DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
UnresolvedLookupExpr and UnresolvedMemberExpr.
Also, improve the computation that checks whether the base of a member
expression (either unresolved or dependent-scoped) is implicit. The
previous check didn't cover all of the cases we use in our
representation, which threw off source-location information for these
expressions (which, in turn, caused some breakage in libclang's token
annotation).
llvm-svn: 126681
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
whose inode has changed since the file was first created and that is
being seen through a different path name (e.g., due to symlinks or
relative path elements), such that its FileEntry pointer doesn't match
a known FileEntry pointer. Since this requires a system call (to
stat()), we only perform this deeper checking if we can't find the
file by comparing FileEntry pointers.
Also, add a micro-optimization where we don't bother to compute line
numbers when given the location (1, 1). This improves the
efficiency of clang_getLocationForOffset().
llvm-svn: 124800
template template parameter pack that cannot be fully expanded because
its enclosing pack expansion could not be expanded. This form of
TemplateName plays the same role as SubstTemplateTypeParmPackType and
SubstNonTypeTemplateParmPackExpr do for template type parameter packs
and non-type template parameter packs, respectively.
We should now handle these multi-level pack expansion substitutions
anywhere. The largest remaining gap in our variadic-templates support
is that we cannot cope with non-type template parameter packs whose
type is a pack expansion.
llvm-svn: 123521
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896
16-bits in size. Implement this by splitting WChar into two enums, like we have
for char. This fixes a miscompmilation of XULRunner, PR8856.
llvm-svn: 122558
take into account the region of interest. Otherwise, we may fail to
traverse some important preprocessed entity cursors.
Fixes <rdar://problem/8554072>.
llvm-svn: 122350
clang_getCursorLexicalParent() to cope with class and function
templates, along with the parent of the translation unit. Fixes PR8761
and PR8766.
llvm-svn: 122324
area of printing template arguments. The functionality changes here
are limited to cases of variadic templates that aren't yet enabled.
llvm-svn: 122250
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
trap the serialized preprocessing records (macro definitions, macro
instantiations, macro definitions) from the generation of the
precompiled preamble, then replay those when walking the list of
preprocessed entities. This eliminates a bug where clang_getCursor()
wasn't able to find preprocessed-entity cursors in the preamble.
llvm-svn: 120396
FileSystemOpts through a ton of apis, simplifying a lot of code.
This also fixes a latent bug in ASTUnit where it would invoke
methods on FileManager without creating one in some code paths
in cindextext.
llvm-svn: 120010
an implicit "this"; it causes clang_getCursor() to find the implicit
"this" expression (which isn't written in the source!) rather than the
actual member.
llvm-svn: 119516
interest (e.g., as used by clang_getCursor()), count the
decl-specifier-seq as part of the source range, as we do for
clang_annotateTokens(). Makes clang_getCursor() work properly for the
result types of functions, for example.
llvm-svn: 119514
we were just getting a range covering only the property name, which is
certainly not correct (and broke token annotation, among other
things).
Also, teach libclang about the relationship between
@synthesize/@dynamic and @property, so we get property name and
cursor-reference information for @synthesize and @dynamic.
llvm-svn: 119409
but to wrap both an ASTUnit and a "string pool"
that will be used for fast USR generation.
This requires a bunch of mechanical changes, as
there was a ton of code that assumed that CXTranslationUnit
and ASTUnit* were the same.
Along with this change, introduce CXStringBuf,
which provides an llvm::SmallVector<char> backing
for repeatedly generating CXStrings without a huge
amount of malloc() traffic. This requires making
some changes to the representation of CXString
by renaming a few fields (but keeping the size
of the object the same).
llvm-svn: 119337
the Stmt* visitation in CursorVisitor to be
data-recursive.
Since AnnotationTokensWorker explicitly calls
CursorVisitor::VisitChildren(), it essentially
transforms the data-recursive algorithm in
CursorVisitor back into a non-data recursive one.
This is particularly bad because the data-recursive
algorithm uses more stack space per stack frame,
which can cause us to blow the stack in some cases.
"Fix" this by making the stack that AnnotationTokensWorker
runs in really huge. The real fix is to modify
AnnotationTokensWorker not to do the explicit
recursive call.
llvm-svn: 119047
is gradually becoming more data recursive, AnnotateTokensVisitor does its own recursive call
within the visitor that can still blow out the stack. This can potentially be reworked to avoid this,
but for now just do token annotation on a separate thread.
llvm-svn: 118783
diagnostic-capturing client lives as long as the ASTUnit itself
does. Otherwise, we can end up with crashes when we get a diagnostic
outside of parsing/code completion. The circumstances under which this
happen are really hard to reproduce, because a file needs to change
from under us.
llvm-svn: 118751
location where we're spelling a token even within a
macro. clang_getInstantiationLocation() tells where we instantiated
the macro.
I'm still not thrilled with the CXSourceLocation/CXSourceRange APIs,
since they gloss over macro-instantiation information.
Take 2: this time, adjusted tests appropriately and used a "simple"
approach to the spelling location.
llvm-svn: 118495
location where we're spelling a token even within a
macro. clang_getInstantiationLocation() tells where we instantiated
the macro.
I'm still not thrilled with the CXSourceLocation/CXSourceRange APIs,
since they gloss over macro-instantiation information.
llvm-svn: 118492