Using/updating a dominator tree to match math overflow patterns may be very
expensive in compile-time (because of the way CGP uses a DT), so just handle
the single-block case.
Also, we were restarting the iterator loops when doing the overflow intrinsic
transforms by marking the dominator tree for update. That was done to prevent
iterating over a removed instruction. But we can postpone the deletion using
the existing "RemovedInsts" structure, and that means we don't need to update
the DT.
See post-commit thread for rL354298 for more details:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190422/646276.html
Differential Revision: https://reviews.llvm.org/D61075
llvm-svn: 359879
Summary:
Inalloca parameters require special handling in some optimizations.
This change causes globalopt to strip the inalloca attribute from
function parameters when it is safe to do so, removes the special
handling for inallocas from argpromotion, and replaces it with a
simple check that causes argpromotion to skip functions that receive
inallocas (for when the pass is invoked on code that didn't run
through globalopt first). This also avoids a case where argpromotion
would incorrectly try to pass an inalloca in a register.
Fixes PR41658.
Reviewers: rnk, efriedma
Reviewed By: rnk
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61286
llvm-svn: 359743
Summary: Fix a transformation bug where two scopes share a common instrution to hoist.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61405
llvm-svn: 359736
Summary:
Triple components in `XFAIL` lines are tested against the target triple.
Various tests that are expected to fail on big-endian hosts are marked
as being `XFAIL` for big-endian targets. This patch corrects these tests
by having them test against a new `host-byteorder-big-endian` feature.
Reviewers: xingxue, sfertile, jasonliu
Reviewed By: xingxue
Subscribers: jvesely, nhaehnle, fedor.sergeev, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60551
llvm-svn: 359689
The demanded elts rules introduced for GEPs in https://reviews.llvm.org/rL356293 replaced vector constants with undefs (by design). It turns out that the LangRef disallows such cases when indexing structs. The right fix is probably to relax the langref requirement, and update other passes to expect the result, but for the moment, limit the transform to avoid compiler crashes.
This should fix https://bugs.llvm.org/show_bug.cgi?id=41624.
llvm-svn: 359633
Summary:
Match NewPassManager behavior: add option for interleaved loops in the
old pass manager, and use that instead of the flag used to disable loop unroll.
No changes in the defaults.
Reviewers: chandlerc
Subscribers: mehdi_amini, jlebar, dmgreen, hsaito, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61030
llvm-svn: 359615
The code in this test is not vectorized by SLP because its operand reordering cannot look beyond the immediate predecessors.
This will get fixed in a follow-up patch that introduces the look-ahead operand reordering heuristic.
Committed on behalf of @vporpo (Vasileios Porpodas)
Differential Revision: https://reviews.llvm.org/D61283
llvm-svn: 359553
This change aims at making the file format be compatible with the
way LLVM handles command line options.
Differential Revision: https://reviews.llvm.org/D60970
llvm-svn: 359462
it keeps track of becomes too large
ARC optimizer does a top-down and a bottom-up traversal of the whole
function to pair up retain and release instructions and remove them.
This can be expensive if the number of instructions in the function and
pointer states it tracks are large since it has to look at each pointer
state and determine whether the instruction being visited can
potentially use the pointer.
This patch adds a command line option that sets a limit to the number of
pointers it tracks.
rdar://problem/49477063
Differential Revision: https://reviews.llvm.org/D61100
llvm-svn: 359226
When evaluating a store through a bitcast, the evaluator tries to move the
bitcast from the pointer onto the stored value. If the cast is invalid, it
tries to "introspect" the type to get a valid cast by obtaining a pointer to
the initial element (if the type is nested, this may require walking several
initial elements).
In some situations it is possible to get a bitcast on a load (e.g. with
unions, where the bitcast may not be the same type as the store). However,
equivalent logic to the store to introspect the type is missing. This patch
add this logic.
Note, when developing the patch I was unhappy with adding similar logic
directly to the load case as it could get out of step. Instead, I have
abstracted the "introspection" into a helper function, with the specifics
being handled by a passed-in lambda function.
Differential Revision: https://reviews.llvm.org/D60793
llvm-svn: 359205
Summary:
When refactoring vectorization flags, vectorization was disabled by default in the new pass manager.
This patch re-enables is for both managers, and changes the assumptions opt makes, based on the new defaults.
Comments in opt.cpp should clarify the intended use of all flags to enable/disable vectorization.
Reviewers: chandlerc, jgorbe
Subscribers: jlebar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61091
llvm-svn: 359167
Summary: The code did not check if operand was undef before casting it to Instruction.
Reviewers: RKSimon, ABataev, dtemirbulatov
Reviewed By: ABataev
Subscribers: uabelho
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61024
llvm-svn: 359136
DominatorTree::dominate.
ARC contract pass has an optimization that replaces the uses of the
argument of an ObjC runtime function call with the call result.
For example:
; Before optimization
%1 = tail call i8* @foo1()
%2 = tail call i8* @llvm.objc.retainAutoreleasedReturnValue(i8* %1)
store i8* %1, i8** @g0, align 8
; After optimization
%1 = tail call i8* @foo1()
%2 = tail call i8* @llvm.objc.retainAutoreleasedReturnValue(i8* %1)
store i8* %2, i8** @g0, align 8 // %1 is replaced with %2
Before replacing the argument use, DominatorTree::dominate is called to
determine whether the user instruction is dominated by the ObjC runtime
function call instruction. The call to DominatorTree::dominate can be
expensive if the two instructions belong to the same basic block and the
size of the basic block is large. This patch checks the basic block size
and just bails out if the size exceeds the limit set by command line
option "arc-contract-max-bb-size".
rdar://problem/49477063
Differential Revision: https://reviews.llvm.org/D60900
llvm-svn: 359027
If we have a masked.load from a location we know to be dereferenceable, we can simply issue a speculative unconditional load against that address. The key advantage is that it produces IR which is well understood by the optimizer. The select (cnd, load, passthrough) form produced should be pattern matchable back to hardware predication if profitable.
Differential Revision: https://reviews.llvm.org/D59703
llvm-svn: 359000
In some circumstances we can end up with setup costs that are very complex to
compute, even though the scevs are not very complex to create. This can also
lead to setupcosts that are calculated to be exactly -1, which LSR treats as an
invalid cost. This patch puts a limit on the recursion depth for setup cost to
prevent them taking too long.
Thanks to @reames for the report and test case.
Differential Revision: https://reviews.llvm.org/D60944
llvm-svn: 358958
If we have a store to a piece of memory which is known constant, then we know the store must be storing back the same value. As a result, the store (or memset, or memmove) must either be down a dead path, or a noop. In either case, it is valid to simply remove the store.
The motivating case for this involves a memmove to a buffer which is constant down a path which is dynamically dead.
Note that I'm choosing to implement the less aggressive of two possible semantics here. We could simply say that the store *is undefined*, and prune the path. Consensus in the review was that the more aggressive form might be a good follow on change at a later date.
Differential Revision: https://reviews.llvm.org/D60659
llvm-svn: 358919
Summary:
Teach CorrelatedValuePropagation to also handle sub instructions in addition to add. Relatively simple since makeGuaranteedNoWrapRegion already understood sub instructions. Only subtle change is which range is passed as "Other" to that function, since sub isn't commutative.
Note that CorrelatedValuePropagation::processAddSub is still hidden behind a default-off flag as IndVarSimplify hasn't yet been fixed to strip the added nsw/nuw flags and causes a miscompile. (PR31181)
Reviewers: sanjoy, apilipenko, nikic
Reviewed By: nikic
Subscribers: hiraditya, jfb, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60036
llvm-svn: 358816
This is a follow-up to r291037+r291258, which used null debug locations
to prevent jumpy line tables.
Using line 0 locations achieves the same effect, but works better for
crash attribution because it preserves the right inline scope.
Differential Revision: https://reviews.llvm.org/D60913
llvm-svn: 358791
removeUsers uses a work list to collect indirect users and call remove()
on those functions. However it has a bug (`if (!Visited.insert(UU).second)`).
Actually, we don't have to collect indirect users.
After the merge of F and G, G's callers will be considered (added to
Deferred). If G's callers can be merged, G's callers' callers will be
considered.
Update the test unnamed-addr-reprocessing.ll to make it clear we can
still merge indirect callers.
llvm-svn: 358741
We would previously drop the COMDAT on the thunk we generated when replacing a
function body with the forwarding thunk. This would result in a function that
may have been multiply emitted and multiply merged to be emitted with the same
name without the COMDAT. This is a hard error with PE/COFF where the COMDAT is
used for the deduplication of Value Witness functions for Swift.
llvm-svn: 358728
Prior to this patch, each basic block listed in the extrack-blocks-file
would be extracted to a different function.
This patch adds the support for comma separated list of basic blocks
to form group.
When the region formed by a group is not extractable, e.g., not single
entry, all the blocks of that group are left untouched.
Let us see this new format in action (comments are not part of the
file format):
;; funcName bbName[,bbName...]
foo bb1 ;; Extract bb1 in its own function
foo bb2,bb3 ;; Extract bb2,bb3 in their own function
bar bb1,bb4 ;; Extract bb1,bb4 in their own function
bar bb2 ;; Extract bb2 in its own function
Assuming all regions are extractable, this will create one function and
thus one call per region.
Differential Revision: https://reviews.llvm.org/D60746
llvm-svn: 358701
The bug is that I didn't check whether the operand of the invariant_loads were themselves invariant. I don't know how this got missed in the patch and review. I even had an unreduced test case locally, and I remember handling this case, but I must have lost it in one of the rebases. Oops.
llvm-svn: 358688
The purpose of this patch is to eliminate a pass ordering dependence between LoopPredication and LICM. To understand the purpose, consider the following snippet of code inside some loop 'L' with IV 'i'
A = _a.length;
guard (i < A)
a = _a[i]
B = _b.length;
guard (i < B);
b = _b[i];
...
Z = _z.length;
guard (i < Z)
z = _z[i]
accum += a + b + ... + z;
Today, we need LICM to hoist the length loads, LoopPredication to make the guards loop invariant, and TrivialUnswitch to eliminate the loop invariant guard to establish must execute for the next length load. Today, if we can't prove speculation safety, we'd have to iterate these three passes 26 times to reduce this example down to the minimal form.
Using the fact that the array lengths are known to be invariant, we can short circuit this iteration. By forming the loop invariant form of all the guards at once, we remove the need for LoopPredication from the iterative cycle. At the moment, we'd still have to iterate LICM and TrivialUnswitch; we'll leave that part for later.
As a secondary benefit, this allows LoopPred to expose peeling oppurtunities in a much more obvious manner. See the udiv test changes as an example. If the udiv was not hoistable (i.e. we couldn't prove speculation safety) this would be an example where peeling becomes obviously profitable whereas it wasn't before.
A couple of subtleties in the implementation:
- SCEV's isSafeToExpand guarantees speculation safety (i.e. let's us expand at a new point). It is not a precondition for expansion if we know the SCEV corresponds to a Value which dominates the requested expansion point.
- SCEV's isLoopInvariant returns true for expressions which compute the same value across all iterations executed, regardless of where the original Value is located. (i.e. it can be in the loop) This implies we have a speculation burden to prove before expanding them outside loops.
- invariant_loads and AA->pointsToConstantMemory are two cases that SCEV currently does not handle, but meets the SCEV definition of invariance. I plan to sink this part into SCEV once this has baked for a bit.
Differential Revision: https://reviews.llvm.org/D60093
llvm-svn: 358684
This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Differential Revision: https://reviews.llvm.org/D55851
llvm-svn: 358607
Summary:
Reapply r357931 with fixes to ThinLTO testcases and llvm-lto tool.
ThinLTOCodeGenerator currently does not preserve llvm.used symbols and
it can internalize them. In order to pass the necessary information to the
legacy ThinLTOCodeGenerator, the input to the code generator is
rewritten to be based on lto::InputFile.
Now ThinLTO using the legacy LTO API will requires data layout in
Module.
"internalize" thinlto action in llvm-lto is updated to run both
"promote" and "internalize" with the same configuration as
ThinLTOCodeGenerator. The old "promote" + "internalize" option does not
produce the same output as ThinLTOCodeGenerator.
This fixes: PR41236
rdar://problem/49293439
Reviewers: tejohnson, pcc, kromanova, dexonsmith
Reviewed By: tejohnson
Subscribers: ormris, bd1976llvm, mehdi_amini, inglorion, eraman, hiraditya, jkorous, dexonsmith, arphaman, dang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60421
llvm-svn: 358601
If a branch is conditional on extractvalue(op.with.overflow(%x, C), 1)
then we can constrain the value of %x inside the branch based on
makeGuaranteedNoWrapRegion(). We do this by extending the edge-value
handling in LVI. This allows CVP to then fold comparisons against %x,
as illustrated in the tests.
Differential Revision: https://reviews.llvm.org/D60650
llvm-svn: 358597
Summary:
In the following cases, unrolling can be beneficial, even when
optimizing for code size:
1) very low trip counts
2) potential to constant fold most instructions after fully unrolling.
We can unroll in those cases, by setting the unrolling threshold to the
loop size. This might highlight some cost modeling issues and fixing
them will have a positive impact in general.
Reviewers: vsk, efriedma, dmgreen, paquette
Reviewed By: paquette
Differential Revision: https://reviews.llvm.org/D60265
llvm-svn: 358586
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
This patch adds a basic loop fusion pass. It will fuse loops that conform to the
following 4 conditions:
1. Adjacent (no code between them)
2. Control flow equivalent (if one loop executes, the other loop executes)
3. Identical bounds (both loops iterate the same number of iterations)
4. No negative distance dependencies between the loop bodies.
The pass does not make any changes to the IR to create opportunities for fusion.
Instead, it checks if the necessary conditions are met and if so it fuses two
loops together.
The pass has not been added to the pass pipeline yet, and thus is not enabled by
default. It can be run stand alone using the -loop-fusion option.
Phabricator: https://reviews.llvm.org/D55851
llvm-svn: 358543
This is 1 of the problems discussed in the post-commit thread for:
rL355741 / http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190311/635516.html
and filed as:
https://bugs.llvm.org/show_bug.cgi?id=41101
Instcombine tries to canonicalize some of these cases (and there's room for improvement
there independently of this patch), but it can't always do that because of extra uses.
So we need to recognize these commuted operand patterns here in EarlyCSE. This is similar
to how we detect commuted compares and commuted min/max/abs.
Differential Revision: https://reviews.llvm.org/D60723
llvm-svn: 358523