VScode now sends a "scopes" DAP request immediately after any expression evaluation.
This scopes request would clear and invalidate any non-scoped expandable variables in g_vsc.variables, causing later "variables" request to return empty result.
The symptom is that any expandable variables in VScode watch window/debug console UI to return empty content.
This diff fixes this issue by only clearing the expandable variables at process continue time. To achieve this, we have to repopulate all scoped variables
during context switch for each "scopes" request without clearing global expandable variables.
So the PR puts the scoped variables into its own locals/globals/registers; and all expandable variables into separate "expandableVariables" list.
Also, instead of using the variable index for "variableReference", it generates a new variableReference id each time as the key of "expandableVariables".
As a further new feature, this PR adds a new "expandablePermanentVariables" which has the lifetime of debug session. Any expandable variables from debug console
are added into this list. This enables users to snapshot expanable old variable in debug console and compare with new variables if desire.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D105166
D104406 introduced an error in which, if there are multiple matchings rules for a given path, lldb was only checking for the validity in the filesystem of the first match instead of looking exhaustively one by one until a valid file is found.
Besides that, a call to consume_front was being done incorrectly, as it was modifying the input, which renders subsequent matches incorrect.
I added a test that checks for both cases.
Differential Revision: https://reviews.llvm.org/D106723
The variable.rst documentation says:
```
If it returns a value, and that value is True, LLDB will be allowed to cache the children and the children count it previously obtained, and will not return to the provider class to ask. If nothing, None, or anything other than True is returned, LLDB will discard the cached information and ask. Regardless, whenever necessary LLDB will call update.
```
However, several update methods in gnu_libstdcpp.py were returning True,
which made lldb unaware of any changes in the corresponding objects.
This problem was visible by lldb-vscode in the following way:
- If a breakpoint is hit and there's a vector with the contents {1, 2},
it'll be displayed correctly.
- Then the user steps and the next stop contains the vector modified.
The program changed it to {1, 2, 3}
- frame var then displays {1, 2} incorrectly, due to the caching caused
by the update method
It's worth mentioning that none of libcxx.py'd update methods return True. Same for LibCxxVector.cpp, which returns false.
Added a very simple test that fails without this fix.
Differential Revision: https://reviews.llvm.org/D103209
VSCode doesn't render multiple variables with the same name in the variables view. It only renders one of them. This is a situation that happens often when there are shadowed variables.
The nodejs debugger solves this by adding a number suffix to the variable, e.g. "x", "x2", "x3" are the different x variables in nested blocks.
In this patch I'm doing something similar, but the suffix is " @ <file_name:line>), e.g. "x @ main.cpp:17", "x @ main.cpp:21". The fallback would be an address if the source and line information is not present, which should be rare.
This fix is only needed for globals and locals. Children of variables don't suffer of this problem.
When there are shadowed variables
{F16182150}
Without shadowed variables
{F16182152}
Modifying these variables through the UI works
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D99989
In certain occasions times, like when LLDB is initializing and
evaluating the .lldbinit files, it tries to print to stderr and stdout
directly. This confuses the IDE with malformed data, as it talks to
lldb-vscode using stdin and stdout following the JSON RPC protocol. This
ends up terminating the debug session with the user unaware of what's
going on. There might be other situations in which this can happen, and
they will be harder to debug than the .lldbinit case.
After several discussions with @clayborg, @yinghuitan and @aadsm, we
realized that the best course of action is to simply redirect stdout and
stderr to the console, without modifying LLDB itself. This will prove to
be resilient to future bugs or features.
I made the simplest possible redirection logic I could come up with. It
only works for POSIX, and to make it work with Windows should be merely
changing pipe and dup2 for the windows equivalents like _pipe and _dup2.
Sadly I don't have a Windows machine, so I'll do it later once my office
reopens, or maybe someone else can do it.
I'm intentionally not adding a stop-redirecting logic, as I don't see it
useful for the lldb-vscode case (why would we want to do that, really?).
I added a test.
Note: this is a simpler version of D80659. I first tried to implement a
RIIA version of it, but it was problematic to manage the state of the
thread and reverting the redirection came with some non trivial
complexities, like what to do with unflushed data after the debug
session has finished on the IDE's side.
This diff ass postRunCommands, which are the counterpart of the preRunCommands. TThey will be executed right after the target is launched or attached correctly, which means that the targets can assume that the target is running.
Differential Revision: https://reviews.llvm.org/D100340
This fixes flakiness in TestVSCode_launch.test_progress_events
vscode.progress_events some times failed to populate in time for
follow up iterations.
Adding a minor delay before the the for the loop fixes the issue.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D99497
TestVSCode_disconnect.test_launch fails with clean up error because
disconnect gets called twice once from the test case and once from
the tear down hook.
This patch disables disconnect after its been called from test_launch
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D99491
LLDB can often appear deadlocked to users that use IDEs when it is indexing DWARF, or parsing symbol tables. These long running operations can make a debug session appear to be doing nothing even though a lot of work is going on inside LLDB. This patch adds a public API to allow clients to listen to debugger events that report progress and will allow UI to create an activity window or display that can show users what is going on and keep them informed of expensive operations that are going on inside LLDB.
Differential Revision: https://reviews.llvm.org/D97739
Summary:
The request "evaluate" supports a "context" attribute, which is sent by VSCode. The attribute is defined here https://microsoft.github.io/debug-adapter-protocol/specification#Requests_Evaluate
The "clipboard" context is not yet supported by lldb-vscode, so we can forget about it for now. The 'repl' (i.e. Debug Console) and 'watch' (i.e. Watch Expression) contexts must use the expression parser in case the frame's variable path is not enough, as the user expects these expressions to never fail. On the other hand, the 'hover' expression is invoked whenever the user hovers on any keyword on the UI and the user is fine with the expression not being fully resolved, as they know that the 'repl' case is the fallback they can rely on.
Given that the 'hover' expression is invoked many many times without the user noticing it due to it being triggered by the mouse, I'm making it use only the frame's variable path functionality and not the expression parser. This should speed up tremendously the responsiveness of a debug session when the user only sets source breakpoints and inspect local variables, as the entire debug info is not needed to be parsed.
Regarding tests, I've tried to be as comprehensive as possible considering a multi-file project. Fortunately, the results from the "hover" case are enough most of the times.
Differential Revision: https://reviews.llvm.org/D98656
Use realpath() when spawning the executable create_after_attach
to workaround a FreeBSD plugin (and possibly others) problem.
If the executable is started via a path containing a symlink, it is
added to the module list twice -- via the real and apparent path.
This in turn cases the requested breakpoint to resolve twice.
Use realpath() for main program path in lldb-vscode breakpoint tests
to workaround a similar problem. If the passed path does not match
the realpath, lldb-vscode does not report the breakpoints as verified
and causes tests to fail.
Since the underlying problems are non-trivial to fix and the purpose
of these tests is not to reproduce symlink problems, let's apply
trivial workarounds to make them pass.
Differential Revision: https://reviews.llvm.org/D97230
VSCode was not being informed whenever a location had been resolved (after being initated as non-resolved), so even though it was actually resolved, the IDE would show a hollow dot (instead of a red dot) because it didn't know about the change.
Differential Revision: https://reviews.llvm.org/D96680
Convert `assertTrue(a == b)` to `assertEqual(a, b)` to produce better failure messages.
These were mostly done via regex search & replace, with some manual fixes.
Differential Revision: https://reviews.llvm.org/D95813
stella.stemenova mentioned in https://reviews.llvm.org/D93951 failures on Windows for this test.
I'm fixing the macro definitions and disabling the tests for python
versions lower than 3.7. I'll figure out that actual issue with
python3.6 after the buildbots are fine again.
Depends on D93874.
runInTerminal was using --wait-for, but it was some problems because it uses process polling looking for a single instance of the debuggee:
- it gets to know of the target late, which renders breakpoints in the main function almost impossible
- polling might fail if there are already other processes with the same name
- polling might also fail on some linux machine, as it's implemented with the ps command, and the ps command's args and output are not standard everywhere
As a better way to implement this so that it works well on Darwin and Linux, I'm using now the following process:
- lldb-vscode notices the runInTerminal, so it spawns lldb-vscode with a special flag --launch-target <target>. This flags tells lldb-vscode to wait to be attached and then it execs the target program. I'm using lldb-vscode itself to do this, because it makes finding the launcher program easier. Also no CMAKE INSTALL scripts are needed.
- Besides this, the debugger creates a temporary FIFO file where the launcher program will write its pid to. That way the debugger will be sure of which program to attach.
- Once attach happend, the debugger creates a second temporary file to notify the launcher program that it has been attached, so that it can then exec. I'm using this instead of using a signal or a similar mechanism because I don't want the launcher program to wait indefinitely to be attached in case the debugger crashed. That would pollute the process list with a lot of hanging processes. Instead, I'm setting a 20 seconds timeout (that's an overkill) and the launcher program seeks in intervals the second tepmorary file.
Some notes:
- I preferred not to use sockets because it requires a lot of code and I only need a pid. It would also require a lot of code when windows support is implemented.
- I didn't add Windows support, as I don't have a windows machine, but adding support for it should be easy, as the FIFO file can be implemented with a named pipe, which is standard on Windows and works pretty much the same way.
The existing test which didn't pass on Linux, now passes.
Differential Revision: https://reviews.llvm.org/D93951
lldb-vsdode was communicating the list of modules to the IDE with events, which in practice ended up having some drawbacks
- when debugging large targets, the number of these events were easily 10k, which polluted the messages being transmitted, which caused the following: a harder time debugging the messages, a lag after terminated the process because of these messages being processes (this could easily take several seconds). The latter was specially bad, as users were complaining about it even when they didn't check the modules view.
- these events were rarely used, as users only check the modules view when something is wrong and they try to debug things.
After getting some feedback from users, we realized that it's better to not used events but make this simply a request and is triggered by users whenever they needed.
This diff achieves that and does some small clean up in the existing code.
Differential Revision: https://reviews.llvm.org/D94033
The test appears to expect the inferior to be stopped, but the custom
"attach commands" leave it in a running state.
It's unclear how this could have ever worked.
Make category-specifying files visible. There is really no good reason
to keep them hidden, and having them visible increases the chances
that someone will actually spot them.
Differential Revision: https://reviews.llvm.org/D91065
Per the DAP spec for SetBreakpoints [1], the way to clear breakpoints is: `To clear all breakpoint for a source, specify an empty array.`
However, leaving the breakpoints field unset is also a well formed request (note the `breakpoints?:` in the `SetBreakpointsArguments` definition). If it's unset, we have a couple choices:
1. Crash (current behavior)
2. Clear breakpoints
3. Return an error response that the breakpoints field is missing.
I propose we do (2) instead of (1), and treat an unset breakpoints field the same as an empty breakpoints field.
[1] https://microsoft.github.io/debug-adapter-protocol/specification#Requests_SetBreakpoints
Reviewed By: wallace, labath
Differential Revision: https://reviews.llvm.org/D88513
Caused by D86662. The fix is only checking some fields when the expect_debug_info_size flag is true. For some reason this was not failing on a local linux machine.
The Symbol Status in modules view is simplified so that only when the module has debug info and its size is non-zero, will the status message be displayed. The symbol status message is renamed to debug info size and flag message like "Symbols not found" and "Symbols loaded" is deleted.
Differential Revision: https://reviews.llvm.org/D86662
If a module has debug info, the size of debug symbol will be displayed after the Symbols Loaded Message for each module in the VScode modules view.{F12335461}
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D83731
Summary: If a module has debug info, the size of debug symbol will be displayed after the Symbols Loaded Message for each module in the VScode modules view.{F12335461}
Reviewers: wallace, clayborg
Reviewed By: wallace, clayborg
Subscribers: cfe-commits, aprantl, lldb-commits
Tags: #lldb, #clang
Differential Revision: https://reviews.llvm.org/D83731
Summary:
test_terminate_commands is flaky on LLDB Arm buildbot as well. It was already
being skipped for aarch64. I am going to mark it skipped for Arm too.
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D81978
Always clean up subprocesses on tear down instead of relying on the
caller to do so. This is not only less error prone but also means the
tests can be more concise.
Differential revision: https://reviews.llvm.org/D83787