1. Add helper class for sema checks for target attributes
2. Add helper class for codegen of target attributes
As a proof-of-concept - implement msp430's 'interrupt' attribute.
llvm-svn: 93118
definitions from a precompiled header. This ensures that
code-completion with macro names behaves the same with or without
precompiled headers.
llvm-svn: 92497
This implements a new flag -fcatch-undefined-behavior. The flag turns
on additional runtime checks for:
T a[I];
a[i] abort when i < 0 or i >= I.
Future stuff includes shifts by >= bitwidth amounts.
llvm-svn: 91198
type and fixes a long-standing code gen. crash reported in
at least two PRs and a radar. (radar 7405040 and pr5025).
There are couple of remaining issues that I would like for
Ted. and Doug to look at:
Ted, please look at failure in Analysis/MissingDealloc.m.
I have temporarily added an expected-warning to make the
test pass. This tests has a declaration of 'SEL' type which
may not co-exist with the new changes.
Doug, please look at a FIXME in PCHWriter.cpp/PCHReader.cpp.
I think the changes which I have ifdef'ed out are correct. They
need be considered for in a few Indexer/PCH test cases.
llvm-svn: 89561
The following attributes are currently supported in C++0x attribute
lists (and in GNU ones as well):
- align() - semantics believed to be conformant to n3000, except for
redeclarations and what entities it may apply to
- final - semantics believed to be conformant to CWG issue 817's proposed
wording, except for redeclarations
- noreturn - semantics believed to be conformant to n3000, except for
redeclarations
- carries_dependency - currently ignored (this is an optimization hint)
llvm-svn: 89543
sugared types. The basic problem is that our qualifier accessors
(getQualifiers, getCVRQualifiers, isConstQualified, etc.) only look at
the current QualType and not at any qualifiers that come from sugared
types, meaning that we won't see these qualifiers through, e.g.,
typedefs:
typedef const int CInt;
typedef CInt Self;
Self.isConstQualified() currently returns false!
Various bugs (e.g., PR5383) have cropped up all over the front end due
to such problems. I'm addressing this problem by splitting each
qualifier accessor into two versions:
- the "local" version only returns qualifiers on this particular
QualType instance
- the "normal" version that will eventually combine qualifiers from this
QualType instance with the qualifiers on the canonical type to
produce the full set of qualifiers.
This commit adds the local versions and switches a few callers from
the "normal" version (e.g., isConstQualified) over to the "local"
version (e.g., isLocalConstQualified) when that is the right thing to
do, e.g., because we're printing or serializing the qualifiers. Also,
switch a bunch of
Context.getCanonicalType(T1).getUnqualifiedType() == Context.getCanonicalType(T2).getQualifiedType()
expressions over to
Context.hasSameUnqualifiedType(T1, T2)
llvm-svn: 88969
parameters. Rather than storing them as either declarations (for the
non-dependent case) or expressions (for the dependent case), we now
(always) store them as TemplateNames.
The primary change here is to add a new kind of TemplateArgument,
which stores a TemplateName. However, making that change ripples to
every switch on a TemplateArgument's kind, also affecting
TemplateArgumentLocInfo/TemplateArgumentLoc, default template
arguments for template template parameters, type-checking of template
template arguments, etc.
This change is light on testing. It should fix several pre-existing
problems with template template parameters, such as:
- the inability to use dependent template names as template template
arguments
- template template parameter default arguments cannot be
instantiation
However, there are enough pieces missing that more implementation is
required before we can adequately test template template parameters.
llvm-svn: 86777
unless we start implementing command-line switches which override the default
calling convention, so the effect is mostly to silence unknown attribute
warnings.)
llvm-svn: 86571
types. Preserve it through template instantiation. Preserve it through PCH,
although TSTs themselves aren't serializable, so that's pretty much meaningless.
llvm-svn: 85500
in the DeclaratorInfo, if one is present.
Preserve source information through template instantiation. This is made
more complicated by the possibility that ParmVarDecls don't have DIs, which
is possibly worth fixing in the future.
Also preserve source information for function parameters in ObjC method
declarations.
llvm-svn: 84971
the DeclaratorInfo, one for semantic analysis), just build a single type whose
canonical type will reflect the semantic analysis (assuming the type is
well-formed, of course).
To make that work, make a few changes to the type system:
* allow the nominal pointee type of a reference type to be a (possibly sugared)
reference type. Also, preserve the original spelling of the reference type.
Both of these can be ignored on canonical reference types.
* Remove ObjCProtocolListType and preserve the associated source information on
the various ObjC TypeLocs. Preserve the spelling of protocol lists except in
the canonical form.
* Preserve some level of source type structure on parameter types, but
canonicalize on the canonical function type. This is still a WIP.
Drops code size, makes strides towards accurate source location representation,
slight (~1.7%) progression on Cocoa.h because of complexity drop.
llvm-svn: 84907
TemplateTypeParmType with the substituted type directly; instead, replace it
with a SubstTemplateTypeParmType which will note that the type was originally
written as a template type parameter. This makes it reasonable to preserve
source information even through template substitution.
Also define the new SubstTemplateTypeParmType class, obviously.
For consistency with current behavior, we stringize these types as if they
were the underlying type. I'm not sure this is the right thing to do.
At any rate, I paled at adding yet another clause to the don't-desugar 'if'
statement, so I extracted a function to do it. The new function also does
The Right Thing more often, I think: e.g. if we have a chain of typedefs
leading to a vector type, we will now desugar all but the last one.
llvm-svn: 84412
TypeLoc class names to be $(Type classname)Loc. Rewrite the visitor.
Provide skeleton implementations for all the new TypeLocs.
Handle all cases in PCH. Handle a few more cases when inserting
location information in SemaType.
It should be extremely straightforward to add new location information
to existing TypeLoc objects now.
llvm-svn: 84386
format, so that we don't end up with multiple declaration and types
blocks. Also, fix a few obscure bugs with PCH loading and generation:
- If the DeclIDs DenseMap reallocates while we are writing a
declaration (due to recursively writing other declarations), we
could end up writing a bad ID to ExternalDefinitions.
- When loading an ArrayLoc (part of DeclaratorInfo), we need to set
the size expression to NULL if no size expression was provided.
PCH -> AST rewriting is still partly broken, unfortunately.
llvm-svn: 84293
TypeLoc records for declarations; it should not be necessary to represent it
directly in the type system.
Please complain if you were using these classes and feel you can't replicate
previous functionality using the TypeLoc API.
llvm-svn: 84222
This is used only for keeping detailed type source information for protocol references,
it should not participate in the semantics of the type system.
Its protocol list is not canonicalized.
llvm-svn: 83093
Type hierarchy. Demote 'volatile' to extended-qualifier status. Audit our
use of qualifiers and fix a few places that weren't dealing with qualifiers
quite right; many more remain.
llvm-svn: 82705
order because it was doing so while iterating over a densemap.
There are still similar problems in other places, for example
WeakUndeclaredIdentifiers is still written to the PCH file in a nondeterminstic
order, and we emit warnings about #pragma weak in nondeterminstic order.
llvm-svn: 81236
directly in the AST. The current thinking is to create these
only in C++ mode for efficiency. But for now, they're not being
created at all; patch to follow.
This will let us do things like verify that tags match during
template instantation, as well as signal that an elaborated type
specifier was used for clients that actually care.
Optimally, the TypeLoc hierarchy should be adjusted to carry tag
location information as well.
llvm-svn: 81057
This is necessary because #pragma pack and __attribute__((packed)) have different semantics. No functionality change yet, but this lays the groundwork for fixing a record layout bug.
llvm-svn: 78483
This removes the static data/methods on ObjCObjectPointerType while preserving the nice API (no need to fiddle with ASTContext:-).
This patch also adds Type::isObjCBuiltinType().
This should be the last fairly large patch related to recrafting the ObjC type system. The follow-on patches should be fairly small.
llvm-svn: 75808
The idea is to segregate Objective-C "object" pointers from general C pointers (utilizing the recently added ObjCObjectPointerType). The fun starts in Sema::GetTypeForDeclarator(), where "SomeInterface *" is now represented by a single AST node (rather than a PointerType whose Pointee is an ObjCInterfaceType). Since a significant amount of code assumed ObjC object pointers where based on C pointers/structs, this patch is very tedious. It should also explain why it is hard to accomplish this in smaller, self-contained patches.
This patch does most of the "heavy lifting" related to moving from PointerType->ObjCObjectPointerType. It doesn't include all potential "cleanups". The good news is additional cleanups can be done later (some are noted in the code). This patch is so large that I didn't want to include any changes that are purely aesthetic.
By making the ObjC types truly built-in, they are much easier to work with (and require fewer "hacks"). For example, there is no need for ASTContext::isObjCIdStructType() or ASTContext::isObjCClassStructType()! We believe this change (and the follow-up cleanups) will pay dividends over time.
Given the amount of code change, I do expect some fallout from this change (though it does pass all of the clang tests). If you notice any problems, please let us know asap! Thanks.
llvm-svn: 75314
FILE type, rather than using name lookup to find FILE within the
translation unit. Within precompiled headers, FILE is treated as yet
another "special type" (like __builtin_va_list).
This change should provide a performance improvement (not verified),
since the lookup into the translation unit declaration
forces the (otherwise unneeded) construction of a large hash table.
More importantly, with precompiled headers, the construction
of that table requires deserializing most of the top-level
declarations from the precompiled header, which are then unused.
Fixes PR 4509.
llvm-svn: 74911
with a particular system root directory and can be used with a different
system root directory when the headers it depends on have been installed.
Relocatable precompiled headers rewrite the file names of the headers used
when generating the PCH file into the corresponding file names of the
headers available when using the PCH file.
Addresses <rdar://problem/7001604>.
llvm-svn: 74885
declaration in the AST.
The new ASTContext::getCommentForDecl function searches for a comment
that is attached to the given declaration, and returns that comment,
which may be composed of several comment blocks.
Comments are always available in an AST. However, to avoid harming
performance, we don't actually parse the comments. Rather, we keep the
source ranges of all of the comments within a large, sorted vector,
then lazily extract comments via a binary search in that vector only
when needed (which never occurs in a "normal" compile).
Comments are written to a precompiled header/AST file as a blob of
source ranges. That blob is only lazily loaded when one requests a
comment for a declaration (this never occurs in a "normal" compile).
The indexer testbed now supports comment extraction. When the
-point-at location points to a declaration with a Doxygen-style
comment, the indexer testbed prints the associated comment
block(s). See test/Index/comments.c for an example.
Some notes:
- We don't actually attempt to parse the comment blocks themselves,
beyond identifying them as Doxygen comment blocks to associate them
with a declaration.
- We won't find comment blocks that aren't adjacent to the
declaration, because we start our search based on the location of
the declaration.
- We don't go through the necessary hops to find, for example,
whether some redeclaration of a declaration has comments when our
current declaration does not. Similarly, we don't attempt to
associate a \param Foo marker in a function body comment with the
parameter named Foo (although that is certainly possible).
- Verification of my "no performance impact" claims is still "to be
done".
llvm-svn: 74704
Remove ASTContext parameter from DeclContext's methods. This change cascaded down to other Decl's methods and changes to call sites started "escalating".
Timings using pre-tokenized "cocoa.h" showed only a ~1% increase in time run between and after this commit.
llvm-svn: 74506
Add a type (ObjCObjectPointerType) and remove a type (ObjCQualifiedIdType).
This large/tedious patch is just a first step. Next step is to remove ObjCQualifiedInterfaceType. After that, I will remove the magic TypedefType for 'id' (installed by Sema). This work will enable various simplifications throughout clang (when dealing with ObjC types).
No functionality change.
llvm-svn: 73649
'objc_ownership_cfretain' -> 'cf_ownership_retain'
'objc_ownership_cfrelease' -> 'cf_ownership_release'
Motivation: Core Foundation objects can be used in isolation from Objective-C,
and this forces users to reason about the separate semantics of CF objects. More
Sema support pending.
llvm-svn: 70884
compatible with VC++ and GCC. The codegen/mangling angle hasn't
been fully ironed out yet. Note that we accept int128_t even in
32-bit mode, unlike gcc.
llvm-svn: 70464
which eliminates the storage for IdentifierInfo in the "uninteresting
identifier" cases. Sadly, this only brought back 7k of the 500k we
lost :(
llvm-svn: 70325
line when using a PCH that were not provided when building the PCH
file. If those names were used as identifiers somewhere in the PCH
file, reject the PCH file.
llvm-svn: 70321
for identifiers to separate "interesting" from "uninteresting"
identifiers. However, to cope with compiler invocations where the
predefines buffers mismatch, we need to be able to search the complete
identifier table. Cocoa.h.pch is now about 500k larger that it used to
be :(
llvm-svn: 70320
Clang version value rather than hard-coding "1.0".
Add PCH and Clang version information into the PCH file. Reject PCH
files with the wrong version information.
llvm-svn: 70264
essentially the same thing we do with pretokenized headers. stat()
caching improves performance of the Cocoa-prefixed "Hello, World" by
45%.
llvm-svn: 70223
as 'objc_ownership_cfretain' except that the method acts like a CFRetain instead
of a [... retain] (important in GC modes). Checker support is wired up, but
currently only for Objective-C message expressions (not function calls).
llvm-svn: 70218
parm var decls in leopard cocoa.h end up using this abbreviation,
which shrinks the bitcode file by about 50K: 7217736->7167120.
Before:
Block ID #12 (DECLS_BLOCK):
Num Instances: 1
Total Size: 2.23595e+07b/2.79494e+06B/698736W
% of file: 38.7233
Num SubBlocks: 0
Num Abbrevs: 0
Num Records: 139387
% Abbrev Recs: 0
After:
Block ID #12 (DECLS_BLOCK):
Num Instances: 1
Total Size: 2.02405e+07b/2.53006e+06B/632516W
% of file: 35.301
Num SubBlocks: 0
Num Abbrevs: 1
Num Records: 139387
% Abbrev Recs: 19.2902
llvm-svn: 70199
file. In particular, only eagerly load source location entries for
files and for the predefines buffer. Other buffers and
macro-instantiation source location entries are loaded lazily.
With the Cocoa-prefixed "Hello, World", we only load 815/26555 source
location entities. This halves the amount of user time we spend in
this "Hello, World" program with -fsyntax-only (down to .007s).
This optimization is part 1 of 2 for the source manager. This
eliminates most of the user time in loading a PCH file. We still spend
too much time initialize File structures (especially in the calls to
stat), so we need to either make the loading of source location
entries for files lazy or import the stat cache from the PTH
implementation.
llvm-svn: 70196
eventually get an option to turn this off, but it is nice for looking at
statistics. For example, the types block now prints:
Block ID #11 (TYPES_BLOCK_ID):
Num Instances: 1
Total Size: 895100b/111888B/27971.9W
% of file: 1.55801
Num SubBlocks: 0
Num Abbrevs: 0
Num Records: 14899
% Abbrev Recs: 0
Code Histogram:
5478 TYPE_FUNCTION_PROTO
2683 TYPE_TYPEDEF
2460 TYPE_POINTER
2047 TYPE_ENUM
1553 TYPE_RECORD
283 TYPE_CONSTANT_ARRAY
274 TYPE_OBJC_INTERFACE
76 TYPE_INCOMPLETE_ARRAY
10 TYPE_VECTOR
9 TYPE_OBJC_QUALIFIED_ID
5 TYPE_FUNCTION_NO_PROTO
5 TYPE_EXT_QUAL
3 TYPE_TYPEOF_EXPR
llvm-svn: 70166
- Deal with the Receiver/ClassInfo shared storage in ObjCMessageExpr
- Implement PCH support for ImplicitParamDecl
- Fix the handling of the body of an ObjCMethodDecl
- Several cast -> cast_or_null fixes
- Make Selector::getIdentifierInfoForSlot work for 1-argument, NULL
selectors.
- Make Selector::getAsString() work with NULL selectors.
- Fix the names of VisitObjCAtCatchStmt and VisitObjCAtFinallyStmt
in the PCH reader and writer; these were never getting called.
At this point, all of the pch-test tests pass for C and Objective-C.
llvm-svn: 70163
necessary and iterate until all types and declarations have been
written. This reduces the Cocoa.h PCH file size by about 4% (since we
don't write types we don't need), and fixes problems where writing a
declaration generates a new type.
This doesn't seem to have any impact on performance either way.
llvm-svn: 70109
most of which are ignored. Instead, move the __COUNTER__ value out to
a PCH-level record (since it is handled eagerly) and move the header
file information into the SourceManager block (which is also,
currently, loaded eagerly).
This results in another 17% performance improvement in the
Cocoa-prefixed "Hello, World" with PCH.
llvm-svn: 70097
"interesting" identifiers (e.g., those where the IdentifierInfo has
some useful information) from "uninteresting" identifiers (where the
IdentifierInfo is just a name). This makes the hash table smaller (so
searching in it should be faster) and, when loading "uninteresting"
identifiers, we skip the lookup in the hash table.
PCH file size is slightly smaller than before (since we don't emit the
contents of the uninteresting IdentifierInfo structures). The
Cocoa.h-prefixed "Hello, World" doesn't show any speedup, although
we're getting to the point where system noise is a bit issue.
llvm-svn: 70075
that the PCH reader does not have to decode the VBR encoding at PCH
load time.
Also, reduce the size of the identifier offsets from 64 bits down to
32 bits. The identifier table itself isn't going to grow to more than
4GB :)
Overall, this results in a 13% speedup in the Cocoa-prefixed "Hello,
World" benchmark.
llvm-svn: 70063
blobs, so that we don't need to do any work to get these arrays into
memory at PCH load time.
This gives another 19% performance improvement to the Cocoa-prefixed
"Hello, World!".
llvm-svn: 70059
This results in a 10% speedup on the Cocoa-prefixed "Hello, World!",
all of which is (not surprisingly) user time. There was a tiny
reduction in the size of the PCH file for Cocoa.h, because certain
selectors aren't being written twice.
I'm using two new tricks here that I'd like to replicate elsewhere:
(1) The selectors not used in the global method pool are packed into
the blob after the global method pool's on-disk hash table and
stored as keys, so that all selectors are in the same blob.
(2) We record the offsets of each selector key when we write it into
the global method pool (or after it, in the same blob). The offset
table is written as a blob, so that we don't need to pack/unpack a
SmallVector with its contents.
llvm-svn: 70055
to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function increments the reference count of a passed
object.
llvm-svn: 70005
up to the checker yet, but essentially it allows a user to specify that an
Objective-C method or C function returns an owned an Objective-C object.
llvm-svn: 70001
(1) Make sure to pad on-disk hash tables with 4 bytes, not 2, since
the reader assumes that bucket data is aligned on 4-byte
boundaries.
(2) Don't emit the number of factory methods twice. This was
throwing off the data counts and therefore causing lookups to
fail. I've added asserts so that this class of error cannot happen
again.
llvm-svn: 69991
pools, combined). The methods in the global method pool are lazily
loaded from an on-disk hash table when Sema looks into its version of
the hash tables.
llvm-svn: 69989
As part of this, make ObjCImplDecl inherit from NamedDecl (since
ObjCImplementationDecls now need to have names so that they can be
found). This brings ObjCImplDecl very, very close to
ObjCContainerDecl; we may be able to merge them soon.
llvm-svn: 69941
their own namespace (IDNS_Protocol) and use the normal name-lookup
routines to find them. Aside from the simplification this provides
(one less DenseMap!), it means that protocols will be lazily
deserialized from PCH files.
Make the code size of the selector table block match the code size of
the type and decl blocks.
llvm-svn: 69939
SEL, Class, Protocol, CFConstantString, and
__objcFastEnumerationState. With this, we can now run the Objective-C
methods and properties PCH tests.
llvm-svn: 69932
file needs to store. CodeGen needs to see these definitions (via
HandleTopLevelDecl), otherwise it won't be able to generate code for
them.
This patch notifies the consumer (e.g., CodeGen) about function
definitions and variable definitions when the corresponding
declarations are deserialized. Hence, we don't eagerly deserialize the
declarations for every variable or function that has a definition in
the PCH file. This gives another 5% speedup for the Carbon-prefixed
"Hello, World!", and brings our PCH statistics down to something far
more reasonable:
*** PCH Statistics:
13/20693 types read (0.062823%)
17/59230 declarations read (0.028702%)
54/44914 identifiers read (0.120230%)
0/32954 statements read (0.000000%)
5/6187 macros read (0.080815%)
llvm-svn: 69820
PCH files now contain complete information about builtins, including
any declarations that have been synthesized as part of building the
PCH file. When using a PCH file, we do not initialize builtins at all;
when needed, they'll be found in the PCH file.
This optimization translations into a 9% speedup for "Hello, World!"
with Carbon.h as a prefix header and roughly a 5% speedup for 403.gcc
with its prefix header. We're also reading less of the PCH file for
"Hello, World!":
*** PCH Statistics:
286/20693 types read (1.382110%)
1630/59230 declarations read (2.751984%)
764/44914 identifiers read (1.701029%)
1/32954 statements read (0.003035%)
5/6187 macros read (0.080815%)
down from
*** PCH Statistics:
411/20693 types read (1.986179%)
2553/59230 declarations read (4.310316%)
1093/44646 identifiers read (2.448148%)
1/32954 statements read (0.003035%)
21/6187 macros read (0.339421%)
llvm-svn: 69815