-There are 2 instances that change the TokenID for GNU libstdc++ 4.2 compatibility.
To handler those cases introduce a RevertedTokenID bitfield, RevertTokenIDToIdentifier() and hasRevertedTokenIDToIdentifier() methods.
Store the bitfield in PCH.
llvm-svn: 110868
lexed method declarations.
This avoid interference with tokens coming after the point where the default arg tokens were 'injected', e.g. for
typedef struct Inst {
void m(int x=0);
} *InstPtr;
when parsing '0' the next token would be '*' and things would be messed up.
llvm-svn: 110436
parenthesized, unlike in C++, e.g.,
C has: typeof ( expression)
C++ has: typeof unary-expression
So, once we've parsed a parenthesized expression after typeof, we
should only go on to parse the postfix expression suffix if we're in
C++. Fixes <rdar://problem/8237491>.
llvm-svn: 109606
parser is looking at a declaration or an expression, use a '=' to
conclude that we are parsing a declaration.
This is wrong. However, our previous approach of finding a comma after
the '=' is also wrong, because the ',' could be part of a
template-argument-list. So, for now we're going to use the same wrong
heuristic as GCC and Visual C++, because less real-world code is
likely to be broken this way. I've opened PR7655 to keep track of our
wrongness; note also the XFAIL'd test.
Fixes <rdar://problem/8193163>.
llvm-svn: 108459
size" error for code like
new (int [size])
to a warning, add a Fix-It to remove the parentheses, and make this
diagnostic work properly when it occurs in a template
instantiation. <rdar://problem/8018245>.
llvm-svn: 108242
When loading the PCH, IdentifierInfos that are associated with pragmas cause declarations that use these identifiers to be deserialized (e.g. the "clang" pragma causes the "clang" namespace to be loaded).
We can avoid this if we just use StringRefs for the pragmas.
As a bonus, since we don't have to create and pass IdentifierInfos, the pragma interfaces get a bit more simplified.
llvm-svn: 108237
a function prototype is followed by a declarator if we
aren't parsing a K&R style identifier list.
Also, avoid skipping randomly after a declaration if a
semicolon is missing. Before we'd get:
t.c:3:1: error: expected function body after function declarator
void bar();
^
Now we get:
t.c:1:11: error: invalid token after top level declarator
void foo()
^
;
llvm-svn: 108105
selector of an Objective-C method declaration, e.g., given
- (int)first:(int)x second:(int)y;
this code completion point triggers at the location of "second". It
will provide completions that fill out the method declaration for any
known method, anywhere in the translation unit.
llvm-svn: 107929
allows Sema some limited access to the current scope, which we only
use in one way: when Sema is performing some kind of declaration that
is not directly driven by the parser (e.g., due to template
instantiatio or lazy declaration of a member), we can find the Scope
associated with a DeclContext, if that DeclContext is still in the
process of being parsed.
Use this to make the implicit declaration of special member functions
in a C++ class more "scope-less", rather than using the NULL Scope hack.
llvm-svn: 107491
parameters starts at the end of the template-parameter rather than at
the point where the template parameter name is encounted. For example,
given:
typedef unsigned char T;
template<typename T = T> struct X0 { };
The "T" in the default argument refers to the typedef of "unsigned
char", rather than referring to the newly-introduced template type
parameter 'T'.
Addresses <rdar://problem/8122812>.
llvm-svn: 107354
This is more targeted, as it simply provides toggle actions for the parser to
turn access checking on and off. We then use these to suppress access checking
only while we parse the template-id (included scope specifier) of an explicit
instantiation and explicit specialization of a class template. The
specialization behavior is an extension, as it seems likely a defect that the
standard did not exempt them as it does explicit instantiations.
This allows the very common practice of specializing trait classes to work for
private, internal types. This doesn't address instantiating or specializing
function templates, although those apparently already partially work.
The naming and style for the Action layer isn't my favorite, comments and
suggestions would be appreciated there.
llvm-svn: 106993
For
void f( a:🅱️:c );
we would cache the tokens "a:🅱️:" but then we would try to annotate them using the range "a::".
Before annotating them with the (invalid) C++ scope spec, set it to the range of "a:🅱️:".
llvm-svn: 106536
just skip over the body of the class or class template: it's a
semantic disaster that's likely to cause invariants to break. Fixes
part of <rdar://problem/8104754>.
llvm-svn: 106496
In a line like:
(;
the semicolon leaves Parser:ParenCount unbalanced (it's 1 even though we stopped looking for a right paren).
This may affect later parsing and result in bad recovery for parsing errors.
llvm-svn: 106213
"previous token" location at the end of the class definition. This
eliminates a badly-placed error + Fix-It when the ';' following a
class definition is missing. Fixes <rdar://problem/8066414>.
llvm-svn: 106175
(or operator-function-id) as a template, but the context is actually
non-dependent or the current instantiation, allow us to use knowledge
of what kind of template it is, e.g., type template vs. function
template, for further syntactic disambiguation. This allows us to
parse properly in the presence of stray "template" keywords, which is
necessary in C++0x and it's good recovery in C++98/03.
llvm-svn: 106167
disambiguation keywords outside of templates in C++98/03. Previously,
the warning would fire when the associated nested-name-specifier was
not dependent, but that was a misreading of the C++98/03 standard:
now, we complain only when we're outside of any template.
llvm-svn: 106161