Retry r275776 (no changes, we suspect the issue was with another commit).
The current logic for handling inline asm operands in DAGToDAGISel interprets
the operands by looking for constants, which should represent the flags
describing the kind of operand we're dealing with (immediate, memory, register
def etc). The operands representing actual data are skipped only if they are
non-const, with the exception of immediate operands which are skipped explicitly
when a flag describing an immediate is found.
The oversight is that memory operands may be const too (e.g. for device drivers
reading a fixed address), so we should explicitly skip the operand following a
flag describing a memory operand. If we don't, we risk interpreting that
constant as a flag, which is definitely not intended.
Fixes PR26038
Differential Revision: https://reviews.llvm.org/D22103
llvm-svn: 276101
Inference of the 'returned' attribute was fixed in r276008, lets try
turning the backend support back on.
This reverts commit r275677.
llvm-svn: 276081
There's not much functional change, but it really is an architectural feature
(on v6T2, v7A, v7R and v7EM) rather than something each CPU implements
individually.
The main functional change is the default behaviour you get when specifying
only "-triple".
llvm-svn: 276013
Recommitting after r274347 was reverted. This patch introduces some
classes to refactor the 3 and 4 register Thumb2 multiplication
instruction descriptions, plus improved tests for some of those
instructions.
Differential Revision: https://reviews.llvm.org/D21929
llvm-svn: 275979
The standard local dynamic model for TLS on ARM systems needs two
relocations:
- R_ARM_TLS_LDM32 (module idx)
- R_ARM_TLS_LDO32 (offset of object from origin of module TLS block)
In GNU style assembler we use symbol(tlsldm) and symbol(tlsldo) to
produce these relocations.
llvm-mc for ARM supports symbol(tlsldo) but does not support symbol(tlsldm).
This patch wires up the existing symbol(tlsldm) to R_ARM_TLS_LDM32.
TLS for ARM is defined in Addenda to, and Errata in, the ABI for the
ARM Architecture
Differential Revision: https://reviews.llvm.org/D22461
llvm-svn: 275977
The current logic for handling inline asm operands in DAGToDAGISel interprets
the operands by looking for constants, which should represent the flags
describing the kind of operand we're dealing with (immediate, memory, register
def etc). The operands representing actual data are skipped only if they are
non-const, with the exception of immediate operands which are skipped explicitly
when a flag describing an immediate is found.
The oversight is that memory operands may be const too (e.g. for device drivers
reading a fixed address), so we should explicitly skip the operand following a
flag describing a memory operand. If we don't, we risk interpreting that
constant as a flag, which is definitely not intended.
Fixes PR26038
Differential Revision: https://reviews.llvm.org/D22103
llvm-svn: 275776
At higher optimization levels, we generate the libcall for DIVREM_Ix, which is
fine: aeabi_{u|i}divmod. At -O0 we generate the one for REM_Ix, which is the
default {u}mod{q|h|s|d}i3.
This commit makes sure that we don't generate REM_Ix calls for ABIs that
don't support them (i.e. where we need to use DIVREM_Ix instead). This is
achieved by bailing out of FastISel, which can't handle non-double multi-reg
returns, and letting the legalization infrastructure expand the REM_Ix calls.
It also updates the divmod-eabi.ll test to run under -O0 as well, and adds some
Windows checks to it to make sure we don't break things for it.
Fixes PR27068
Differential Revision: https://reviews.llvm.org/D21926
llvm-svn: 275773
r275042 reverted function-attribute inference for the 'returned' attribute
because the feature triggered self-hosting failures on ARM and AArch64. James
Molloy determined that the this-return argument forwarding feature, which
directly ties the returned input argument to the returned value, was the cause.
It seems likely that this forwarding code contains, or triggers, a subtle bug.
Disabling for now until we can track that down.
llvm-svn: 275677
Initializing them in LLVMInitializeARMTarget() makes them visible early
enough for "llc -run-pass usage".
This required the pass to be renamed from "arm-load-store-opt" to
"arm-ldst-opt", because there already exists an arm-load-store-opt
cl::opt switch which would now clash with the passname getting added as
a switch in opt. On the bright side the pass name now matches the
DEBUG_TYPE name. Renamed "arm-prera-load-store-opt" to
"arm-repra-ldst-opt" as well for consistency.
llvm-svn: 275661
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Summary:
Previously we took an unsigned.
Hooray for type-safety.
Reviewers: chandlerc
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D22282
llvm-svn: 275591
Thumb-1 doesn't have post-inc or pre-inc load or store instructions. However the LDM/STM instructions with writeback can function as post-inc load/store:
ldm r0!, {r1} @ load from r0 into r1 and increment r0 by 4
Obviously, this only works if the post increment is 4.
llvm-svn: 275540
... When we emit several calls to the same function in the same basic block.
An indirect call uses a "BLX r0" instruction which has a 16-bit encoding. If many calls are made to the same target, this can enable significant code size reductions.
llvm-svn: 275537
constant hoisting. It not only takes into account the number of uses and the
cost of expressions in which constants appear, but now also the resulting
integer range of the offsets. Thus, the algorithm maximizes the number of uses
within an integer range that will enable more efficient code generation. On
ARM, for example, this will enable code size optimisations because less
negative offsets will be created. Negative offsets/immediates are not supported
by Thumb1 thus preventing more compact instruction encoding.
Differential Revision: http://reviews.llvm.org/D21183
llvm-svn: 275382
Immediate branch targets aren't commonly used, but if they are we should make
sure they can actually be encoded. This means they must be divisible by 2 when
targeting Thumb mode, and by 4 when targeting ARM mode.
Also do a little naming cleanup while I was changing everything around anyway.
llvm-svn: 275116
Remove remaining implicit conversions from MachineInstrBundleIterator to
MachineInstr* from the ARM backend. In most cases, I made them less attractive
by preferring MachineInstr& or using a ranged-based for loop.
Once all the backends are fixed I'll make the operator explicit so that this
doesn't bitrot back.
llvm-svn: 274920
Windows on ARM uses a pure thumb-2 environment. This means that it can select a
high register when doing a __builtin_longjmp. We would use a tLDRi which would
truncate the register to a low register. Use a t2LDRi12 to get the full
register file access. Tweak the code to just load into PC, as that is an
interworking branch on all supported cores anyways.
llvm-svn: 274815
This is a follow-up for r273544.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also removes a command line flag that isn't used in any of the tests:
check-vmlx-hazards. It can be replaced easily with the mattr mechanism, since
this is now a subtarget feature.
There is still some work left regarding FeatureExpandMLx. In the past MLx
expansion was enabled for subtargets with hasVFP2(), until r129775 [1] switched
from that to isCortexA9, without too much justification.
In spite of that, the code performing MLx expansion still contains calls to
isSwift/isLikeA9, although the results of those are pretty clear given that
we're only enabling it for the A9.
We should try to enable it for all targets that have FeatureHasVMLxHazards, as
it seems to be closely related to that behaviour, and if that is possible try to
clean up the MLx expansion pass from all calls to isWhatever. This will require
some performance testing, so it will be done in another patch.
[1] http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20110418/119725.html
Differential Revision: http://reviews.llvm.org/D21798
llvm-svn: 274742
This is a follow-up for r273544.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also removes two command-line flags that weren't used in any of the
tests: widen-vmovs and swift-partial-update-clearance. The former may be easily
replaced with the mattr mechanism, but the latter may not (as it is a subtarget
property, and not a proper feature).
Differential Revision: http://reviews.llvm.org/D21797
llvm-svn: 274620
This is a follow-up for r273544 and r273853.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
This commit also marks them as obsolete.
Differential Revision: http://reviews.llvm.org/D21796
llvm-svn: 274616
Not all code-paths set the relocation model to static for Windows. This
currently breaks on Windows ARM with `-mlong-calls` when built with clang.
Loosen the assertion to what it was previously. We would ideally ensure that
all the configuration sets Windows to static relocation model.
llvm-svn: 274570
The important thing I was missing was ensuring newly added constants were kept in topological order. Repositioning the node is correct if the constant is newly added (so it has no topological ordering) but wrong if it already existed - positioning it next in the worklist would break the topological ordering.
Original commit message:
[Thumb] Select a BIC instead of AND if the immediate can be encoded more optimally negated
If an immediate is only used in an AND node, it is possible that the immediate can be more optimally materialized when negated. If this is the case, we can negate the immediate and use a BIC instead;
int i(int a) {
return a & 0xfffffeec;
}
Used to produce:
ldr r1, [CONSTPOOL]
ands r0, r1
CONSTPOOL: 0xfffffeec
And now produces:
movs r1, #255
adds r1, #20 ; Less costly immediate generation
bics r0, r1
llvm-svn: 274543
We were using DAG->getConstant instead of DAG->getTargetConstant. This meant that we could inadvertently increase the use count of a constant if stars aligned, which it did in this testcase. Increasing the use count of the constant could cause ISel to fall over (because DAGToDAG lowering assumed the constant had only one use!)
Original commit message:
[Thumb] Select a BIC instead of AND if the immediate can be encoded more optimally negated
If an immediate is only used in an AND node, it is possible that the immediate can be more optimally materialized when negated. If this is the case, we can negate the immediate and use a BIC instead;
int i(int a) {
return a & 0xfffffeec;
}
Used to produce:
ldr r1, [CONSTPOOL]
ands r0, r1
CONSTPOOL: 0xfffffeec
And now produces:
movs r1, #255
adds r1, #20 ; Less costly immediate generation
bics r0, r1
llvm-svn: 274510
No functional changes. Just created wrapper classes around the 3
and 4 reg mult and mac instruction classes.
Differential Revision: http://reviews.llvm.org/D21549
llvm-svn: 274347
For the most part this simplifies all callers. There were two places in X86 that needed an explicit makeArrayRef to shorten a statically sized array.
llvm-svn: 274337
Change all the methods in LiveVariables that expect non-null
MachineInstr* to take MachineInstr& and update the call sites. This
clarifies the API, and designs away a class of iterator to pointer
implicit conversions.
llvm-svn: 274319
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
Summary:
This fixes bug: https://llvm.org/bugs/show_bug.cgi?id=28282
Currently the cost model of constant hoisting checks the bit width of the data type of the constants.
However, the actual immediate value is small enough and not need to be hoisted.
This patch checks for the actual bit width needed for the constant.
Reviewers: t.p.northover, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D21668
llvm-svn: 274073
This is a follow-up for r273544.
The end goal is to get rid of the isSwift / isCortexXY / isWhatever methods.
Since the ARM backend seems to have quite a lot of calls to these methods, I
intend to submit 5-6 subtarget features at a time, instead of one big lump.
Differential Revision: http://reviews.llvm.org/D21685
llvm-svn: 273853