Don't generate a checker-tagged node unconditionally on the first
checkDeadSymbols callback when no pointers are tracked.
This is a tiny performance optimization; it may change the behavior slightly
by making Static Analyzer bail out on max-nodes one node later (which is good)
but any test would either break for no good reason or become useless
every time someone sneezes.
Differential Revision: https://reviews.llvm.org/D54013
llvm-svn: 347955
The checker suppresses warnings on paths on which a nonnull value is assumed
to be nullable. This probably deserves a warning, but it's a separate story.
Now, because dead symbol collection fires in pretty random moments,
there sometimes was a situation when dead symbol collection fired after
computing a parameter but before actually evaluating call enter into the
function, which triggered the suppression when the argument was null
in the first place earlier than the obvious warning for null-to-nonnull
was emitted, causing false negatives.
Only trigger the suppression for symbols, not for concrete values.
It is impossible to constrain a concrete value post-factum because
it is impossible to constrain a concrete value at all.
This covers all the necessary cases because by the time we reach the call,
symbolic values should be either not constrained to null, or already collapsed
into concrete null values. Which in turn happens because they are passed through
the Store, and the respective collapse is implemented as part of getSVal(),
which is also weird.
Differential Revision: https://reviews.llvm.org/D54017
llvm-svn: 347954
It's an old bug that consists in stale references to symbols remaining in the
GDM if they disappear from other program state sections as a result of any
operation that isn't the actual dead symbol collection. The most common example
here is:
FILE *fp = fopen("myfile.txt", "w");
fp = 0; // leak of file descriptor
In this example the leak were not detected previously because the symbol
disappears from the public part of the program state due to evaluating
the assignment. For that reason the checker never receives a notification
that the symbol is dead, and never reports a leak.
This patch not only causes leak false negatives, but also a number of other
problems, including false positives on some checkers.
What's worse, even though the program state contains a finite number of symbols,
the set of symbols that dies is potentially infinite. This means that is
impossible to compute the set of all dead symbols to pass off to the checkers
for cleaning up their part of the GDM.
No longer compute the dead set at all. Disallow iterating over dead symbols.
Disallow querying if any symbols are dead. Remove the API for marking symbols
as dead, as it is no longer necessary. Update checkers accordingly.
Differential Revision: https://reviews.llvm.org/D18860
llvm-svn: 347953
Move visitors to the implementation file, move a complicated logic into
a function.
Differential Revision: https://reviews.llvm.org/D55036
llvm-svn: 347946
Attempt to get a fully qualified name from AST if an SVal corresponding
to the object is not available.
Differential Revision: https://reviews.llvm.org/D55034
llvm-svn: 347944
If the object is a temporary, and there is no variable it binds to,
let's at least print out the object name in order to help differentiate
it from other temporaries.
rdar://45175098
Differential Revision: https://reviews.llvm.org/D55033
llvm-svn: 347943
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
Especially with pointees, a lot of meaningless reports came from uninitialized
regions that were already reported. This is fixed by storing all reported fields
to the GDM.
Differential Revision: https://reviews.llvm.org/D51531
llvm-svn: 347153
Extend the alpha.core.Conversion checker to handle implicit converions
where a too large integer value is converted to a floating point type. Each
floating point type has a range where it can exactly represent all integers; we
emit a warning when the integer value is above this range. Although it is
possible to exactly represent some integers which are outside of this range
(those that are divisible by a large enough power of 2); we still report cast
involving those, because their usage may lead to bugs. (For example, if 1<<24
is stored in a float variable x, then x==x+1 holds.)
Patch by: Donát Nagy!
Differential Revision: https://reviews.llvm.org/D52730
llvm-svn: 347006
One of the reasons why AnalyzerOptions is so chaotic is that options can be
retrieved from the command line whenever and wherever. This allowed for some
options to be forgotten for a looooooong time. Have you ever heard of
"region-store-small-struct-limit"? In order to prevent this in the future, I'm
proposing to restrict AnalyzerOptions' interface so that only checker options
can be retrieved without special getters. I would like to make every option be
accessible only through a getter, but checkers from plugins are a thing, so I'll
have to figure something out for that.
This also forces developers who'd like to add a new option to register it
properly in the .def file.
This is done by
* making the third checker pointer parameter non-optional, and checked by an
assert to be non-null.
* I added new, but private non-checkers option initializers, meant only for
internal use,
* Renamed these methods accordingly (mind the consistent name for once with
getBooleanOption!):
- getOptionAsString -> getCheckerStringOption,
- getOptionAsInteger -> getCheckerIntegerOption
* The 3 functions meant for initializing data members (with the not very
descriptive getBooleanOption, getOptionAsString and getOptionAsUInt names)
were renamed to be overloads of the getAndInitOption function name.
* All options were in some way retrieved via getCheckerOption. I removed it, and
moved the logic to getStringOption and getCheckerStringOption. This did cause
some code duplication, but that's the only way I could do it, now that checker
and non-checker options are separated. Note that the non-checker version
inserts the new option to the ConfigTable with the default value, but the
checker version only attempts to find already existing entries. This is how
it always worked, but this is clunky and I might end reworking that too, so we
can eventually get a ConfigTable that contains the entire configuration of the
analyzer.
Differential Revision: https://reviews.llvm.org/D53483
llvm-svn: 346113
Interestingly, this many year old (when I last looked I remember 2010ish)
checker was committed without any tests, so I thought I'd implement them, but I
was shocked to see how I barely managed to get it working. The code is severely
outdated, I'm not even sure it has ever been used, so I'd propose to move it
back into alpha, and possibly even remove it.
Differential Revision: https://reviews.llvm.org/D53856
llvm-svn: 345990
I'm in the process of refactoring AnalyzerOptions. The main motivation behind
here is to emit warnings if an invalid -analyzer-config option is given from
the command line, and be able to list them all.
In this patch, I found some flags that should've been used as checker options,
or have absolutely no mention of in AnalyzerOptions, or are nonexistent.
- NonLocalizedStringChecker now uses its "AggressiveReport" flag as a checker
option
- lib/StaticAnalyzer/Frontend/ModelInjector.cpp now accesses the "model-path"
option through a getter in AnalyzerOptions
- -analyzer-config path-diagnostics-alternate=false is not a thing, I removed it,
- lib/StaticAnalyzer/Checkers/AllocationDiagnostics.cpp and
lib/StaticAnalyzer/Checkers/AllocationDiagnostics.h are weird, they actually
only contain an option getter. I deleted them, and fixed RetainCountChecker
to get it's "leak-diagnostics-reference-allocation" option as a checker option,
- "region-store-small-struct-limit" has a proper getter now.
Differential Revision: https://reviews.llvm.org/D53276
llvm-svn: 345985
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
MallocChecker no longer thinks that operator delete() that accepts the size of
the object to delete (available since C++14 or under -fsized-deallocation)
is some weird user-defined operator. Instead, it handles it like normal delete.
Additionally, it exposes a regression in NewDelete-intersections.mm's
testStandardPlacementNewAfterDelete() test, where the diagnostic is delayed
from before the call of placement new into the code of placement new
in the header. This happens because the check for pass-into-function-after-free
for placement arguments is located in checkNewAllocator(), which happens after
the allocator is inlined, which is too late. Move this use-after-free check
into checkPreCall instead, where it works automagically because the guard
that prevents it from working is useless and can be removed as well.
This commit causes regressions under -analyzer-config
c++-allocator-inlining=false but this option is essentially unsupported
because the respective feature has been enabled by default quite a while ago.
Differential Revision: https://reviews.llvm.org/D53543
llvm-svn: 345802
Trusting summaries of inlined code would require a more thorough work,
as the current approach was causing too many false positives, as the new
example in test. The culprit lies in the fact that we currently escape
all variables written into a field (but not passed off to unknown
functions!), which can result in inconsistent behavior.
rdar://45655344
Differential Revision: https://reviews.llvm.org/D53902
llvm-svn: 345746
A ConstantExpr class represents a full expression that's in a context where a
constant expression is required. This class reflects the path the evaluator
took to reach the expression rather than the syntactic context in which the
expression occurs.
In the future, the class will be expanded to cache the result of the evaluated
expression so that it's not needlessly re-evaluated
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D53475
llvm-svn: 345692
We haven't supported compiling ObjC1 for a long time (and never will again), so
there isn't any reason to keep these separate. This patch replaces
LangOpts::ObjC1 and LangOpts::ObjC2 with LangOpts::ObjC.
Differential revision: https://reviews.llvm.org/D53547
llvm-svn: 345637
The existing padding checker skips classes that have any base classes.
This patch allows the checker to traverse very simple cases:
classes that have no fields and have exactly one base class.
This is important mostly in the case of array declarations.
Patch by Max Bernstein!
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D53206
llvm-svn: 345558
Previously, OSDynamicCast was modeled as an identity.
This is not correct: the output of OSDynamicCast may be zero even if the
input was not zero (if the class is not of desired type), and thus the
modeling led to false positives.
Instead, we are doing eager state split:
in one branch, the returned value is identical to the input parameter,
and in the other branch, the returned value is zero.
This patch required a substantial refactoring of canEval infrastructure,
as now it can return different function summaries, and not just true/false.
rdar://45497400
Differential Revision: https://reviews.llvm.org/D53624
llvm-svn: 345338
trackNullOrUndefValue is a long and confusing name,
and it does not actually reflect what the function is doing.
Give a function a new name, with a relatively clear semantics.
Also remove some dead code.
Differential Revision: https://reviews.llvm.org/D52758
llvm-svn: 345064
As rightly pointed out by @NoQ, nonloc::LazyCompoundVals were only used to acquire a constructed object's region, which isn't what LazyCompoundVal was made for.
Differential Revision: https://reviews.llvm.org/D51300
llvm-svn: 344879
We don't need a separate node for every symbol, because whenever the first
symbol leaks, a bug is emitted, the analysis is sinked, and the checker
callback immediately returns due to State variable turning into null,
so we never get to see the second leaking symbol.
Additionally, we are no longer able to break normal analysis while experimenting
with debug dumps.
Differential Revision: https://reviews.llvm.org/D52804
llvm-svn: 344538
For now, tresting the cast as a no-op, and disregarding the case where
the output becomes null due to the type mismatch.
rdar://45174557
Differential Revision: https://reviews.llvm.org/D53156
llvm-svn: 344311
I've added a new functionality, the checker is now able to
detect and report fields pointing to themselves. I figured
this would fit well into the checker as there's no reason
for a pointer to point to itself instead of being nullptr.
Differential Revision: https://reviews.llvm.org/D51305
llvm-svn: 344242
Tests introduced in r329780 was disabled in r342317 because these tests
were accidentally testing dump infrastructure, when all they cared about was
how symbols relate to each other. So when dump infrastructure changed,
tests became annoying to maintain.
Add a new feature to ExprInspection: clang_analyzer_denote() and
clang_analyzer_explain(). The former adds a notation to a symbol, the latter
expresses another symbol in terms of previously denoted symbols.
It's currently a bit wonky - doesn't print parentheses and only supports
denoting atomic symbols. But it's even more readable that way.
Differential Revision: https://reviews.llvm.org/D52133
llvm-svn: 343048
When a checker maintains a program state trait that isn't a simple list/set/map, but is a combination of multiple lists/sets/maps (eg., a multimap - which may be implemented as a map from something to set of something), ProgramStateManager only contains the factory for the trait itself. All auxiliary lists/sets/maps need a factory to be provided by the checker, which is annoying.
So far two checkers wanted a multimap, and both decided to trick the
ProgramStateManager into keeping the auxiliary factory within itself
by pretending that it's some sort of trait they're interested in,
but then never using this trait but only using the factory.
Make this trick legal. Define a convenient macro.
One thing that becomes apparent once all pieces are put together is that
these two checkers are in fact using the same factory, because the type that
identifies it, ImmutableMap<const MemRegion *, ImmutableSet<SymbolRef>>,
is the same. This situation is different from two checkers registering similar
primitive traits.
Differential Revision: https://reviews.llvm.org/D51388
llvm-svn: 343035
Assuming strlcat is used with strlcpy we check as we can if the last argument does not equal os not larger than the buffer.
Advising the proper usual pattern.
Reviewers: george.karpenkov, NoQ, MaskRay
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D49722
llvm-svn: 342832
Modify the RetainCountChecker to perform state "adjustments" in
checkEndFunction, as performing work in PreStmt<ReturnStmt> does not
work with destructors.
The previous version made an implicit assumption that no code runs
after the return statement is executed.
rdar://43945028
Differential Revision: https://reviews.llvm.org/D52338
llvm-svn: 342770
Since I plan to add a number of new flags, it made sense to encapsulate
them in a new struct, in order not to pollute FindUninitializedFields's
constructor with new boolean options with super long names.
This revision practically reverts D50508, since FindUninitializedFields
now accesses the pedantic flag anyways.
Differential Revision: https://reviews.llvm.org/D51679
llvm-svn: 342219
Some of the comments are incorrect, imprecise, or simply nonexistent.
Since I have a better grasp on how the analyzer works, it makes sense
to update most of them in a single swoop.
I tried not to flood the code with comments too much, this amount
feels just right to me.
Differential Revision: https://reviews.llvm.org/D51417
llvm-svn: 342215
iThis patch aims to fix derefencing, which has been debated for months now.
Instead of working with SVals, the function now relies on TypedValueRegion.
Differential Revision: https://reviews.llvm.org/D51057
llvm-svn: 342213
This patch adds support for the following operations in the iterator checkers: assign, clear, insert, insert_after, emplace, emplace_after, erase and erase_after. This affects mismatched iterator checks ("this" and parameter must match) and invalidation checks (according to the standard).
Differential Revision: https://reviews.llvm.org/D32904
llvm-svn: 341794
This patch adds support for the following operations in the iterator checkers: push_back, push_front, emplace_back, emplace_front, pop_back and pop_front. This affects iterator range checks (range is extended after push and emplace and reduced after pop operations) and invalidation checks (according to the standard).
Differential Revision: https://reviews.llvm.org/D32902
llvm-svn: 341793
Extension of the mismatched iterator checker for constructors taking range of first..last (first and last must be iterators of the same container) and also for comparisons of iterators of different containers (one does not compare iterators of different containers, since the set of iterators is partially ordered, there are no relations between iterators of different containers, except that they are always non-equal).
Differential Revision: https://reviews.llvm.org/D32860
llvm-svn: 341792
If a container is moved by its move assignment operator, according to the standard all their iterators except the past-end iterators remain valid but refer to the new container. This patch introduces support for this case in the iterator checkers.
Differential Revision: https://reviews.llvm.org/D32859
llvm-svn: 341791
New check added to the checker which checks whether iterator parameters of template functions typed by the same template parameter refer to the same container.
Differential Revision: https://reviews.llvm.org/D32845
llvm-svn: 341790
Return value of dyn_cast_or_null should be checked before use.
Otherwise we may put a null pointer into the map as a key and eventually
crash in checkDeadSymbols.
Differential Revision: https://reviews.llvm.org/D51385
llvm-svn: 341092
Don't try to understand what's going on when there's a C++ method called eg.
CFRetain().
Refactor the checker a bit, to use more modern APIs.
Differential Revision: https://reviews.llvm.org/D50866
llvm-svn: 340982
By making sure the returned value from getKnownSVal is consistent with
the value used inside expression engine.
PR38427
Differential Revision: https://reviews.llvm.org/D51252
llvm-svn: 340965
We add check for invalidation of iterators. The only operation we handle here
is the (copy) assignment.
Differential Revision: https://reviews.llvm.org/D32747
llvm-svn: 340805
Summary:
`CallDecription` can only handle function for the time being. If we want to match c++ method, we can only use method name to match and can't improve the matching accuracy through the qualifiers.
This patch add the support for `QualifiedName` matching to improve the matching accuracy.
Reviewers: xazax.hun, NoQ, george.karpenkov, rnkovacs
Reviewed By: xazax.hun, NoQ, rnkovacs
Subscribers: Szelethus, szepet, rnkovacs, a.sidorin, mikhail.ramalho, cfe-commits, MTC
Differential Revision: https://reviews.llvm.org/D48027
llvm-svn: 340407
For the following example:
struct Base {
int x;
};
// In a different translation unit
struct Derived : public Base {
Derived() {}
};
For a call to Derived::Derived(), we'll receive a note that
this->x is uninitialized. Since x is not a direct field of Derived,
it could be a little confusing. This patch aims to fix this, as well
as the case when the derived object has a field that has the name as
an inherited uninitialized data member:
struct Base {
int x; // note: uninitialized field 'this->Base::x'
};
struct Derived : public Base {
int x = 5;
Derived() {}
};
Differential Revision: https://reviews.llvm.org/D50905
llvm-svn: 340272
Now that it has it's own file, it makes little sense for
isPointerOrReferenceUninit to be this large, so I moved
dereferencing to a separate function.
Differential Revision: https://reviews.llvm.org/D50509
llvm-svn: 340265
Turns out it can't be removed from the analyzer since it relies on CallEvent.
Moving to staticAnalyzer/core
Differential Revision: https://reviews.llvm.org/D51023
llvm-svn: 340247
ARCMigrator is using code from RetainCountChecker, which is a layering
violation (and it also does it badly, by using a different header, and
then relying on implementation being present in a header file).
This change splits up RetainSummaryManager into a separate library in
lib/Analysis, which can be used independently of a checker.
Differential Revision: https://reviews.llvm.org/D50934
llvm-svn: 340114
A lot of code in RetainCountChecker deals with GC mode.
Given that GC mode is deprecated, Apple does not ship runtime for it,
and modern compiler toolchain does not support it, it makes sense to
remove the code dealing with it in order to aid understanding of
RetainCountChecker.
Differential Revision: https://reviews.llvm.org/D50747
llvm-svn: 340091