Saves materializing the immediate for the "ands".
Corresponding patterns exist for lsrs+lsls, but that seems less common
in practice.
Now implemented as a DAGCombine.
Differential Revision: https://reviews.llvm.org/D49585
llvm-svn: 337945
The original code attempted to do this, but the std::abs() call didn't
actually do anything due to implicit type conversions. Fix the type
conversions, and perform the correct check for negative immediates.
This probably has very little practical impact, but it's worth fixing
just to avoid confusion in the future, I think.
Differential Revision: https://reviews.llvm.org/D48907
llvm-svn: 336742
This patch adds support for the q versions of the dup
(load-to-all-lanes) NEON intrinsics, such as vld2q_dup_f16() for
example.
Currently, non-q versions of the dup intrinsics are implemented
in clang by generating IR that first loads the elements of the
structure into the first lane with the lane (to-single-lane)
intrinsics, and then propagating it other lanes. There are at
least two problems with this approach. First, there are no
double-spaced to-single-lane byte-element instructions. For
example, there is no such instruction as 'vld2.8 { d0[0], d2[0]
}, [r0]'. That means we cannot rely on the to-single-lane
intrinsics and instructions to implement the q versions of the
dup intrinsics. Note that to-all-lanes instructions do support
all sizes of data items, including bytes.
The second problem with the current approach is that we need a
separate vdup instruction to propagate the structure to each
lane. So for vld4q_dup_f16() we would need four vdup instructions
in addition to the initial vld instruction.
This patch introduces dup LLVM intrinsics and reworks handling of
the currently supported (non-q) NEON dup intrinsics to expand
them into those LLVM intrinsics, thus eliminating the need for
using to-single-lane intrinsics and instructions.
Additionally, this patch adds support for u64 and s64 dup NEON
intrinsics. These are marked as Arch64-only in the ARM NEON
Reference, but it seems there are no reasons to not support them
in AArch32 mode. Please correct, if that is wrong.
That's what we generate with this patch applied:
vld2q_dup_f16:
vld2.16 {d0[], d2[]}, [r0]
vld2.16 {d1[], d3[]}, [r0]
vld3q_dup_f16:
vld3.16 {d0[], d2[], d4[]}, [r0]
vld3.16 {d1[], d3[], d5[]}, [r0]
vld4q_dup_f16:
vld4.16 {d0[], d2[], d4[], d6[]}, [r0]
vld4.16 {d1[], d3[], d5[], d7[]}, [r0]
Differential Revision: https://reviews.llvm.org/D48439
llvm-svn: 335733
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47447
llvm-svn: 334361
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47120
llvm-svn: 333825
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47121
llvm-svn: 333819
Summary: This code is now dead as the ARM backend uses ADDCARRY/SUBCARRY/SETCCCARRY .
Reviewers: rogfer01, efriedma, rengolin, javed.absar
Subscribers: kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D47413
llvm-svn: 333544
We've had Thumb1 support for ARMISD::SUBE for a while now, so this just
works. Reduces codesize a bit for 64-bit integer comparisons.
Differential Revision: https://reviews.llvm.org/D47387
llvm-svn: 333445
Chances are we'll be asked again after type legalization, but before that point
it's better to claim misaligned accesses aren't allowed than to assert.
llvm-svn: 332840
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Summary: As per title. SETCCE is deprecated and will eventually be removed.
Reviewers: rogfer01, efriedma, rengolin, javed.absar
Subscribers: kristof.beyls, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D46512
llvm-svn: 331929
By default LLVM thinks very large vectors get aligned to their size when
passed across functions. Unfortunately no-one told the ARM backend so it
doesn't trigger stack realignment and so accesses can cause the usual
misalignment issues (e.g. a data abort).
This changes the ABI alignment to the stack alignment, which in practice
(and as a bonus) also coincides with the alignment "natural" vectors get.
llvm-svn: 331451
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This adds code generation support for the FP16 vmaxnm/vminnm scalar
instructions.
Differential Revision: https://reviews.llvm.org/D44675
llvm-svn: 330034
This is a follow up of rL327695 to instruction select more variants of VSELGT
and VSELGE, for which it is necessary to custom lower SELECT.
More work is required in this area, which will be addressed soon:
- more variants need to be regression tested, but this depends on the next point.
- first LowerConstantFP need to be adjusted for fp16 values.
Differential Revision: https://reviews.llvm.org/D45205
llvm-svn: 329788
Currently EVT is in the IR layer only because of Function.cpp needing a very small piece of the functionality of EVT::getEVTString(). The rest of EVT is used in codegen making CodeGen a better place for it.
The previous code converted a Type* to EVT and then called getEVTString. This was only expected to handle the primitive types from Type*. Since there only a few primitive types, we can just print them as strings directly.
Differential Revision: https://reviews.llvm.org/D45017
llvm-svn: 328806
Follow up patch of r328313 to support the UseVMOVSR constraint. Removed
some unneeded instructions from the test and removed some stray
comments.
Differential Revision: https://reviews.llvm.org/D44941
llvm-svn: 328691
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
When targeting execute-only and fp-armv8, float constants in a compare
resulted in instruction selection failures. This is now fixed by using
vmov.f32 where possible, otherwise the floating point constant is
lowered into a integer constant that is moved into a floating point
register.
This patch also restores using fpcmp with immediate 0 under fp-armv8.
Change-Id: Ie87229706f4ed879a0c0cf66631b6047ed6c6443
llvm-svn: 328313
This extends the use of this attribute on ARM and AArch64 from
SVN r325900 (where it was only checked for fixed stack
allocations on ARM/AArch64, but for all stack allocations on X86).
This also adds a testcase for the existing use of disabling the
fixed stack probe with the attribute on ARM and AArch64.
Differential Revision: https://reviews.llvm.org/D44291
llvm-svn: 327897
This is the groundwork for adding the Armv8.2-A FP16 vector intrinsics, which
uses v4f16 and v8f16 vector operands and return values. All the moving parts
are tested with two intrinsics, a 1-operand v8f16 and a 2-operand v4f16
intrinsic. In a follow-up patch the rest of the intrinsics and tests will be
added.
Differential Revision: https://reviews.llvm.org/D44538
llvm-svn: 327839
This implements lowering of SELECT_CC for f16s, which enables
codegen of VSEL with f16 types.
Differential Revision: https://reviews.llvm.org/D44518
llvm-svn: 327695
Emulated TLS is enabled by llc flag -emulated-tls,
which is passed by clang driver.
When llc is called explicitly or from other drivers like LTO,
missing -emulated-tls flag would generate wrong TLS code for targets
that supports only this mode.
Now use useEmulatedTLS() instead of Options.EmulatedTLS to decide whether
emulated TLS code should be generated.
Unit tests are modified to run with and without the -emulated-tls flag.
Differential Revision: https://reviews.llvm.org/D42999
llvm-svn: 326341
Summary:
Expressions of the form x < 0 ? 0 : x; and x < -1 ? -1 : x can be lowered using bit-operations instead of branching or conditional moves
In thumb-mode this results in a two-instruction sequence, a shift followed by a bic or or while in ARM/thumb2 mode that has flexible second operand the shift can be folded into a single bic/or instructions. In most cases this results in smaller code and possibly less branches, and in no case larger than before.
Patch by Martin Svanfeldt
Reviewers: fhahn, pbarrio, rogfer01
Reviewed By: pbarrio, rogfer01
Subscribers: chrib, yroux, eugenis, efriedma, rogfer01, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42574
llvm-svn: 326333
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
This patch combines some cases of ARMISD::CMOV for integers that arise in comparisons of the form
a != b ? x : 0
a == b ? 0 : x
and that currently (e.g. in Thumb1) are emitted as branches.
Differential Revision: https://reviews.llvm.org/D34515
llvm-svn: 325323
Summary:
In LLVM, 't' selects a floating-point/SIMD register and only supports
32-bit values. This is appropriately documented in the LLVM Language
Reference Manual. However, this behaviour diverges from that of GCC, where
't' selects the s0-s31 registers and its qX and dX variants depending on
additional operand modifiers (q/P).
For example, the following C code:
#include <arm_neon.h>
float32x4_t a, b, x;
asm("vadd.f32 %0, %1, %2" : "=t" (x) : "t" (a), "t" (b))
results in the following assembly if compiled with GCC:
vadd.f32 s0, s0, s1
whereas LLVM will show "error: couldn't allocate output register for
constraint 't'", since a, b, x are 128-bit variables, not 32-bit.
This patch extends the use of 't' to mean that of GCC, thus allowing
selection of the lower Q vector regs and their D/S variants. For example,
the earlier code will now compile as:
vadd.f32 q0, q0, q1
This behaviour still differs from that of GCC but I think it is actually
more correct, since LLVM picks up the right register type based on the
datatype of x, while GCC would need an extra operand modifier to achieve
the same result, as follows:
asm("vadd.f32 %q0, %q1, %q2" : "=t" (x) : "t" (a), "t" (b))
Since this is only an extension of functionality, existing code should not
be affected by this change. Note that operand modifiers q/P are already
supported by LLVM, so this patch should suffice to support inline
assembly with constraint 't' originally built for GCC.
Reviewers: grosbach, rengolin
Reviewed By: rengolin
Subscribers: rogfer01, efriedma, olista01, aemerson, javed.absar, eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42962
llvm-svn: 325244
This adds most of the FP16 codegen support, but these areas need further work:
- FP16 literals and immediates are not properly supported yet (e.g. literal
pool needs work),
- Instructions that are generated from intrinsics (e.g. vabs) haven't been
added.
This will be addressed in follow-up patches.
Differential Revision: https://reviews.llvm.org/D42849
llvm-svn: 324321
Commit r323512 introduced an optimisation in LowerReturn for half-precision
return values. A missing check caused a crash when the return value is "undef"
(i.e. a node that has no operands).
Differential Revision: https://reviews.llvm.org/D42743
llvm-svn: 323968
Summary:
Expressions of the form x < 0 ? 0 : x; and x < -1 ? -1 : x can be lowered using bit-operations instead of branching or conditional moves
In thumb-mode this results in a two-instruction sequence, a shift followed by a bic or or while in ARM/thumb2 mode that has flexible second operand the shift can be folded into a single bic/or instructions. In most cases this results in smaller code and possibly less branches, and in no case larger than before.
Patch by Marten Svanfeldt.
Reviewers: fhahn, pbarrio
Reviewed By: pbarrio
Subscribers: efriedma, rogfer01, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42574
llvm-svn: 323869
Half-precision arguments and return values are passed as if it were an int or
float for ARM. This results in truncates and bitcasts to/from i16 and f16
values, which are legalized very early to stack stores/loads. When FullFP16 is
enabled, we want to avoid codegen for these bitcasts as it is unnecessary and
inefficient.
Differential Revision: https://reviews.llvm.org/D42580
llvm-svn: 323861
This is the groundwork for Armv8.2-A FP16 code generation .
Clang passes and returns _Float16 values as floats, together with the required
bitconverts and truncs etc. to implement correct AAPCS behaviour, see D42318.
We will implement half-precision argument passing/returning lowering in the ARM
backend soon, but for now this means that this:
_Float16 sub(_Float16 a, _Float16 b) {
return a + b;
}
gets lowered to this:
define float @sub(float %a.coerce, float %b.coerce) {
entry:
%0 = bitcast float %a.coerce to i32
%tmp.0.extract.trunc = trunc i32 %0 to i16
%1 = bitcast i16 %tmp.0.extract.trunc to half
<SNIP>
%add = fadd half %1, %3
<SNIP>
}
When FullFP16 is *not* supported, we don't make f16 a legal type, and we get
legalization for "free", i.e. nothing changes and everything works as before.
And also f16 argument passing/returning is handled.
When FullFP16 is supported, we do make f16 a legal type, and have 2 places that
we need to patch up: f16 argument passing and returning, which involves minor
tweaks to avoid unnecessary code generation for some bitcasts.
As a "demonstrator" that this works for the different FP16, FullFP16, softfp
modes, etc., I've added match rules to the VSUB instruction description showing
that we can codegen this instruction from IR, but more importantly, also to
some conversion instructions. These conversions were causing issue before in
the FP16 and FullFP16 cases.
I've also added match rules to the VLDRH and VSTRH desriptions, so that we can
actually compile the entire half-precision sub code example above. This showed
that these loads and stores had the wrong addressing mode specified: AddrMode5
instead of AddrMode5FP16, which turned out not be implemented at all, so that
has also been added.
This is the minimal patch that shows all the different moving parts. In patch
2/3 I will add some efficient lowering of bitcasts, and in 2/3 I will add the
remaining Armv8.2-A FP16 instruction descriptions.
Thanks to Sam Parker and Oliver Stannard for their help and reviews!
Differential Revision: https://reviews.llvm.org/D38315
llvm-svn: 323512
Summary: For long shifts, the inlined version takes about 20 instructions on Thumb1. To avoid the code bloat, expand to __aeabi_ calls if target is Thumb1.
Reviewers: samparker
Reviewed By: samparker
Subscribers: samparker, aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D42401
llvm-svn: 323354
This matches what MSVC does for alloca() function calls on ARM.
Even if MSVC doesn't support VLAs at the language level, it does
support the alloca function.
On the clang level, both the _alloca() (when emulating MSVC, which is
what the alloca() function expands to) and __builtin_alloca() builtin
functions, and VLAs, map to the same LLVM IR "alloca" function - so
within LLVM they're not distinguishable from each other.
Differential Revision: https://reviews.llvm.org/D42292
llvm-svn: 323308
This extends my previous patches to also optimize overflow-checked multiplies during SelectionDAG.
Differential revision: https://reviews.llvm.org/D40922
llvm-svn: 322738
This patch teaches the Arm back-end to generate the SMMULR, SMMLAR and SMMLSR
instructions from equivalent IR patterns.
Differential Revision: https://reviews.llvm.org/D41775
llvm-svn: 322361
The AArch64 backend contains code to optimize {s,u}{add,sub}.with.overflow during SelectionDAG. This commit ports that code to the ARM backend.
Differential revision: https://reviews.llvm.org/D35635
llvm-svn: 321224
Summary:
Implement lower of unsigned saturation on an interval [0, k] where k + 1 is a power of two using USAT instruction in a similar way to how [~k, k] is lowered using SSAT on ARM models that supports it.
Patch by Marten Svanfeldt
Reviewers: t.p.northover, pbarrio, eastig, SjoerdMeijer, javed.absar, fhahn
Reviewed By: fhahn
Subscribers: fhahn, aemerson, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D41348
llvm-svn: 321164
Note:
- X86ISelLowering: setLibcallName(SINCOS) was superfluous as
InitLibcalls() already does it.
- ARMISelLowering: Setting libcallnames for sincos/sincosf seemed
superfluous as in the darwin case it wouldn't be used while for all
other cases InitLibcalls already does it.
llvm-svn: 321036
Rather than adding more bits to express every
MMO flag you could want, just directly use the
MMO flags. Also fixes using a bunch of bool arguments to
getMemIntrinsicNode.
On AMDGPU, buffer and image intrinsics should always
have MODereferencable set, but currently there is no
way to do that directly during the initial intrinsic
lowering.
llvm-svn: 320746
Summary:
Add isRenamable() predicate to MachineOperand. This predicate can be
used by machine passes after register allocation to determine whether it
is safe to rename a given register operand. Register operands that
aren't marked as renamable may be required to be assigned their current
register to satisfy constraints that are not captured by the machine
IR (e.g. ABI or ISA constraints).
Reviewers: qcolombet, MatzeB, hfinkel
Subscribers: nemanjai, mcrosier, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D39400
llvm-svn: 320503
This is a preparatory step for D34515.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
- fixes PR34564
- fixes PR35103
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 320355
Summary:
The compiler fails with the following error message:
fatal error: error in backend: ran out of registers during
register allocation
Tail call optimization for Armv8-M.base fails to meet all the required
constraints when handling calls to function pointers where the
arguments take up r0-r3. This is because the pointer to the
function to be called can only be stored in r0-r3, but these are
all occupied by arguments. This patch makes sure that tail call
optimization does not try to handle this type of calls.
Reviewers: chill, MatzeB, olista01, rengolin, efriedma
Reviewed By: olista01, efriedma
Subscribers: efriedma, aemerson, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D40706
llvm-svn: 319664
This matches how it is done on X86.
This allows using emulated tls on windows; in MinGW environments,
native tls isn't supported at the moment.
Differential Revision: https://reviews.llvm.org/D40769
llvm-svn: 319643
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
't' constraint normally only accepts f32 operands, but for VCVT the
operands can be i32. LLVM is overly restrictive and rejects asm like:
float foo() {
float result;
__asm__ __volatile__(
"vcvt.f32.s32 %[result], %[arg1]\n"
: [result]"=t"(result)
: [arg1]"t"(0x01020304) );
return result;
}
Relax the value type for 't' constraint to either f32 or i32.
Differential Revision: https://reviews.llvm.org/D40137
llvm-svn: 318472
Summary:
This fixes PR35221.
Use pseudo-instructions to let MachineCSE hoist global address computation.
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D39871
llvm-svn: 318081
When generating table jump code for switch statements, place the jump
table label as the first operand in the various addition instructions
in order to enable addressing mode selectors to better match index
computation and possibly fold them into the addressing mode of the
table entry load instruction.
Differential revision: https://reviews.llvm.org/D39752
llvm-svn: 318033
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
The generic dag combiner will fold:
(shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
(shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
This can create constants which are too large to use as an immediate.
Many ALU operations are also able of performing the shl, so we can
unfold the transformation to prevent a mov imm instruction from being
generated.
Other patterns, such as b + ((a << 1) | 510), can also be simplified
in the same manner.
Differential Revision: https://reviews.llvm.org/D38084
llvm-svn: 317197
As far as I can tell, this matches gcc: -mfloat-abi determines the
calling convention for all functions except those explicitly defined as
soft-float in the ARM RTABI.
This change only affects cases where the user specifies -mfloat-abi to
override the default calling convention derived from the target triple.
Fixes https://bugs.llvm.org//show_bug.cgi?id=34530.
Differential Revision: https://reviews.llvm.org/D38299
llvm-svn: 316708
Swap the compare operands if the lhs is a shift and the rhs isn't,
as in arm and T2 the shift can be performed by the compare for its
second operand.
Differential Revision: https://reviews.llvm.org/D39004
llvm-svn: 316562
This adds some more debug messages to the type legalizer and functions
like PromoteNode, ExpandNode, ExpandLibCall in an attempt to make
the debug messages a little bit more informative and useful.
Differential Revision: https://reviews.llvm.org/D38450
llvm-svn: 314773
I implemented isTruncateFree in rL313533, this patch fixes the logic
to match my comment, as the previous logic was too general. Now the
only truncates that are free are i64 -> i32.
Differential Revision: https://reviews.llvm.org/D38234
llvm-svn: 314280
This is a preparatory step for D34515.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
- fixes PR34564
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 313618
Implement the isTruncateFree hooks, lifted from AArch64, that are
used by TargetTransformInfo. This allows simplifycfg to reduce the
test case into a single basic block.
Differential Revision: https://reviews.llvm.org/D37516
llvm-svn: 313533
This was causing PR34045 to fire again.
> This is a preparatory step for D34515 and also is being recommitted as its
> first version caused PR34045.
>
> This change:
> - makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
> - lowering is done by first converting the boolean value into the carry flag
> using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
> using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
> operations does the actual addition.
> - for subtraction, given that ISD::SUBCARRY second result is actually a
> borrow, we need to invert the value of the second operand and result before
> and after using ARMISD::SUBE. We need to invert the carry result of
> ARMISD::SUBE to preserve the semantics.
> - given that the generic combiner may lower ISD::ADDCARRY and
> ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
> as well otherwise i64 operations now would require branches. This implies
> updating the corresponding test for unsigned.
> - add new combiner to remove the redundant conversions from/to carry flags
> to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
> - fixes PR34045
>
> Differential Revision: https://reviews.llvm.org/D35192
Also revert follow-up r313010:
> [ARM] Fix typo when creating ISD::SUB nodes
>
> In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
> giving them two values instead of one.
>
> This fails when the merge_values combiner finds one of these nodes.
>
> This change fixes PR34564.
>
> Differential Revision: https://reviews.llvm.org/D37690
llvm-svn: 313044
In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
giving them two values instead of one.
This fails when the merge_values combiner finds one of these nodes.
This change fixes PR34564.
Differential Revision: https://reviews.llvm.org/D37690
llvm-svn: 313010
This is a preparatory step for D34515 and also is being recommitted as its
first version caused PR34045.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 313009
It caused PR34564.
> This is a preparatory step for D34515 and also is being recommitted as its
> first version caused PR34045.
>
> This change:
> - makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
> - lowering is done by first converting the boolean value into the carry flag
> using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
> using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
> operations does the actual addition.
> - for subtraction, given that ISD::SUBCARRY second result is actually a
> borrow, we need to invert the value of the second operand and result before
> and after using ARMISD::SUBE. We need to invert the carry result of
> ARMISD::SUBE to preserve the semantics.
> - given that the generic combiner may lower ISD::ADDCARRY and
> ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
> as well otherwise i64 operations now would require branches. This implies
> updating the corresponding test for unsigned.
> - add new combiner to remove the redundant conversions from/to carry flags
> to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
> - fixes PR34045
>
> Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 312980
This is a preparatory step for D34515 and also is being recommitted as its
first version caused PR34045.
This change:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
- fixes PR34045
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 312898
ARMTargetLowering::isLegalAddressingMode can accept illegal addressing modes
for the Thumb1 target. This causes generation of redundant code and affects
performance.
This fixes PR34106: https://bugs.llvm.org/show_bug.cgi?id=34106
Differential Revision: https://reviews.llvm.org/D36467
llvm-svn: 311649
The ARM backend should call setBooleanContents so that it can
use known bits to make some optimizations.
Review: D35821
Patch by Joel Galenson <jgalenson@google.com>
llvm-svn: 311446
The calling convention can be specified by the user in IR. Failing to support
a particular calling convention isn't a programming error, and so relying on
llvm_unreachable to catch and report an unsupported calling convention is not
appropriate.
Differential Revision: https://reviews.llvm.org/D36830
llvm-svn: 311435
This is the exact same fix as in SVN r247254. In that commit, the fix was
applied only for isVTRNMask and isVTRN_v_undef_Mask, but the same issue
is present for VZIP/VUZP as well.
This fixes PR33921.
Differential Revision: https://reviews.llvm.org/D36899
llvm-svn: 311258
When lowering a VLA, we emit a __chstk call. However, this call can
internally clobber CPSR. We did not mark this register as an ImpDef,
which could potentially allow a comparison to be hoisted above the call
to `__chkstk`. In such a case, the CPSR could be clobbered, and the
check invalidated. When the support was initially added, it seemed that
the call would take care of preventing CPSR from being clobbered, but
this is not the case. Mark the register as clobbered to fix a possible
state corruption.
llvm-svn: 311061
Summary:
Without the SrcVT its hard to know what is really being asked for. For example if your target has 128, 256, and 512 bit vectors. Maybe extracting 128 from 256 is cheap, but maybe extracting 128 from 512 is not.
For x86 we do support extracting a quarter of a 512-bit register. But for i1 vectors we don't have isel patterns for extracting arbitrary pieces. So we need this to have a correct implementation of isExtractSubvectorCheap for mask vectors.
Reviewers: RKSimon, zvi, efriedma
Reviewed By: RKSimon
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D36649
llvm-svn: 310793
The existing code is very clever, but not clear, which seems
like the wrong tradeoff here.
Differential Revision: https://reviews.llvm.org/D36559
llvm-svn: 310653
This patch:
- makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
- lowering is done by first converting the boolean value into the carry flag
using (_, C) <- (ARMISD::ADDC R, -1) and converted back to an integer value
using (R, _) <- (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
operations does the actual addition.
- for subtraction, given that ISD::SUBCARRY second result is actually a
borrow, we need to invert the value of the second operand and result before
and after using ARMISD::SUBE. We need to invert the carry result of
ARMISD::SUBE to preserve the semantics.
- given that the generic combiner may lower ISD::ADDCARRY and
ISD::SUBCARRY into ISD::UADDO and ISD::USUBO we need to update their lowering
as well otherwise i64 operations now would require branches. This implies
updating the corresponding test for unsigned.
- add new combiner to remove the redundant conversions from/to carry flags
to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) -> C
Differential Revision: https://reviews.llvm.org/D35192
llvm-svn: 309923
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
Changing mask argument type from const SmallVectorImpl<int>& to
ArrayRef<int>.
This came up in D35700 where a mask is received as an ArrayRef<int> and
we want to pass it to TargetLowering::isShuffleMaskLegal().
Also saves a few lines of code.
llvm-svn: 309085
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
r306334 fixed a bug in AArch64 dealing with wide interleaved accesses having
pointer types. The bug also exists in ARM, so this patch copies over the fix.
llvm-svn: 307409
On big-endian machines the high and low parts of the value accessed by ldrexd
and strexd are swapped around. To account for this we swap inputs and outputs
in ISelLowering.
Patch by Bharathi Seshadri.
llvm-svn: 306865