Add this option for debugging and providing workaround.
By default it is off so no behavior change in backend.
Differential Revision: https://reviews.llvm.org/D54158
llvm-svn: 346267
This patch makes LICM use `ICFLoopSafetyInfo` that is a smarter version
of LoopSafetyInfo that leverages power of Implicit Control Flow Tracking
to keep track of throwing instructions and give less pessimistic answers
to queries related to throws.
The ICFLoopSafetyInfo itself has been introduced in rL344601. This patch
enables it in LICM only.
Differential Revision: https://reviews.llvm.org/D50377
Reviewed By: apilipenko
llvm-svn: 346201
The new atomic optimizer I previously added in D51969 did not work
correctly when a pixel shader was using derivatives, and had helper
lanes active.
To fix this we add an llvm.amdgcn.ps.live call that guards a branch
around the entire atomic operation - ensuring that all helper lanes are
inactive within the wavefront when we compute our atomic results.
I've added a test case that can cause derivatives, and exposes the
problem.
Differential Revision: https://reviews.llvm.org/D53930
llvm-svn: 346128
Summary: Different variants of idot8 codegen dag patterns are not generated by llvm-tablegen due to a huge
increase in the compile time. Support the pattern that clang FE generates after reordering the
additions in integer-dot8 source language pattern.
Author: FarhanaAleen
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D53937
llvm-svn: 345902
SimplifySetCC could shrink a load without checking for
profitability or legality of such shink with a target.
Added checks to prevent shrinking of aligned scalar loads
in AMDGPU below dword as scalar engine does not support it.
Differential Revision: https://reviews.llvm.org/D53846
llvm-svn: 345778
lowerRangeToAssertZExt currently relies on something like EarlyCSE having
eliminated the constant range [0,1). At -O0 this leads to an assert.
Differential Revision: https://reviews.llvm.org/D53888
llvm-svn: 345770
This feature is only relevant to shaders, and is no longer used. When disabled,
lowering of reserved registers for shaders causes a compiler crash.
Remove the feature and add a test for compilation of shaders at OptNone.
Differential Revision: https://reviews.llvm.org/D53829
llvm-svn: 345763
Summary:
Instead of writing boolean values temporarily into 32-bit VGPRs
if they are involved in PHIs or are observed from outside a loop,
we use bitwise masking operations to combine lane masks in a way
that is consistent with wave control flow.
Move SIFixSGPRCopies to before this pass, since that pass
incorrectly attempts to move SGPR phis to VGPRs.
This should recover most of the code quality that was lost with
the bug fix in "AMDGPU: Remove PHI loop condition optimization".
There are still some relevant cases where code quality could be
improved, in particular:
- We often introduce redundant masks with EXEC. Ideally, we'd
have a generic computeKnownBits-like analysis to determine
whether masks are already masked by EXEC, so we can avoid this
masking both here and when lowering uniform control flow.
- The criterion we use to determine whether a def is observed
from outside a loop is conservative: it doesn't check whether
(loop) branch conditions are uniform.
Change-Id: Ibabdb373a7510e426b90deef00f5e16c5d56e64b
Reviewers: arsenm, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, mgorny, yaxunl, dstuttard, t-tye, eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D53496
llvm-svn: 345719
Summary:
The optimization to early break out of loops if all threads are dead was
never fully implemented.
But the PHI node analyzing is actually causing a number of problems, so
remove all the extra code for it.
(This does actually regress code quality in a few places because it
ends up relying more heavily on phi's of i1, which we don't do a
great job with. However, since it fixes real bugs in the wild, we
should take this change. I have some prototype changes to improve
i1 lowering in general -- not just for control flow -- which should
help recover the code quality, I just need to make those changes
fit for general consumption. -- Nicolai)
Change-Id: I6fc6c6c8961857ac6009fcfb9f7e5e48dc23fbb1
Patch-by: Christian König <christian.koenig@amd.com>
Reviewers: arsenm, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53359
llvm-svn: 345718
Our a16 support was only enabled for sample/gather and buffer
load/store, but not for image load/store operations (which take an i16
as the pixel index rather than a half).
Fix our isel lowering and add test cases to prove it out.
Differential Revision: https://reviews.llvm.org/D53750
llvm-svn: 345710
The debug-use flag must be set exactly for uses on DBG_VALUEs. This is
so obvious that it can be trivially inferred while parsing. This will
reduce noise when printing while omitting an information that has little
value to the user.
The parser will keep recognizing the flag for compatibility with old
`.mir` files.
Differential Revision: https://reviews.llvm.org/D53903
llvm-svn: 345671
The SchedModel allows the addition of ReadAdvances to express that certain
operands of the instructions are needed at a later point than the others.
RegAlloc may add pseudo operands that are not part of the instruction
descriptor, and therefore cannot have any read advance entries. This meant
that in some cases the desired read advance was nullified by such a pseudo
operand, which still had the original latency.
This patch fixes this by making sure that such pseudo operands get a zero
latency during DAG construction.
Review: Matthias Braun, Ulrich Weigand.
https://reviews.llvm.org/D49671
llvm-svn: 345606
Similar to FoldCONCAT_VECTORS, this patch adds FoldBUILD_VECTOR to simplify cases that can avoid the creation of the BUILD_VECTOR - if all the operands are UNDEF or if the BUILD_VECTOR simplifies to a copy.
This exposed an assumption in some AMDGPU code that getBuildVector was guaranteed to be a BUILD_VECTOR node that I've tried to handle.
Differential Revision: https://reviews.llvm.org/D53760
llvm-svn: 345578
- Relex hard coded registers and stack frame sizes
- Some test cleanups
- Change phi-dbg.ll to match on mir output after phi elimination instead
of going through the whole codegen pipeline.
This is in preparation for https://reviews.llvm.org/D52010
I'm committing all the test changes upfront that work before and after
independently.
llvm-svn: 345532
AMDGPU currently only supports direct calls, but at lower optimisation levels it
fails to lower statically direct calls which appear indirect due to a bitcast.
Add a pass to visit all CallSites and use CallPromotionUtils to "devirtualize"
calls.
Differential Revision: https://reviews.llvm.org/D52741
llvm-svn: 345382
Introduce new versions that follow the IEEE semantics
to help with legalization that may need quieted inputs.
There are some regressions from inserting unnecessary
canonicalizes when these are matched from fast math
fcmp + select which should be fixed in a future commit.
llvm-svn: 344914
Summary:
Add selection patterns to support one bit Sub.
Reviewers:
rampitec, arsenm
Differential Revision:
https://reviews.llvm.org/D52946
llvm-svn: 344815
Summary:
To workaround a hardware issue in the (base + offset) calculation
when base is negative. The impact on code quality should be limited
since SILoadStoreOptimizer still runs afterwards and is able to
combine loads/stores based on known sign information.
This fixes visible corruption in Hitman on SI (easily reproducible
by running benchmark mode).
Change-Id: Ia178d207a5e2ac38ae7cd98b532ea2ae74704e5f
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=99923
Reviewers: arsenm, mareko
Subscribers: jholewinski, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53160
llvm-svn: 344698
Summary:
Moving SMRD to VMEM in SIFixSGPRCopies is rather bad for performance if
the load is really uniform. So select the scalar load intrinsics directly
to either VMEM or SMRD buffer loads based on divergence analysis.
If an offset happens to end up in a VGPR -- either because a floating
point calculation was involved, or due to other remaining deficiencies
in SIFixSGPRCopies -- we use v_readfirstlane.
There is some unrelated churn in tests since we now select MUBUF offsets
in a unified way with non-scalar buffer loads.
Change-Id: I170e6816323beb1348677b358c9d380865cd1a19
Reviewers: arsenm, alex-t, rampitec, tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D53283
llvm-svn: 344696
Emit a waterfall loop in the general case for a potentially-divergent Rsrc
operand. When practical, avoid this by using Addr64 instructions.
Recommits r341413 with changes to update the MachineDominatorTree when present.
Differential Revision: https://reviews.llvm.org/D51742
llvm-svn: 343992
Summary:
The ISA is really supposed to support 64-bit atomics as well,
so the data type should be an overload.
Mesa doesn't use these atomics yet, in fact I noticed this
issue while trying to use the atomics from Mesa.
Change-Id: I77f58317a085a0d3eb933cc7e99308c48a19f83e
Reviewers: tpr
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, t-tye, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52291
llvm-svn: 343978
This commit adds a new IR level pass to the AMDGPU backend to perform
atomic optimizations. It works by:
- Running through a function and finding atomicrmw add/sub or uses of
the atomic buffer intrinsics for add/sub.
- If all arguments except the value to be added/subtracted are uniform,
record the value to be optimized.
- Run through the atomic operations we can optimize and, depending on
whether the value is uniform/divergent use wavefront wide operations
(DPP in the divergent case) to calculate the total amount to be
atomically added/subtracted.
- Then let only a single lane of each wavefront perform the atomic
operation, reducing the total number of atomic operations in flight.
- Lastly we recombine the result from the single lane to each lane of
the wavefront, and calculate our individual lanes offset into the
final result.
Differential Revision: https://reviews.llvm.org/D51969
llvm-svn: 343973
The isAmdCodeObjectV2 is a misleading name which actually checks whether the os
is amdhsa or mesa.
Also add a test to make sure we do not generate old kernel header for code
object v3.
Differential Revision: https://reviews.llvm.org/D52897
llvm-svn: 343813
Summary:
The new buffer/tbuffer intrinsics handle an out-of-range immediate
offset by moving/adding offset&-4096 to a vgpr, leaving an in-range
immediate offset, with a chance of the move/add being CSEd for similar
loads/stores.
However it turns out that a negative offset in a vgpr is illegal, even
if adding the immediate offset makes it legal again.
Therefore, this commit disables the offset&-4096 thing if the offset is
negative.
Differential Revision: https://reviews.llvm.org/D52683
Change-Id: Ie02f0a74f240a138dc2a29d17cfbd9e350e4ed13
llvm-svn: 343672
Summary:
The lowering of PHI nodes used to detect if all inputs originated
from IMPLICIT_DEF's. If so the PHI node was replaced by an
IMPLICIT_DEF. Now we also consider undef uses when checking the
inputs. So if all inputs are implicitly defined or undef we
lower the PHI to an IMPLICIT_DEF. This makes
PHIElimination::LowerPHINode more consistent as it checks
both implicit and undef properties at later stages.
Reviewers: MatzeB, tstellar
Reviewed By: MatzeB
Subscribers: jvesely, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D52558
llvm-svn: 343417
Summary:
We generate s_xor to lower add of i1s in general cases, and s_not to
lower add with a one-bit imm of -1 (true).
Reviewers:
rampitec
Differential Revision:
https://reviews.llvm.org/D52518
llvm-svn: 343030
For the AMDGPU target if a MBB contains exec mask restore preamble, SplitEditor may get state when it cannot insert a spill instruction.
E.g. for a MIR
bb.100:
%1 = S_OR_SAVEEXEC_B64 %2, implicit-def $exec, implicit-def $scc, implicit $exec
and if the regalloc will try to allocate a virtreg to the physreg already assigned to virtreg %1, it should insert spill instruction before the S_OR_SAVEEXEC_B64 instruction.
But it is not possible since can generate incorrect code in terms of exec mask.
The change makes regalloc to ignore such physreg candidates.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D52052
llvm-svn: 343004
[AMDGPU] lower-switch in preISel as a workaround for legacy DA
Summary:
The default target of the switch instruction may sometimes be an
"unreachable" block, when it is guaranteed that one of the cases is
always taken. The dominator tree concludes that such a switch
instruction does not have an immediate post dominator. This confuses
divergence analysis, which is unable to propagate sync dependence to
the targets of the switch instruction.
As a workaround, the AMDGPU target now invokes lower-switch as a
preISel pass. LowerSwitch is designed to handle the unreachable
default target correctly, allowing the divergence analysis to locate
the correct immediate dominator of the now-lowered switch.
llvm-svn: 342956
If the alignment is at least 4, this should report true.
Something still seems off with how < 4-byte types are
handled here though.
Fixing this seems to change how some combines get
to where they get, but somehow isn't changing the net
result.
llvm-svn: 342879
Summary:
The default target of the switch instruction may sometimes be an
"unreachable" block, when it is guaranteed that one of the cases is
always taken. The dominator tree concludes that such a switch
instruction does not have an immediate post dominator. This confuses
divergence analysis, which is unable to propagate sync dependence to
the targets of the switch instruction.
As a workaround, the AMDGPU target now invokes lower-switch as a
preISel pass. LowerSwitch is designed to handle the unreachable
default target correctly, allowing the divergence analysis to locate
the correct immediate dominator of the now-lowered switch.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits, simoll
Differential Revision: https://reviews.llvm.org/D52221
llvm-svn: 342722
Summary: This change is the first part of the AMDGPU target description
change. The aim of it is the effective splitting the vector and scalar
flows at the selection stage. Selection uses predicate functions based
on the framework implemented earlier - https://reviews.llvm.org/D35267
Differential revision: https://reviews.llvm.org/D52019
Reviewers: rampitec
llvm-svn: 342719
Summary:
This is required for GPUs with 16 bit instructions where f16 is a
legal register type and hence int_to_fp i1 to f16 is not lowered
by legalizing.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52018
Change-Id: Ie4c0fd6ced7cf10ad612023c6879724d9ded5851
llvm-svn: 342558
Summary:
GFX9 and above support sin/cos instructions with a greater range and thus don't
require a fract instruction prior to invocation.
Added a subtarget feature to reflect this and added code to take advantage of
expanded range on GFX9+
Also updated the tests to check correct behaviour
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51933
Change-Id: I1c1f1d3726a5ae32116646ca5cfa1ab4ef69e5b0
llvm-svn: 342222
If an argument was passed on the stack, this
was using the default alignment.
I'm not sure there's an observable change from this. This
was observable due to bugs in expansion of unaligned
loads and stores, but since that is fixed I don't think
this matters much.
llvm-svn: 342133
Move isa version determination into TargetParser.
Also switch away from target features to CPU string when
determining isa version. This fixes an issue when we
output wrong isa version in the object code when features
of a particular CPU are altered (i.e. gfx902 w/o xnack
used to result in gfx900).
llvm-svn: 342069
into TargetParser.
Also switch away from target features to CPU string when
determining isa version. This fixes an issue when we
output wrong isa version in the object code when features
of a particular CPU are altered (i.e. gfx902 w/o xnack
used to result in gfx900).
Differential Revision: https://reviews.llvm.org/D51890
llvm-svn: 341982
We should never abort on valid IR. The most reasonable
interpretation of an arbitrary address space pointer is
probably some kind of special subset of global memory.
llvm-svn: 341894
This already worked if only one register piece was used,
but didn't if a type was split into multiple, unequal
sized pieces.
Fixes not splitting 3i16/v3f16 into two registers for
AMDGPU.
This will also allow fixing the ABI for 16-bit vectors
in a future commit so that it's the same for all subtargets.
llvm-svn: 341801
Summary:
This fixes a bug where a large number of implicit def instructions can fill the GCNHazardRecognizer lookahead buffer causing required NOPs to not be inserted.
Reviewers: nhaehnle, arsenm
Reviewed By: arsenm
Subscribers: sheredom, kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51726
Change-Id: Ie75338f94de704ee5816b05afd0c922c6748a95b
llvm-svn: 341798
Emit a waterfall loop in the general case for a potentially-divergent Rsrc
operand. When practical, avoid this by using Addr64 instructions.
Differential Revision: https://reviews.llvm.org/D50982
llvm-svn: 341413
The intention is to enable the extract_vector_elt load combine,
and doing this for other operations interferes with more
useful optimizations on vectors.
Handle any type of load since in principle we should do the
same combine for the various load intrinsics.
llvm-svn: 341219
In computeRegisterLiveness, the max instructions to search
was counting dbg_value instructions, which could potentially
cause an observable codegen change from the presence of debug
info.
llvm-svn: 341028
If there is an unused def, this would previously
report that the register was live. Check for uses
first so that it is reported as dead if never used.
llvm-svn: 341027
If the end of the block is reached during the scan, check
the live ins of the successors. This was already done in the
other direction if the block entry was reached.
llvm-svn: 341026
If an ABI-like value is used in a different block,
the type split used is not necessarily the same as
the call's ABI. The value is used through an intermediate
copy virtual registers from the other block. This
resulted in copies with inconsistent sizes later.
Fixes regressions since r338197 when AMDGPU started
splitting vector types for calls.
llvm-svn: 341018
Summary:
Add some optional code to validate getInstSizeInBytes for emitted
instructions. This flushed out some issues which are fixed by this
patch:
- Streamline getInstSizeInBytes
- Properly define the VI readlane/writelane instruction as VOP3
- Fix the inline constant determination. Specifically, this change
fixes an issue where a 32-bit value of 0xffffffff was recorded
as unsigned. This is equal to -1 when restricting to a 32-bit
comparison, and an inline constant can be used.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D50629
Change-Id: Id87c3b7975839da0de8156a124b0ce98c5fb47f2
llvm-svn: 340903
This can leave behind the uses with the defs removed.
Since this should only really happen in tests, it's not worth the
effort of trying to handle this.
llvm-svn: 340866
The original motivating example uses a 64-bit add, so the carry
is used. Insert a copy from VCC. This may allow shrinking of
the used carry instruction. At worst, we are replacing a
mov to materialize the constant with a copy of vcc.
llvm-svn: 340862
This needs to be done in the SSA fold operands
pass to be effective, so there is a bit of overlap
with SIShrinkInstructions but I don't think this
is practically avoidable.
llvm-svn: 340859
Summary:
I'm not sure if this patch is correct or if it needs more qualifying somehow. Bitcast shouldn't change the size of the load so it should be ok? We already do something similar for stores. We'll change the type of a volatile store if the resulting store is Legal or Custom. I'm not sure we should be allowing Custom there...
I was playing around with converting X86 atomic loads/stores(except seq_cst) into regular volatile loads and stores during lowering. This would allow some special RMW isel patterns in X86InstrCompiler.td to be removed. But there's some floating point patterns in there that didn't work because we don't fold (f64 (bitconvert (i64 volatile load))) or (f32 (bitconvert (i32 volatile load))).
Reviewers: efriedma, atanasyan, arsenm
Reviewed By: efriedma
Subscribers: jvesely, arsenm, sdardis, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, arichardson, jrtc27, atanasyan, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50491
llvm-svn: 340797
If the liveness of a physical register was invalid, this
was attempting to iterate the subregisters of all register
uses of the instruction, which would assert when it
encountered an implicit virtual register operand.
llvm-svn: 340763
Summary:
Patch by Marek Olsak and David Stuttard, both of AMD.
This adds a new amdgcn intrinsic supporting s.buffer.load, in particular
multiple dword variants. These are convenient to use from some front-end
implementations.
Also modified the existing llvm.SI.load.const intrinsic to common up the
underlying implementation.
This modification also requires that we can lower to non-uniform loads correctly
by splitting larger dword variants into sizes supported by the non-uniform
versions of the load.
V2: Addressed minor review comments.
V3: i1 glc is now i32 cachepolicy for consistency with buffer and
tbuffer intrinsics, plus fixed formatting issue.
V4: Added glc test.
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51098
Change-Id: I83a6e00681158bb243591a94a51c7baa445f169b
llvm-svn: 340684
Summary:
I got "Use not jointly dominated by defs" when removePartialRedundancy
attempted to prune then re-extend a subrange whose only liveness was a
dead def at the copy being removed.
V2: Removed junk from test. Improved comment.
V3: Addressed minor review comments.
Subscribers: MatzeB, qcolombet, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D50914
Change-Id: I6f894e9f517f71e921e0c6d81d28c5f344db8dad
llvm-svn: 340549
32-bit constant address space is declared as 6, so the
maximum number of address spaces is 6, not 5.
Fixes "LLVM ERROR: Pointer address space out of range".
v5: rename MAX_COMMON_ADDRESS to MAX_AMDGPU_ADDRESS
v4: - fix compilation issues
- fix out of bounds access
v3: use static_assert()
v2: add a very simple test for 32-bit addr space
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=106630
llvm-svn: 340417
Constant and global may alias, also one rules table wasn't
ordered correctly.
Pinpointed by Matt.
v2: add a test with swapped parameters
llvm-svn: 340416
This was hackily adding in the 4-bytes reserved for the callee's
emergency stack slot. Treat it like a normal stack allocation
so we get the correct alignment padding behavior. This fixes
an inconsistency between the caller and callee.
llvm-svn: 340396
Summary:
Previously the new llvm.amdgcn.raw/struct.buffer.load/store intrinsics
only allowed float types for the data to be loaded or stored, which
sometimes meant the frontend needed to generate a bitcast. In this, the
new intrinsics copied the old buffer intrinsics.
This commit extends the new intrinsics to allow int types as well.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D50315
Change-Id: I8202af2d036455553681dcbb3d7d32ae273f8f85
llvm-svn: 340270
Summary:
This commit adds new intrinsics
llvm.amdgcn.raw.buffer.load
llvm.amdgcn.raw.buffer.load.format
llvm.amdgcn.raw.buffer.load.format.d16
llvm.amdgcn.struct.buffer.load
llvm.amdgcn.struct.buffer.load.format
llvm.amdgcn.struct.buffer.load.format.d16
llvm.amdgcn.raw.buffer.store
llvm.amdgcn.raw.buffer.store.format
llvm.amdgcn.raw.buffer.store.format.d16
llvm.amdgcn.struct.buffer.store
llvm.amdgcn.struct.buffer.store.format
llvm.amdgcn.struct.buffer.store.format.d16
llvm.amdgcn.raw.buffer.atomic.*
llvm.amdgcn.struct.buffer.atomic.*
with the following changes from the llvm.amdgcn.buffer.*
intrinsics:
* there are separate raw and struct versions: raw does not have an
index arg and sets idxen=0 in the instruction, and struct always sets
idxen=1 in the instruction even if the index is 0, to allow for the
fact that gfx9 does bounds checking differently depending on whether
idxen is set;
* there is a combined cachepolicy arg (glc+slc)
* there are now only two offset args: one for the offset that is
included in bounds checking and swizzling, to be split between the
instruction's voffset and immoffset fields, and one for the offset
that is excluded from bounds checking and swizzling, to go into the
instruction's soffset field.
The AMDISD::BUFFER_* SD nodes always have an index operand, all three
offset operands, combined cachepolicy operand, and an extra idxen
operand.
The obsolescent llvm.amdgcn.buffer.* intrinsics continue to work.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50306
Change-Id: If897ea7dc34fcbf4d5496e98cc99a934f62fc205
llvm-svn: 340269
Summary:
This commit adds new intrinsics
llvm.amdgcn.raw.tbuffer.load
llvm.amdgcn.struct.tbuffer.load
llvm.amdgcn.raw.tbuffer.store
llvm.amdgcn.struct.tbuffer.store
with the following changes from the llvm.amdgcn.tbuffer.* intrinsics:
* there are separate raw and struct versions: raw does not have an index
arg and sets idxen=0 in the instruction, and struct always sets
idxen=1 in the instruction even if the index is 0, to allow for the
fact that gfx9 does bounds checking differently depending on whether
idxen is set;
* there is a combined format arg (dfmt+nfmt)
* there is a combined cachepolicy arg (glc+slc)
* there are now only two offset args: one for the offset that is
included in bounds checking and swizzling, to be split between the
instruction's voffset and immoffset fields, and one for the offset
that is excluded from bounds checking and swizzling, to go into the
instruction's soffset field.
The AMDISD::TBUFFER_* SD nodes always have an index operand, all three
offset operands, combined format operand, combined cachepolicy operand,
and an extra idxen operand.
The tbuffer pseudo- and real instructions now also have a combined
format operand.
The obsolescent llvm.amdgcn.tbuffer.* and llvm.SI.tbuffer.store
intrinsics continue to work.
V2: Separate raw and struct intrinsics.
V3: Moved extract_glc and extract_slc defs to a more sensible place.
V4: Rebased on D49995.
V5: Only two separate offset args instead of three.
V6: Pseudo- and real instructions have joint format operand.
V7: Restored optionality of dfmt and nfmt in assembler.
V8: Addressed minor review comments.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49026
Change-Id: If22ad77e349fac3a5d2f72dda53c010377d470d4
llvm-svn: 340268
32-bit constant address space is declared as 6, so the
maximum number of address spaces is 6, not 5.
Fixes "LLVM ERROR: Pointer address space out of range".
v3: use static_assert()
v2: add a very simple test for 32-bit addr space
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=106630
Signed-off-by: Samuel Pitoiset <samuel.pitoiset@gmail.com>
llvm-svn: 340171
This will allow the library to just use __builtin_expf directly
without expanding this itself. Note f64 still won't work because
there is no exp instruction for it.
llvm-svn: 339902
Handle fmul, fsub and preserve flags.
Also really test minnum/maxnum reductions.
The existing tests were only checking from
minnum/maxnum matched from a fast math compare
and select which is not the same.
llvm-svn: 339820
Fix SelectionDAG::computeKnownBits asserting when handling EXTRACT_SUBVECTOR
when zero extending the demanded elements mask if it is already as long as the
source vector.
Differential Revision: https://reviews.llvm.org/D49574
llvm-svn: 339600
I'm not sure the exact nsz flag combination that
is OK. I think as long as it's on either, this is OK.
For now just check it on the omod multiply.
llvm-svn: 339513
If one of the elements is undef, use the canonicalized constant
from the other element instead of 0.
Splat vectors are more useful for other optimizations, such
as matching vector clamps. This was breaking on clamps
of half3 from the undef 4th component.
llvm-svn: 339512
Fixup test to check for GCN prefix
These patterns always zero extend the result even though it might need sign extension.
This has been broken since the addition of i16 support.
It has popped up in mad_sat(char) test since min(max()) combination is turned into v_med3, resulting in the following (incorrect) sequence:
v_mad_i16 v2, v10, v9, v11
v_med3_i32 v2, v2, v8, v7
Fixes mad_sat(char) piglit on VI.
Differential Revision: https://reviews.llvm.org/D49836
llvm-svn: 339190
Everything should quiet, and I think everything should
flush.
I assume the min3/med3/max3 follow the same rules
as regular min/max for flushing, which should at
least be conservatively correct.
There are still more operations that need to
be handled.
llvm-svn: 339065
Not sure why this was checking for denormals for f16.
My interpretation of the IEEE standard is conversions
should produce a canonical result, and the ISA manual
says denormals are created when appropriate.
llvm-svn: 339064
If denormals are enabled, denormals are canonical.
Also fix a few other issues. minnum/maxnum are supposed
to canonicalize. Temporarily improve workaround for the
instruction behavior change in gfx9.
Handle selects and fcopysign.
The tests were also largely broken, since they were
checking for a flush used on some targets after the
store of the result.
llvm-svn: 339061
Add a parameter for testing specifically for
sNaNs - at least one instruction pattern on AMDGPU
needs to check specifically for this.
Also handle more cases, and add a target hook
for custom nodes, similar to the hooks for known
bits.
llvm-svn: 338910
Summary:
I encountered some problems with SIFixWWMLiveness when WWM is in a loop:
1. It sometimes gave invalid MIR where there is some control flow path
to the new implicit use of a register on EXIT_WWM that does not pass
through any def.
2. There were lots of false positives of registers that needed to have
an implicit use added to EXIT_WWM.
3. Adding an implicit use to EXIT_WWM (and adding an implicit def just
before the WWM code, which I tried in order to fix (1)) caused lots
of the values to be spilled and reloaded unnecessarily.
This commit is a rework of SIFixWWMLiveness, with the following changes:
1. Instead of considering any register with a def that can reach the WWM
code and a def that can be reached from the WWM code, it now
considers three specific cases that need to be handled.
2. A register that needs liveness over WWM to be synthesized now has it
done by adding itself as an implicit use to defs other than the
dominant one.
Also added the following fixmes:
FIXME: We should detect whether a register in one of the above
categories is already live at the WWM code before deciding to add the
implicit uses to synthesize its liveness.
FIXME: I believe this whole scheme may be flawed due to the possibility
of the register allocator doing live interval splitting.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D46756
Change-Id: Ie7fba0ede0378849181df3f1a9a7a39ed1a94a94
llvm-svn: 338783
Summary:
This fixes a problem where a load from global+idx generated incorrect
code on <=gfx7 when the index is divergent.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47383
Change-Id: Ib4d177d6254b1dd3f8ec0203fdddec94bd8bc5ed
llvm-svn: 338779
Mutate the node type during selection when it
doesn't matter. This avoids an intermediate bitcast
node on targets with legal i16/f16.
Also fixes missing output modifiers on v_cvt_pkrtz_f32_f16,
which I assume are OK.
llvm-svn: 338619