Summary:
When running llvm-objdump with the -macho option objdump will by default
disassemble only the __TEXT,__text section (or __TEXT_EXEC,__text when
disassembling MH_KEXT_BUNDLE files). The -disassemble-all option is
treated no diferently than -disassemble.
This change upates llvm-objdump's MachO parsing code to disassemble all
__text sections found in a file when -disassemble-all is specified. This
is useful for disassembling files with more than one __text section, or
when disassembling files whose __text section is not present in __TEXT.
I added a lit test case that verifies "llvm-objdump -m -d" and
"llvm-objdump -m -D" produce the expected results on a reference binary.
I also updated the CommandGuide documentation for llvm-objdump.rst and
verified it renders correctly as man and html.
rdar://42899338
Reviewers: ab, pete, lhames
Reviewed By: lhames
Subscribers: rupprecht, llvm-commits
Differential Revision: https://reviews.llvm.org/D56649
llvm-svn: 351238
In keeping with our general direction of having the vXi1 type present in IR, this patch converts the mask argument for avx512 gather to vXi1. This can avoid k-register to GPR to k-register transitions late in codegen.
I left the existing intrinsics behind because they have many out of tree users such as ISPC. They generate their own code and don't go through the autoupgrade path which only works for bitcode and ll parsing. Ideally we will get them to migrate to target independent intrinsics, but it might be easier for them to migrate to these new intrinsics.
I'll work on scatter and gatherpf/scatterpf next.
Differential Revision: https://reviews.llvm.org/D56527
llvm-svn: 351234
Summary:
As described in PR40209, there can be issues in DBG_VALUEs handling when multiple defs present in a BB. This patch
adds logic for detection of related to def DBG_VALUEs and localizes register update and movement to found DBG_VALUEs.
Reviewers: aheejin
Subscribers: mgorny, dschuff, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D56401
llvm-svn: 351216
Summary:
This patch adds support for merged arguments (e.g. -SW == -S -W) for llvm-readelf.
No changes are intended for llvm-readobj. There are a few short flags (-sd, -sr, -st, -dt) that would conflict with grouped single letter flags, and having only some grouped flags might be confusing. So, allow merged flags for readelf compatibility, but force separate args for llvm-readobj. From what I can tell, these two-letter flags are only used with llvm-readobj, not llvm-readelf.
This fixes PR40064.
Reviewers: jhenderson, kristina, echristo, phosek
Reviewed By: jhenderson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56629
llvm-svn: 351205
Summary:
Fix llvm-objcopy to add .note sections as SHT_NOTEs. GNU objcopy overrides section flags for special sections. For `.note` sections (with the exception of `.note.GNU-stack`), SHT_NOTE is used.
Many other sections are special cased by libbfd, but `.note` is the only special section I can seem to find being used with objcopy --add-section.
See `.note` in context of the full list of special sections here: https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=blob;f=bfd/elf.c;h=eb3e1828e9c651678b95a1dcbc3b124783d1d2be;hb=HEAD#l2675
Reviewers: jhenderson, alexshap, jakehehrlich, espindola
Reviewed By: jhenderson
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D56570
llvm-svn: 351204
If we're shuffling with a zero vector, then we are better off not doing VECTOR_SHUFFLE(UNPCK()) as we lose track of those zero elements.
We were already doing this for SSSE3 targets as we have PSHUFB, but its worth doing for all targets.
llvm-svn: 351203
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
The motivating case for this is shown in the first regression test. We are
transferring to scalar and back rather than just zero-extending with 'vpmovzxdq'.
That's a special-case for a more general pattern as shown here. In all tests,
we're avoiding the vector-scalar-vector moves in favor of vector ops.
We aren't producing optimal shuffle code in some cases though, so the patch is
limited to reduce regressions.
Differential Revision: https://reviews.llvm.org/D56281
llvm-svn: 351198
Summary:
V8 currently implements SIMD shifts as taking an immediate operation,
which disagrees with the spec proposal and the toolchain
implementation. As a stopgap measure to get things working, unroll all
vector shifts. Since this is a temporary measure, there are no tests.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D56520
llvm-svn: 351151
Summary:
This allows moving the condition from the intrinsic to the standard ICmp
opcode, so that LLVM can do simplifications on it. The icmp.i1 intrinsic
is an identity for retrieving the SGPR mask.
And we can also get the mask from and i1, or i1, xor i1.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52060
llvm-svn: 351150
Summary:
In r345197 ESP and RSP were added to GR32_TC/GR64_TC, allowing them to
be used for tail calls, but this also caused `findDeadCallerSavedReg` to
think they were acceptable targets for clobbering. Filter them out.
Fixes PR40289.
Patch by Geoffry Song!
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D56617
llvm-svn: 351146