template void f<int>(int);
~~~~~~
Previously, we silently dropped the template arguments. With this
change, we now use the template arguments (when available) as the
explicitly-specified template arguments used to aid template argument
deduction for explicit template instantiations.
llvm-svn: 82806
member functions of class template specializations, and static data
members. The mechanics are (mostly) present, but the semantic analysis
is very weak.
llvm-svn: 82789
value-dependent. Audit (and fixed) all calls to
Expr::isNullPointerConstant() to provide the correct behavior with
value-dependent expressions. Fixes PR5041 and a crash in libstdc++
<locale>.
In the same vein, properly compute value- and type-dependence for
ChooseExpr. Fixes PR4996.
llvm-svn: 82748
first implementation recognizes when a function declaration is an
explicit function template specialization (based on the presence of a
template<> header), performs template argument deduction + ambiguity
resolution to determine which template is being specialized, and hooks
There are many caveats here:
- We completely and totally drop any explicitly-specified template
arguments on the floor
- We don't diagnose any of the extra semantic things that we should
diagnose.
- I haven't looked to see that we're getting the right linkage for
explicit specializations
On a happy note, this silences a bunch of errors that show up in
libstdc++'s <iostream>, although Clang still can't get through the
entire header.
llvm-svn: 82728
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
lookup in a member access expression always start a
nested-name-specifier. Additionally, rank names that start
nested-name-specifiers after other names.
llvm-svn: 82663
It uses a recent API to find inherited conversion functions to do
the initializer to reference lvalue conversion (and removes a FIXME).
It issues the ambiguity diagnostics when multiple conversions are found.
WIP.
llvm-svn: 82649
that there is one more argument (the one following the comma) and make
the candidate non-viable if the function cannot accept any argument in
that position.
llvm-svn: 82625
results for other, textual completion. For call completion, we now
produce enough information to show the function call argument that we
are currently on.
llvm-svn: 82592
members found in base classes have the same ranking as members found
in derived classes. However, we will introduce an informative note for
members found in base classes, showing (as a nested-name-specifier)
the qualification to name the base class, to make it clear which
members are from bases.
llvm-svn: 82586
notation. There is still an issue accessing field of a 'Class''s isa
in legacy code using dot field access notation (as noted in the test case)
but unrelated to this patch.
llvm-svn: 82555
opening parentheses and after each comma. We gather the set of visible
overloaded functions, perform "partial" overloading based on the set
of arguments that we have thus far, and return the still-viable
results sorted by the likelihood that they will be the best candidate.
Most of the changes in this patch are a refactoring of the overloading
routines for a function call, since we needed to separate out the
notion of building an overload set (common to code-completion and
normal semantic analysis) and then what to do with that overload
set. As part of this change, I've pushed explicit template arguments
into a few more subroutines.
There is still much more work to do in this area. Function templates
won't be handled well (unless we happen to deduce all of the template
arguments before we hit the completion point), nor will overloaded
function-call operators or calls to member functions.
llvm-svn: 82549
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
a nested-name-specifier that describes how to refer to that name. For
example, given:
struct Base { int member; };
struct Derived : Base { int member; };
the code-completion result for a member access into "Derived" will
provide both "member" to refer to Derived::member (no qualification needed) and
"Base::member" to refer to Base::member (qualification included).
llvm-svn: 82476
enumerators when either the user intentionally wrote a qualified name
(in which case we just use that nested-name-specifier to match
the user's code) or when this is the first "case" statement and we
need a qualified name to refer to an enumerator in a different scope.
llvm-svn: 82474
"->", or "::" if we will be looking into a dependent context. It's not
wrong to use the "template" keyword, but it's to needed, either.
llvm-svn: 82307
template smarter, by taking into account which function template
parameters are deducible from the call arguments. For example,
template<typename RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);
will have a code-completion string like
sort({RandomAccessIterator first}, {RandomAccessIterator last})
since the template argument for its template parameter is
deducible. On the other hand,
template<class X, class Y>
X* dyn_cast(Y *Val);
will have a code-completion string like
dyn_cast<{class X}>({Y *Val})
since the template type parameter X is not deducible from the function
call.
llvm-svn: 82306
- after "using", show anything that can be a nested-name-specifier.
- after "using namespace", show any visible namespaces or namespace aliases
- after "namespace", show any namespace definitions in the current scope
- after "namespace identifier = ", show any visible namespaces or
namespace aliases
llvm-svn: 82251