visibility. Fixes PR8713.
I've disabled a test which was testing that you can #pragma pop visibility
to get out of a namespace's visibility attribute. We should probably just
diagnose that as an error unless it's instrumental to someone's system
headers.
llvm-svn: 121459
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
so that's not a valid thing to do at all. Instead, switch to a ValueDecl
argument, the template isn't really necessary here.
When handling the types explicitly in the code, it becomes awkward to cerate
the CXXBaseOrMemberInitializer object in so many places. Re-flow the code to
calculate the Init expression first, and then create the initializer. If this
is too gross, we can factor the init expression logic into helper functions,
but it's not past my threshold yet.
llvm-svn: 120997
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
A new AST node is introduced:
def IndirectField : DDecl<Value>;
IndirectFields are injected into the anonymous's parent scope and chain back to
the original field. Name lookup for anonymous entities now result in an
IndirectFieldDecl instead of a FieldDecl.
There is no functionality change, the code generated should be the same.
llvm-svn: 119919
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
using new/delete and OwningPtrs. After memory profiling Clang, I witnessed periodic leaks of these
objects; digging deeper into the code, it was clear that our management of these objects was a mess. The ownership rules were murky at best, and not always followed. Worse, there are plenty of error paths where we could screw up.
This patch introduces AttributeList::Factory, which is a factory class that creates AttributeList
objects and then blows them away all at once. While conceptually simple, most of the changes in
this patch just have to do with migrating over to the new interface. Most of the changes have resulted in some nice simplifications.
This new strategy currently holds on to all AttributeList objects during the lifetime of the Parser
object. This is easily tunable. If we desire to have more bound the lifetime of AttributeList
objects more precisely, we can have the AttributeList::Factory object (in Parser) push/pop its
underlying allocator as we enter/leave key methods in the Parser. This means that we get
simple memory management while still having the ability to finely control memory use if necessary.
Note that because AttributeList objects are now BumpPtrAllocated, we may reduce malloc() traffic
in many large files with attributes.
This fixes the leak reported in: <rdar://problem/8650003>
llvm-svn: 118675
of that field. Otherwise, we can end up building and later trying to
instantiate a dependent member initializer that will fail at
instantiation time.
Unfortunately, I've only managed to trigger this bug with very large
sources, so there's no test case :(
llvm-svn: 118306
This adds them where missing, and traces them through PCH. We fix at least one
bug in the extents found by the Index library, and make a lot of refactoring
tools which care about the exact formulation of a constructor call easier to
write. Also some minor cleanups to more consistently follow the friend pattern
instead of the setter pattern when rebuilding a serialized AST.
Patch originally by Samuel Benzaquen.
llvm-svn: 117254
construct an unsupported friend when there's a friend with a templated
scope specifier. Fixes a consistency crash, rdar://problem/8540527
llvm-svn: 116786
by marking the decl invalid isn't. Make some steps towards supporting these
and then hastily shut them down at the last second by marking them as
unsupported.
llvm-svn: 116661
members. Provide a hard error when the qualification doesn't match the
current class type, or a warning + Fix-it if it does match the current
class type. Fixes PR8159.
llvm-svn: 116445
Fixes a crash and diagnoses the error condition of an unqualified
friend which doesn't resolve to something. I'm still not certain how
this is useful.
llvm-svn: 116393
of templated-scope friends by marking them invalid and white-listing all
accesses until such time as we implement them. Fixes a crash, this time
without a broken test case.
llvm-svn: 116364
has not yet been parsed, note that the default argument hasn't been
parsed and keep track of all of the instantiations of that function
parameter. When its default argument does get parsed, imbue the
instantiations with that default argument. Fixes PR8245.
llvm-svn: 116324
into CXXRecordDecl. The only part that we do not handle this way are
using declarations, since that would require extra name lookup that we
don't currently want to pay for. This fixes <rdar://problem/8459981>,
so that LLDB can build a CXXRecordDecl and magically get all of the
right bits set.
llvm-svn: 115026
completely into CXXRecordDecl, by adding a new completeDefinition()
function. This required a little reshuffling of the final-overrider
checking code, since the "abstract" calculation in the presence of
abstract base classes needs to occur in
CXXRecordDecl::completeDefinition() but we don't want to compute final
overriders more than one in the common case.
llvm-svn: 115007
in CXXRecordDecl itself. Yes, this is also part of <rdar://problem/8459981>.
This reinstates r114924, with one crucial bug fix: we were ignoring
the implicit fields created by anonymous structs/unions when updating
the bits in CXXRecordDecl, which means that a class/struct containing
only an anonymous class/struct would be considered "empty". Hilarity
follows.
llvm-svn: 114980
Centralize the management of CXXRecordDecl::DefinitionData's Aggregate
and PlainOldData bits in CXXRecordDecl itself. Another milepost on the
road toward <rdar://problem/8459981>.
llvm-svn: 114977
one of them) was causing a series of failures:
http://google1.osuosl.org:8011/builders/clang-x86_64-darwin10-selfhost/builds/4518
svn merge -c -114929 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114929 into '.':
U include/clang/Sema/Sema.h
U include/clang/AST/DeclCXX.h
U lib/Sema/SemaDeclCXX.cpp
U lib/Sema/SemaTemplateInstantiateDecl.cpp
U lib/Sema/SemaDecl.cpp
U lib/Sema/SemaTemplateInstantiate.cpp
U lib/AST/DeclCXX.cpp
svn merge -c -114925 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114925 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/AST/DeclCXX.cpp
svn merge -c -114924 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114924 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/Sema/SemaDecl.cpp
G lib/AST/DeclCXX.cpp
U lib/AST/ASTContext.cpp
svn merge -c -114921 https://llvm.org/svn/llvm-project/cfe/trunk
--- Reverse-merging r114921 into '.':
G include/clang/AST/DeclCXX.h
G lib/Sema/SemaDeclCXX.cpp
G lib/Sema/SemaDecl.cpp
G lib/AST/DeclCXX.cpp
llvm-svn: 114933
HasTrivialConstructor, HasTrivialCopyConstructor,
HasTrivialCopyAssignment, and HasTrivialDestructor bits in
CXXRecordDecl's methods. This completes all but the Abstract bit and
the set of conversion functions, both of which will require a bit of
extra work. The majority of <rdar://problem/8459981> is now
implemented (but not all of it).
llvm-svn: 114929
already be determined by isCopyAssignmentOperator(), and was set too
late in the process for all clients to see the appropriate
value. Cleanup only; no functionality change.
llvm-svn: 114916
DeclaredCopyConstructor bits in CXXRecordDecl's DefinitionData
structure. Rather than having Sema call addedConstructor or set the
bits directly at semi-random places, move all of the logic for
managing these bits into CXXRecordDecl itself and tie the
addedConstructor call into DeclContext::addDecl().
This makes it easier for AST-building clients to get the right bits
set in DefinitionData, and is one small part of <rdar://problem/8459981>.
llvm-svn: 114889
unless we're on a platform without __cxa_atexit (or use thereof has been
disabled). This patch actually just disables the check completely for
static locals, but I've filed http://llvm.org/bugs/show_bug.cgi?id=8176 to
track the platform-specific fix.
llvm-svn: 114269
slot. The easiest way to do that was to bundle up the information
we care about for aggregate slots into a new structure which demands
that its creators at least consider the question.
I could probably be convinced that the ObjC 'needs GC' bit should
be rolled into this structure.
Implement generalized copy elision. The main obstacle here is that
IR-generation must be much more careful about making sure that exactly
llvm-svn: 113962
with comma-separated lists. We never actually used the comma
locations, nor did we store them in the AST, but we did manage to
waste time during template instantiation to produce fake locations.
llvm-svn: 113495
The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
For large floats/integers, APFloat/APInt will allocate memory from the heap to represent these numbers.
Unfortunately, when we use a BumpPtrAllocator to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
the APFloat/APInt values will never get freed.
I introduce the class 'APNumericStorage' which uses ASTContext's allocator for memory allocation and is used internally by FloatingLiteral/IntegerLiteral.
Fixes rdar://7637185
llvm-svn: 112361
One who seeks the Tao unlearns something new every day.
Less and less remains until you arrive at non-action.
When you arrive at non-action,
nothing will be left undone.
llvm-svn: 112244
- move DeclSpec &c into the Sema library
- move ParseAST into the Parse library
Reflect this change in a thousand different includes.
Reflect this change in the link orders.
llvm-svn: 111667
Now all classes derived from Attr are generated from TableGen.
Additionally, Attr* is no longer its own linked list; SmallVectors or
Attr* are used. The accompanying LLVM commit contains the updates to
TableGen necessary for this.
Some other notes about newly-generated attribute classes:
- The constructor arguments are a SourceLocation and a Context&,
followed by the attributes arguments in the order that they were
defined in Attr.td
- Every argument in Attr.td has an appropriate accessor named getFoo,
and there are sometimes a few extra ones (such as to get the length
of a variadic argument).
Additionally, specific_attr_iterator has been introduced, which will
iterate over an AttrVec, but only over attributes of a certain type. It
can be accessed through either Decl::specific_attr_begin/end or
the global functions of the same name.
llvm-svn: 111455
which in a fit of zeal wanted to walk the entire translation unit,
and replace it with a new checker that walks the types of declarations
nested within the class. Also, look into templates when doing this.
llvm-svn: 111357
This takes some trickery since CastExpr has subclasses (and indeed,
is abstract).
Also, smoosh the CastKind into the bitfield from Expr.
Drops two words of storage from Expr in the common case of expressions
which don't need inheritance paths. Avoids a separate allocation and
another word of overhead in cases needing inheritance paths. Also has
the advantage of not leaking memory, since destructors for AST nodes are
never run.
llvm-svn: 110507
typedefs won't have the same canonical declaration (since they are
distinct), so we need to check for this case specifically. Fixes
<rdar://problem/8018262>.
llvm-svn: 107833
declarations when implicitly declaring the default constructor, copy
constructor, destructor, and copy-assignment operators of a
class. Argiris fixed the underlying problem in r107596.
llvm-svn: 107681
declarations for implicit default constructors, copy constructors,
copy assignment operators, and destructors. On a "simple" translation
unit that includes a bunch of C++ standard library headers, we
generate relatively few of these implicit declarations now:
4/159 implicit default constructors created
18/236 implicit copy constructors created
70/241 implicit copy assignment operators created
0/173 implicit destructors created
And, on this translation unit, this optimization doesn't really
provide any benefit. I'll do some more performance measurements soon,
but this completes the implementation work for <rdar://problem/8151045>.
llvm-svn: 107551
allows Sema some limited access to the current scope, which we only
use in one way: when Sema is performing some kind of declaration that
is not directly driven by the parser (e.g., due to template
instantiatio or lazy declaration of a member), we can find the Scope
associated with a DeclContext, if that DeclContext is still in the
process of being parsed.
Use this to make the implicit declaration of special member functions
in a C++ class more "scope-less", rather than using the NULL Scope hack.
llvm-svn: 107491
aren't dropping all exception specifications on destructors, the
exception specifications on implicitly-declared destructors were
detected as being wrong (which they were).
Introduce logic to provide a proper exception-specification for
implicitly-declared destructors. This also fixes PR6972.
Note that the other implicitly-declared special member functions also
need to get exception-specifications. I'll deal with that in a
subsequent commit.
llvm-svn: 107385
Previously we relied on the presence of a member which needs no initialization
to prevent us from creating an additional initialization of the outer anonymous
union field. We have already correctly marked that field as initialized by the
member of the union (repeatedly due to the original bug this patch fixes) so we
simply need to bail out.
llvm-svn: 107242
anonymous union under the presumption that they didn't do anything. While this
is true, our checks for redundant initialization of an anonymous union still
fire when these overlap with explicit user initialization. A cleaner approach
is to avoid initializing multiple members of a union altogether, but this still
is in a rather fuzzy are especially when C++0x allows non-POD types into
unions.
llvm-svn: 107235
initialization. I tried several ideas but couldn't come up with a test case for
this that didn't rely on a Clang bug to report a diagnostic after template
instantiation of the constructor due to the implicit initializers. Suggestions
welcome. This fixes the source location aspect of PR7402.
llvm-svn: 107226
attribute as part of the calculation. Sema::MarkDeclReferenced(), and
a few other places, want only to consider the "used" bit to determine,
e.g, whether to perform template instantiation. Fixes a linkage issue
with Boost.Serialization.
llvm-svn: 106252
virtual base class, but the class still has dependent base classes,
then don't diagnose the failed match as an error: the right base class
might magically appear. Fixes PR7259.
llvm-svn: 106103
introduced by using decls are hidden even if their template parameter lists
or return types differ from the "overriding" declaration.
Propagate using shadow declarations around more effectively when looking up
template-ids. Reperform lookup for template-ids in member expressions so that
access control is properly set up.
Fix some number of latent bugs involving template-ids with totally invalid
base types. You can only actually get these with a scope specifier, since
otherwise the template-id won't parse as a template-id.
Fixes PR7384.
llvm-svn: 106093
objective-c++ class objects which have GC'able objc object
pointers and need to use ObjC's objc_memmove_collectable
API (radar 8070772).
llvm-svn: 106061
Stmt* such as those which occur in ?: . Fixes PR7378.
Also, generally whip the code into shape fixing several coding style violations.
llvm-svn: 105992
- I think this can be cleaned up, since this means we may notify the consumer about the vtable twice, but I didn't see an easy fix for this without more substantial refactoring.
- Doug, please review!
llvm-svn: 104577
recursively, e.g. so that members of anonymous unions inside anonymous structs
still get initialized. Also generate default constructor calls for anonymous
struct members when necessary.
llvm-svn: 104292
capture failures when we try to initialize an incomplete
type. Previously, we would (ab)use FK_ConversionFailed, then
occasionally dereference a null pointer when trying to diagnose the
failure. Fixes <rdar://problem/7959007>.
llvm-svn: 104286
instance variables:
- Use isRecordType() rather than isa<RecordType>(), so that we see
through typedefs in ivar types.
- Mark the destructor as referenced
- Perform C++ access control on the destructor
llvm-svn: 104206
"used" (e.g., we will refer to the vtable in the generated code) and
when they are defined (i.e., because we've seen the key function
definition). Previously, we were effectively tracking "potential
definitions" rather than uses, so we were a bit too eager about emitting
vtables for classes without key functions.
The new scheme:
- For every use of a vtable, Sema calls MarkVTableUsed() to indicate
the use. For example, this occurs when calling a virtual member
function of the class, defining a constructor of that class type,
dynamic_cast'ing from that type to a derived class, casting
to/through a virtual base class, etc.
- For every definition of a vtable, Sema calls MarkVTableUsed() to
indicate the definition. This happens at the end of the translation
unit for classes whose key function has been defined (so we can
delay computation of the key function; see PR6564), and will also
occur with explicit template instantiation definitions.
- For every vtable defined/used, we mark all of the virtual member
functions of that vtable as defined/used, unless we know that the key
function is in another translation unit. This instantiates virtual
member functions when needed.
- At the end of the translation unit, Sema tells CodeGen (via the
ASTConsumer) which vtables must be defined (CodeGen will define
them) and which may be used (for which CodeGen will define the
vtables lazily).
From a language perspective, both the old and the new schemes are
permissible: we're allowed to instantiate virtual member functions
whenever we want per the standard. However, all other C++ compilers
were more lazy than we were, and our eagerness was both a performance
issue (we instantiated too much) and a portability problem (we broke
Boost test cases, which now pass).
Notes:
(1) There's a ton of churn in the tests, because the order in which
vtables get emitted to IR has changed. I've tried to isolate some of
the larger tests from these issues.
(2) Some diagnostics related to
implicitly-instantiated/implicitly-defined virtual member functions
have moved to the point of first use/definition. It's better this
way.
(3) I could use a review of the places where we MarkVTableUsed, to
see if I missed any place where the language effectively requires a
vtable.
Fixes PR7114 and PR6564.
llvm-svn: 103718
member function (default constructor, copy constructor, copy
assignment operator, destructor), emit a note showing where that
implicit definition was required.
llvm-svn: 103619
referenced unless we see one of them defined (or the key function
defined, if it as one) or if we need the vtable for something. Fixes
PR7114.
llvm-svn: 103497
different tag kind ("struct" vs. "class") than the primary template,
which has an affect on access control.
Should fix the last remaining Boost.Accumulors failure.
llvm-svn: 103144
provide a note that shows where the copy-assignment operator was
needed. We used to have this, but I broke it during refactoring.
Finishes PR6999.
llvm-svn: 103127
implicitly-generated copy constructor. Previously, Sema would perform
some checking and instantiation to determine which copy constructors,
etc., would be called, then CodeGen would attempt to figure out which
copy constructor to call... but would get it wrong, or poke at an
uninstantiated default argument, or fail in other ways.
The new scheme is similar to what we now do for the implicit
copy-assignment operator, where Sema performs all of the semantic
analysis and builds specific ASTs that look similar to the ASTs we'd
get from explicitly writing the copy constructor, so that CodeGen need
only do a direct translation.
However, it's not quite that simple because one cannot explicit write
elementwise copy-construction of an array. So, I've extended
CXXBaseOrMemberInitializer to contain a list of indexing variables
used to copy-construct the elements. For example, if we have:
struct A { A(const A&); };
struct B {
A array[2][3];
};
then we generate an implicit copy assignment operator for B that looks
something like this:
B::B(const B &other) : array[i0][i1](other.array[i0][i1]) { }
CodeGen will loop over the invented variables i0 and i1 to visit all
elements in the array, so that each element in the destination array
will be copy-constructed from the corresponding element in the source
array. Of course, if we're dealing with arrays of scalars or class
types with trivial copy-assignment operators, we just generate a
memcpy rather than a loop.
Fixes PR6928, PR5989, and PR6887. Boost.Regex now compiles and passes
all of its regression tests.
Conspicuously missing from this patch is handling for the exceptional
case, where we need to destruct those objects that we have
constructed. I'll address that case separately.
llvm-svn: 103079
implicitly-defined copy assignment operator, suppress the protected
access check. This eliminates the remaining failure in the
Boost.SmartPtr library (that was a product of the copy-assignment
generation rewrite) and, presumably, the Boost.TR1 library as well.
llvm-svn: 103010
not just the inner expression. This is important if the expression has any
temporaries. Fixes PR 7028.
Basically a symptom of really tragic method names.
llvm-svn: 102998
(-Wunused-exception-parameter) than normal variables, since it's more
common to name and then ignore an exception parameter. This warning is
neither enabled by default nor by -Wall. Fixes <rdar://problem/7931045>.
llvm-svn: 102931
assignment operators.
Previously, Sema provided type-checking and template instantiation for
copy assignment operators, then CodeGen would synthesize the actual
body of the copy constructor. Unfortunately, the two were not in sync,
and CodeGen might pick a copy-assignment operator that is different
from what Sema chose, leading to strange failures, e.g., link-time
failures when CodeGen called a copy-assignment operator that was not
instantiation, run-time failures when copy-assignment operators were
overloaded for const/non-const references and the wrong one was
picked, and run-time failures when by-value copy-assignment operators
did not have their arguments properly copy-initialized.
This implementation synthesizes the implicitly-defined copy assignment
operator bodies in Sema, so that the resulting ASTs encode exactly
what CodeGen needs to do; there is no longer any special code in
CodeGen to synthesize copy-assignment operators. The synthesis of the
body is relatively simple, and we generate one of three different
kinds of copy statements for each base or member:
- For a class subobject, call the appropriate copy-assignment
operator, after overload resolution has determined what that is.
- For an array of scalar types or an array of class types that have
trivial copy assignment operators, construct a call to
__builtin_memcpy.
- For an array of class types with non-trivial copy assignment
operators, synthesize a (possibly nested!) for loop whose inner
statement calls the copy constructor.
- For a scalar type, use built-in assignment.
This patch fixes at least a few tests cases in Boost.Spirit that were
failing because CodeGen picked the wrong copy-assignment operator
(leading to link-time failures), and I suspect a number of undiagnosed
problems will also go away with this change.
Some of the diagnostics we had previously have gotten worse with this
change, since we're going through generic code for our
type-checking. I will improve this in a subsequent patch.
llvm-svn: 102853
information required to implicitly define a C++ special member
function. Use it rather than explicitly setting CurContext on entry
and exit, which is fragile.
Use this RAII object for the implicitly-defined default constructor,
copy constructor, copy assignment operator, and destructor.
llvm-svn: 102840