Don't promote byval pointer arguments when when their size in bits is
not equal to their alloc size in bits. This can happen for x86_fp80,
where the size in bits is 80 but the alloca size in bits in 128.
Promoting these types can break passing unions of x86_fp80s and other
types.
Patch by Thomas Jablin!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D5057
llvm-svn: 216693
InstSimplify already handles icmp (X+Y), X (and things like it)
appropriately. The first thing that InstCombine does is run
InstSimplify on the instruction.
llvm-svn: 216659
For a detailed description of the problem see the comment in the test file.
The problematic moveBefore() calls are not required anymore because the new
scheduling algorithm ensures a correct ordering anyway.
llvm-svn: 216656
Several combines involving icmp (shl C2, %X) C1 can be simplified
without introducing any new instructions. Move them to InstSimplify;
while we are at it, make them more powerful.
llvm-svn: 216642
We try to perform this transform in InstSimplify but we aren't always
able to. Sometimes, we need to insert a bitcast if X and Y don't have
the same time.
llvm-svn: 216598
We supported transforming:
(gep i8* X, -(ptrtoint Y))
to:
(inttoptr (sub (ptrtoint X), (ptrtoint Y)))
However, this only fired if 'X' had type i8*. Generalize this to
support various types of different sizes. This results in much better
CodeGen, especially for pointers to packed structs.
llvm-svn: 216523
(X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
(X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
(X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
These patterns were previously handled separately in visitAnd()/visitOr()/visitXor().
Differential Revision: http://reviews.llvm.org/D4951
llvm-svn: 216443
Adding, removing, or changing non-pack parameters can change the ABI
classification of pack parameters. Clang and other frontends encode the
classification in the IR of the call site, but the callee side
determines it dynamically based on the number of registers consumed so
far. Changing the prototype affects the number of registers consumed
would break such code.
Dead argument elimination performs a similar task and already has a
similar check to avoid this problem.
Patch by Thomas Jablin!
llvm-svn: 216421
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
llvm-svn: 216393
GlobalDCE deletes global vars and updates their initializers to nullptr
while leaving underlying constants to be cleaned up later by its uses.
The clean up may never happen, fix this by forcing it every time it's
safe to destroy constants.
Final patch by Rafael Espindola
http://reviews.llvm.org/D4931
<rdar://problem/17523868>
llvm-svn: 216390
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)
llvm-svn: 216371
CFE, with -03, would turn:
bool f(unsigned x) {
bool a = x & 1;
bool b = x & 2;
return a | b;
}
into:
%1 = lshr i32 %x, 1
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
This sort of thing exposes a nasty pathology in GCC, ICC and LLVM.
Instead, we would rather want:
%1 = and i32 %x, 3
%2 = icmp ne i32 %1, 0
Things get a bit more interesting in the following case:
%1 = lshr i32 %x, %y
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
Replacing it with the following sequence is better:
%1 = shl nuw i32 1, %y
%2 = or i32 %1, 1
%3 = and i32 %2, %x
%4 = icmp ne i32 %3, 0
This sequence is preferable because %1 doesn't involve %x and could
potentially be hoisted out of loops if it is invariant; only perform
this transform in the non-constant case if we know we won't increase
register pressure.
llvm-svn: 216343
Summary:
Fixes PR20425.
During slice building, if all of the incoming values of a PHI node are the same, replace the PHI node with the common value. This simplification makes alloca's used by PHI nodes easier to promote.
Test Plan: Added three more tests in phi-and-select.ll
Reviewers: nlewycky, eliben, meheff, chandlerc
Reviewed By: chandlerc
Subscribers: zinovy.nis, hfinkel, baldrick, llvm-commits
Differential Revision: http://reviews.llvm.org/D4659
llvm-svn: 216299
Consider:
%add = add nuw i32 %a, -16777216
%and = and i32 %add, 255
Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nuw' from the
instruction.
llvm-svn: 216273
Consider:
%add = add nsw i32 %a, -16777216
%and = and i32 %add, 255
Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nsw' from the
instruction.
This fixes PR20377.
llvm-svn: 216261
In unreachable blocks it's legal to have instructions like "%x = op %x".
Such instuctions are not schedulable. Therefore the SLPVectorizer has to check for
unreachable blocks and ignore them.
Fixes bug 20646.
llvm-svn: 216256
In this case, we are creating an x86_fp80 slice for a union from C where
the padding bytes may contain real data. An x86_fp80 alloca is 16 bytes,
and that's just fine. We can't, however, use regular loads and stores to
access the slice, because the store size is only 10 bytes / 80 bits.
Instead, use memcpy and memset.
Fixes PR18726.
Reviewed By: chandlerc
Differential Revision: http://reviews.llvm.org/D5012
llvm-svn: 216248
Somewhat unnoticed in the original implementation of discriminators, but
it could cause instructions to end up in new, small,
DW_TAG_lexical_blocks due to the use of DILexicalBlock to track
discriminator changes.
Instead, use DILexicalBlockFile which we already use to track file
changes without introducing new scopes, so it works well to track
discriminator changes in the same way.
llvm-svn: 216239
This does not require -ffast-math, and it gives CSE/GVN more options to
eliminate duplicate expressions in, e.g.:
return ((x + 0.1234 * y) * (x - 0.1234 * y));
Differential Revision: http://reviews.llvm.org/D4904
llvm-svn: 216169
Currently only "add nsw" are widened. This patch eliminates tons of "sext" instructions for 64 bit code (and the corresponding target code) in cases like:
int N = 100;
float **A;
void foo(int x0, int x1)
{
float * A_cur = &A[0][0];
float * A_next = &A[1][0];
for(int x = x0; x < x1; ++x).
{
// Currently only [x+N] case is widened. Others 2 cases lead to sext.
// This patch fixes it, so all 3 cases do not need sext.
const float div = A_cur[x + N] + A_cur[x - N] + A_cur[x * N];
A_next[x] = div;
}
}
...
> clang++ test.cpp -march=core-avx2 -Ofast -fno-unroll-loops -fno-tree-vectorize -S -o -
Differential Revision: http://reviews.llvm.org/D4695
llvm-svn: 216160
If we have a scalar reduction, we can increase the critical path length if the loop we're unrolling is inside another loop. Limit, by default to 2, so the critical path only gets increased by one reduction operation.
llvm-svn: 216140
Because declarations of these functions can appear in places like autoconf
checks, they have to be handled somehow, even though we do not support
vararg custom functions. We do so by printing a warning and calling the
uninstrumented function, as we do for unimplemented functions.
llvm-svn: 216042
We can prove that a 'sub' can be a 'sub nsw' under certain conditions:
- The sign bits of the operands is the same.
- Both operands have more than 1 sign bit.
The subtraction cannot be a signed overflow in either case.
llvm-svn: 216037
Previously, the hint mechanism relied on clean up passes to remove redundant
metadata, which still showed up if running opt at low levels of optimization.
That also has shown that multiple nodes of the same type, but with different
values could still coexist, even if temporary, and cause confusion if the
next pass got the wrong value.
This patch makes sure that, if metadata already exists in a loop, the hint
mechanism will never append a new node, but always replace the existing one.
It also enhances the algorithm to cope with more metadata types in the future
by just adding a new type, not a lot of code.
llvm-svn: 215994
While this might seem like an obvious canonicalization, there is one subtle problem with it. The result of the original expression
is undef when x is NaN (remember, fast math flags), but the result of the select is always defined when x is NaN. This means that the
new expression is strictly more defined than the original one. One unfortunate consequence of this is that the transform is not reversible!
It's always legal to make increase the defined-ness of an expression, but it's not legal to reduce it. Thus, targets that prefer the original
form of the expression cannot reverse the transform to recover it. Another way to think of it is that the transform has lost source-level
information (the fast math flags), which is undesirable.
llvm-svn: 215825
While *most* (X sdiv 1) operations will get caught by InstSimplify, it
is still possible for a sdiv to appear in the worklist which hasn't been
simplified yet.
This means that it is possible for 0 - (X sdiv 1) to get transformed
into (X sdiv -1); dividing by -1 can make the transform produce undef
values instead of the proper result.
Sorry for the lack of testcase, it's a bit problematic because it relies
on the exact order of operations in the worklist.
llvm-svn: 215818
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
llvm-svn: 215815
When a call site with noalias metadata is inlined, that metadata can be
propagated directly to the inlined instructions (only those that might access
memory because it is not useful on the others). Prior to inlining, the noalias
metadata could express that a call would not alias with some other memory
access, which implies that no instruction within that called function would
alias. By propagating the metadata to the inlined instructions, we preserve
that knowledge.
This should complete the enhancements requested in PR20500.
llvm-svn: 215676
When preserving noalias function parameter attributes by adding noalias
metadata in the inliner, we should do this for general function calls (not just
memory intrinsics). The logic is very similar to what already existed (except
that we want to add this metadata even for functions taking no relevant
parameters). This metadata can be used by ModRef queries in the caller after
inlining.
This addresses the first part of PR20500. Adding noalias metadata during
inlining is still turned off by default.
llvm-svn: 215657
v2: continue iterating through the rest of the bb
use for loop
v3: initialize FlattenCFG pass in ScalarOps
add test
v4: split off initializing flattencfg to a separate patch
add comment
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 215574
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
attribute and function argument attribute synthesizing and propagating.
As with the other uses of this attribute, the goal remains a best-effort
(no guarantees) attempt to not optimize the function or assume things
about the function when optimizing. This is particularly useful for
compiler testing, bisecting miscompiles, triaging things, etc. I was
hitting specific issues using optnone to isolate test code from a test
driver for my fuzz testing, and this is one step of fixing that.
llvm-svn: 215538
Correctness proof of the transform using CVC3-
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR(A | B, BVXOR(A,B) ) = A & B;
$ cvc3 t.cvc
Valid.
llvm-svn: 215524
First, avoid calling setTailCall(false) on musttail calls. The funciton
prototypes should be "congruent", so the shadow layout should be exactly
the same.
Second, avoid inserting instrumentation after a musttail call to
propagate the return value shadow. We don't need to propagate the
result of a tail call, it should already be in the right place.
Reviewed By: eugenis
Differential Revision: http://reviews.llvm.org/D4331
llvm-svn: 215415
No functional change. To be used in future commits that need to look
for such instructions.
Reviewed By: rafael
Differential Revision: http://reviews.llvm.org/D4504
llvm-svn: 215413
What follows bellow is a correctness proof of the transform using CVC3.
$ < t.cvc
A, B : BITVECTOR(32);
QUERY BVPLUS(32, A & B, A | B) = BVPLUS(32, A, B);
$ cvc3 < t.cvc
Valid.
llvm-svn: 215400
GlobalOpt didn't know how to simulate InsertValueInst or
ExtractValueInst. Optimizing these is pretty straightforward.
N.B. This came up when looking at clang's IRGen for MS ABI member
pointers; they are represented as aggregates.
llvm-svn: 215184
this case, the code path dealing with vector promotion was missing the explicit
checks for lifetime intrinsics that were present on the corresponding integer
promotion path.
llvm-svn: 215148
This swaps the order of the loop vectorizer and the SLP/BB vectorizers. It is disabled by default so we can do performance testing - ideally we want to change to having the loop vectorizer running first, and the SLP vectorizer using its leftovers instead of the other way around.
llvm-svn: 214963
This is mostly a cleanup, but it changes a fairly old behavior.
Every "real" LTO user was already disabling the silly internalize pass
and creating the internalize pass itself. The difference with this
patch is for "opt -std-link-opts" and the C api.
Now to get a usable behavior out of opt one doesn't need the funny
looking command line:
opt -internalize -disable-internalize -internalize-public-api-list=foo,bar -std-link-opts
llvm-svn: 214919
Optimize the following IR:
%1 = tail call noalias i8* @calloc(i64 1, i64 4)
%2 = bitcast i8* %1 to i32*
; This store is dead and should be removed
store i32 0, i32* %2, align 4
Memory returned by calloc is guaranteed to be zero initialized. If the value being stored is the constant zero (and the store is not otherwise observable across threads), we can delete the store. If the store is to an out of bounds address, it is undefined and thus also removable.
Reviewed By: nicholas
Differential Revision: http://reviews.llvm.org/D3942
llvm-svn: 214897
Some types, such as 128-bit vector types on AArch64, don't have any callee-saved registers. So if a value needs to stay live over a callsite, it must be spilled and refilled. This cost is now taken into account.
llvm-svn: 214859
Instead of creating global variables for source locations and global names,
just create metadata nodes and strings. They will be transformed into actual
globals in the instrumentation pass (if necessary). This approach is more
flexible:
1) we don't have to ensure that our custom globals survive all the optimizations
2) if globals are discarded for some reason, we will simply ignore metadata for them
and won't have to erase corresponding globals
3) metadata for source locations can be reused for other purposes: e.g. we may
attach source location metadata to alloca instructions and provide better descriptions
for stack variables in ASan error reports.
No functionality change.
llvm-svn: 214604
When the cost model determines vectorization is not possible/profitable these remarks print an analysis of that decision.
Note that in selectVectorizationFactor() we can assume that OptForSize and ForceVectorization are mutually exclusive.
Reviewed by Arnold Schwaighofer
llvm-svn: 214599
The current remark is ambiguous and makes it sounds like explicitly specifying vectorization will allow the loop to be vectorized. This is not the case. The improved remark directs the user to -Rpass-analysis=loop-vectorize to determine the cause of the pass-miss.
Reviewed by Arnold Schwaighofer`
llvm-svn: 214445