This patch is a rewrite of the original patch commited in r194542. Instead of
relying on the type legalizer to do the splitting for us, we now peform the
splitting ourselves in the DAG combiner. This is necessary for the case where
the vector mask is a legal type after promotion and still wouldn't require
splitting.
Patch by: Juergen Ributzka
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195397
This is to avoid this transformation in some cases:
fold (conv (load x)) -> (load (conv*)x)
On architectures that don't natively support some vector
loads efficiently casting the load to a smaller vector of
larger types and loading is more efficient.
Patch by Micah Villmow.
llvm-svn: 194783
This patch reapplies r193676 with an additional fix for the Hexagon backend. The
SystemZ backend has already been fixed by r194148.
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
llvm-svn: 194542
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask type for the given target. This mask has
usually the same size as the VSELECT return type (except for Intel KNL). Now the
type legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
Reviewed by Nadav
llvm-svn: 193676
Making useAA() default to true for SystemZ showed that the combiner alias
analysis wasn't handling volatile accesses. This hit many of the SystemZ
tests, but I arbitrarily picked one for the purpose of this patch.
llvm-svn: 193518
Most SelectionDAG code drops the TBAA info when creating a new form of a
load and store (e.g. during legalization, or when converting a plain
load to an extending one). This patch tries to catch all cases where
the TBAA information can legitimately be carried over.
The patch adds alternative forms of getLoad() and getExtLoad() that take
a MachineMemOperand instead of individual fields. (The corresponding
getTruncStore() already exists.) The idea is to use the MachineMemOperand
forms when all fields are carried over (size, pointer info, isVolatile,
isNonTemporal, alignment and TBAA info). If some adjustment is being
made, e.g. to narrow the load, then we still pass the individual fields
but also pass the TBAA info.
llvm-svn: 193517
This optimization is not SSE specific so I am moving it to DAGco.
The new scalar_to_vector dag node exposed a missing pattern in the AArch64 target that I needed to add.
llvm-svn: 193393
When canonicalizing dags according to the rule
(shl (zext (shr X, c1) ), c1) ==> (zext (shl (shr X, c1), c1))
remember to add the new shl dag to the DAGCombiner worklist of nodes.
If we don't explicitly add it to the worklist of nodes to visit, we
may not trigger later on the rule that folds the shift left + logical
shift right into a AND instruction with bitmask.
llvm-svn: 192883
This happens e.g. with <2 x i64> -1 on x86_32. It cannot be generated directly
because i64 is illegal. It would be nice if getNOT would handle this
transparently, but I don't see a way to generate a legal constant there right
now. Fixes PR17487.
llvm-svn: 192795
This should fix the buildbots.
Original commit message:
[DAGCombiner] Slice a big load in two loads when the element are next to each
other in memory and the target has paired load and performs post-isel loads
combining.
E.g., this optimization will transform something like this:
a = load i64* addr
b = trunc i64 a to i32
c = lshr i64 a, 32
d = trunc i64 c to i32
into:
b = load i32* addr1
d = load i32* addr2
Where addr1 = addr2 +/- sizeof(i32), if the target supports paired load and
performs post-isel loads combining.
One should overload TargetLowering::hasPairedLoad to provide this information.
The default is false.
<rdar://problem/14477220>
llvm-svn: 192476
other in memory and the target has paired load and performs post-isel loads
combining.
E.g., this optimization will transform something like this:
a = load i64* addr
b = trunc i64 a to i32
c = lshr i64 a, 32
d = trunc i64 c to i32
into:
b = load i32* addr1
d = load i32* addr2
Where addr1 = addr2 +/- sizeof(i32), if the target supports paired load and
performs post-isel loads combining.
One should overload TargetLowering::hasPairedLoad to provide this information.
The default is false.
<rdar://problem/14477220>
llvm-svn: 192471
DAGCombiner::visitFP_EXTEND will apply the following transformation:
fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
but the implementation does not handle indexed loads (pre/post inc.), but did
not specifically ignore them either (unlike for extending loads, which it
already ignored), causing an assert when the transformation was applied to an
indexed load. This is the minimal fix for correctness (causing the
transformation to be skipped for indexed loads).
Unfortunately, I don't have an in-tree test case.
llvm-svn: 191989
This change fixes the problem reported in pr17380 and re-add the dagcombine
transformation ensuring that the value types are always legal if the
transformation is triggered after Legalization took place.
Added the test case from pr17380.
llvm-svn: 191509
(shl (zext (shr A, X)), X) => (zext (shl (shr A, X), X)).
The rule only triggers when there are no other uses of the
zext to avoid materializing more instructions.
This helps the DAGCombiner understand that the shl/shr
sequence can then be converted into an and instruction.
llvm-svn: 191393
The Type Legalizer recognizes that VSELECT needs to be split, because the type
is to wide for the given target. The same does not always apply to SETCC,
because less space is required to encode the result of a comparison. As a result
VSELECT is split and SETCC is unrolled into scalar comparisons.
This commit fixes the issue by checking for VSELECT-SETCC patterns in the DAG
Combiner. If a matching pattern is found, then the result mask of SETCC is
promoted to the expected vector mask for the given target. This mask has usually
te same size as the VSELECT return type (except for Intel KNL). Now the type
legalizer will split both VSELECT and SETCC.
This allows the following X86 DAG Combine code to sucessfully detect the MIN/MAX
pattern. This fixes PR16695, PR17002, and <rdar://problem/14594431>.
llvm-svn: 191130
C-like languages promote types like unsigned short to unsigned int before
performing an arithmetic operation. Currently the rotate matcher in the
DAGCombiner does not consider this situation.
This commit extends the DAGCombiner in the way that the pattern
(or (shl ([az]ext x), (*ext y)), (srl ([az]ext x), (*ext (sub 32, y))))
is folded into
([az]ext (rotl x, y))
The matching is restricted to aext and zext because in this cases the upper
bits are either undefined or known. Test case is included.
This fixes PR16726.
llvm-svn: 191049
C-like languages promote types like unsigned short to unsigned int before
performing an arithmetic operation. Currently the rotate matcher in the
DAGCombiner does not consider this situation.
This commit extends the DAGCombiner in the way that the pattern
(or (shl ([az]ext x), (*ext y)), (srl ([az]ext x), (*ext (sub 32, y))))
is folded into
([az]ext (rotl x, y))
The matching is restricted to aext and zext because in this cases the upper
bits are either undefined or known. Test case is included.
This fixes PR16726.
llvm-svn: 191045
DAGCombiner::isAlias can be called with SrcValue1 or SrcValue2 null, and we
can't use AA in this case (if we try, then the casting code in AA will assert).
llvm-svn: 190763
This uses the TargetSubtargetInfo::useAA() function to control the defaults of
the -combiner-alias-analysis and -combiner-global-alias-analysis options.
llvm-svn: 189564
We want to convert code like (or (srl N, 8), (shl N, 8)) into (srl (bswap N),
const), but this is only valid if the bits above 16 on the source pattern are
0, the checks we were doing on this were slightly wrong before.
llvm-svn: 189348
If we have a binary operation like ISD:ADD, we can set the result type
equal to the result type of one of its operands rather than using
TargetLowering::getPointerTy().
Also, any use of DAG.getIntPtrConstant(C) as an operand for a binary
operation can be replaced with:
DAG.getConstant(C, OtherOperand.getValueType());
llvm-svn: 189227
The small utility function that pattern matches Base + Index +
Offset patterns for loads and stores fails to recognize the base
pointer for loads/stores from/into an array at offset 0 inside a
loop. As a result DAGCombiner::MergeConsecutiveStores was not able
to merge all stores.
This commit fixes the issue by adding an additional pattern match
and also a test case.
Reviewer: Nadav
llvm-svn: 188936
A common idiom is to use zero and all-ones as sentinal values and to
check for both in a single conditional ("x != 0 && x != (unsigned)-1").
That generates code, for i32, like:
testl %edi, %edi
setne %al
cmpl $-1, %edi
setne %cl
andb %al, %cl
With this transform, we generate the simpler:
incl %edi
cmpl $1, %edi
seta %al
Similar improvements for other integer sizes and on other platforms. In
general, combining the two setcc instructions into one is better.
rdar://14689217
llvm-svn: 188315
This virtual function can be implemented by targets to specify the type
to use for the index operand of INSERT_VECTOR_ELT, EXTRACT_VECTOR_ELT,
INSERT_SUBVECTOR, EXTRACT_SUBVECTOR. The default implementation returns
the result from TargetLowering::getPointerTy()
The previous code was using TargetLowering::getPointerTy() for vector
indices, because this is guaranteed to be legal on all targets. However,
using TargetLowering::getPointerTy() can be a problem for targets with
pointer sizes that differ across address spaces. On such targets,
when vectors need to be loaded or stored to an address space other than the
default 'zero' address space (which is the address space assumed by
TargetLowering::getPointerTy()), having an index that
is a different size than the pointer can lead to inefficient
pointer calculations, (e.g. 64-bit adds for a 32-bit address space).
There is no intended functionality change with this patch.
llvm-svn: 187748
This patch prevents the following combine when the input vector is used more
than once.
insert_vector_elt (build_vector elt0, ..., eltN), NewEltIdx, idx
=>
build_vector elt0, ..., NewEltIdx, ..., eltN
The reasons are:
- Building a vector may be expensive, so try to reuse the existing part of a
vector instead of creating a new one (think big vectors).
- elt0 to eltN now have two users instead of one. This may prevent some other
optimizations.
llvm-svn: 187396
in-tree implementations of TargetLoweringBase::isFMAFasterThanMulAndAdd in
order to resolve the following issues with fmuladd (i.e. optional FMA)
intrinsics:
1. On X86(-64) targets, ISD::FMA nodes are formed when lowering fmuladd
intrinsics even if the subtarget does not support FMA instructions, leading
to laughably bad code generation in some situations.
2. On AArch64 targets, ISD::FMA nodes are formed for operations on fp128,
resulting in a call to a software fp128 FMA implementation.
3. On PowerPC targets, FMAs are not generated from fmuladd intrinsics on types
like v2f32, v8f32, v4f64, etc., even though they promote, split, scalarize,
etc. to types that support hardware FMAs.
The function has also been slightly renamed for consistency and to force a
merge/build conflict for any out-of-tree target implementing it. To resolve,
see comments and fixed in-tree examples.
llvm-svn: 185956
When folding sub x, x (and other similar constructs), where x is a vector, the
result is a vector of zeros. After type legalization, make sure that the input
zero elements have a legal type. This type may be larger than the result's
vector element type.
This was another bug found by llvm-stress.
llvm-svn: 185949
ReduceLoadWidth unconditionally drops extensions from loads. Limit it to the
case when all of the bits the extension would otherwise produce are dropped by
the shrink. It would be possible to shrink the load in more cases by merging
the extensions, but this isn't trivial and a very rare case. I left a TODO for
that case.
Fixes PR16551.
llvm-svn: 185755
DAGCombiner was counting all uses of a load node when considering whether it's
worth combining into a zextload. Really, it wants to ignore the chain and just
count real uses.
rdar://problem/13896307
llvm-svn: 185419
This already helps SSE2 x86 a lot because it lacks an efficient way to
represent a vector select. The long term goal is to enable the backend to match
a canonicalized pattern into a single instruction (e.g. vabs or pabs).
llvm-svn: 180597
This exposed an issue with PowerPC AltiVec where it appears it was setting the wrong vector boolean contents. The included change
fixes the PowerPC tests, and was OK'd by Hal.
llvm-svn: 180129
This pattern occurs in SROA output due to the way vector arguments are lowered
on ARM.
The testcase from PR15525 now compiles into this, which is better than the code
we got with the old scalarrepl:
_Store:
ldr.w r9, [sp]
vmov d17, r3, r9
vmov d16, r1, r2
vst1.8 {d16, d17}, [r0]
bx lr
Differential Revision: http://llvm-reviews.chandlerc.com/D647
llvm-svn: 179106
This is helps on architectures where i8,i16 are not legal but we have byte, and
short loads/stores. Allowing us to merge copies like the one below on ARM.
copy(char *a, char *b, int n) {
do {
int t0 = a[0];
int t1 = a[1];
b[0] = t0;
b[1] = t1;
radar://13536387
llvm-svn: 178546
We would also like to merge sequences that involve a variable index like in the
example below.
int index = *idx++
int i0 = c[index+0];
int i1 = c[index+1];
b[0] = i0;
b[1] = i1;
By extending the parsing of the base pointer to handle dags that contain a
base, index, and offset we can handle examples like the one above.
The dag for the code above will look something like:
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i8 load %index))))
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
The code that parses the tree ignores the intermediate sign extensions. However,
if there is a sign extension it needs to be on all indexes.
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (add (i8 load %index)
(i8 1))))
vs
(load (i64 add (i64 copyfromreg %c)
(i64 signextend (i32 add (i32 signextend (i8 load %index))
(i32 1)))))
radar://13536387
llvm-svn: 178483
- Handle the case where the result of 'insert_subvect' is bitcasted
before 'extract_subvec'. This removes the redundant insertf128/extractf128
pair on unaligned 256-bit vector load/store on vectors of non 64-bit integer.
llvm-svn: 177945
For instance, following transformation will be disabled:
x + x + x => 3.0f * x;
The problem of these transformations is that it introduces a FP constant, which
following Instruction-Selection pass cannot handle.
Reviewed by Nadav, thanks a lot!
rdar://13445387
llvm-svn: 177933
LegalizeDAG.cpp uses the value of the comparison operands when checking
the legality of BR_CC, so DAGCombiner should do the same.
v2:
- Expand more BR_CC value types for NVPTX
v3:
- Expand correct BR_CC value types for Hexagon, Mips, and XCore.
llvm-svn: 176694
A legal BUILD_VECTOR goes in and gets constant folded into another legal
BUILD_VECTOR so we don't lose any legality here. The problematic PPC
optimization that made this check necessary was fixed recently.
llvm-svn: 175759
(2xi32) (truncate ((2xi64) bitcast (buildvector i32 a, i32 x, i32 b, i32 y)))
can be folded into a (2xi32) (buildvector i32 a, i32 b).
Such a DAG would cause uneccessary vdup instructions followed by vmovn
instructions.
We generate this code on ARM NEON for a setcc olt, 2xf64, 2xf64. For example, in
the vectorized version of the code below.
double A[N];
double B[N];
void test_double_compare_to_double() {
int i;
for(i=0;i<N;i++)
A[i] = (double)(A[i] < B[i]);
}
radar://13191881
Fixes bug 15283.
llvm-svn: 175670
DAGCombiner::ReduceLoadWidth was converting (trunc i32 (shl i64 v, 32))
into (shl i32 v, 32) into undef. To prevent this, check the shift count
against the final result size.
Patch by: Kevin Schoedel
Reviewed by: Nadav Rotem
llvm-svn: 174972
Sorry for the lack of a test case. I tried writing one for i386 as i know selects are illegal on this target, but they are actually considered legal by isel and expanded later.
I can't see any targets to trigger this, but checking for the legality of a node before forming it is general goodness.
llvm-svn: 174934
Previously, even when a pre-increment load or store was generated,
we often needed to keep a copy of the original base register for use
with other offsets. If all of these offsets are constants (including
the offset which was combined into the addressing mode), then this is
clearly unnecessary. This change adjusts these other offsets to use the
new incremented address.
llvm-svn: 174746
base point of a load, and the overall alignment of the load. This caused infinite loops in DAG combine with the
original application of this patch.
ORIGINAL COMMIT LOG:
When the target-independent DAGCombiner inferred a higher alignment for a load,
it would replace the load with one with the higher alignment. However, it did
not place the new load in the worklist, which prevented later DAG combines in
the same phase (for example, target-specific combines) from ever seeing it.
This patch corrects that oversight, and updates some tests whose output changed
due to slightly different DAGCombine outputs.
llvm-svn: 174431
it would replace the load with one with the higher alignment. However, it did
not place the new load in the worklist, which prevented later DAG combines in
the same phase (for example, target-specific combines) from ever seeing it.
This patch corrects that oversight, and updates some tests whose output changed
due to slightly different DAGCombine outputs.
llvm-svn: 174343
The optimization handles esoteric cases but adds a lot of complexity both to the X86 backend and to other backends.
This optimization disables an important canonicalization of chains of SEXT nodes and makes SEXT and ZEXT asymmetrical.
Disabling the canonicalization of consecutive SEXT nodes into a single node disables other DAG optimizations that assume
that there is only one SEXT node. The AVX mask optimizations is one example. Additionally this optimization does not update the cost model.
llvm-svn: 172968
The included test case is derived from one of the GCC compatibility tests.
The problem arises after the selection DAG has been converted to type-legalized
form. The combiner first sees a 64-bit load that can be converted into a
pre-increment form. The original load feeds into a SRL that isolates the
upper 32 bits of the loaded doubleword. This looks like an opportunity for
DAGCombiner::ReduceLoadWidth() to replace the 64-bit load with a 32-bit load.
However, this transformation is not valid, as the replacement load is not
a pre-increment load. The pre-increment load produces an extra result,
which feeds a subsequent add instruction. The replacement load only has
one result value, and this value is propagated to all uses of the pre-
increment load, including the add. Because the add is looking for the
second result value as its operand, it ends up attempting to add a constant
to a token chain, resulting in a crash.
So the patch simply disables this transformation for any load with more than
two result values.
llvm-svn: 172480
It cahced XOR's operands before calling visitXOR() but failed to update the
operands when visitXOR changed the XOR node.
rdar://12968664
llvm-svn: 171999
peculiar headers under include/llvm.
This struct still doesn't make a lot of sense, but it makes more sense
down in TargetLowering than it did before.
llvm-svn: 171739
DAGCombiner::reduceBuildVecConvertToConvertBuildVec() was making two
mistakes:
1. It was checking the legality of scalar INT_TO_FP nodes and then generating
vector nodes.
2. It was passing the result value type to
TargetLoweringInfo::getOperationAction() when it should have been
passing the value type of the first operand.
llvm-svn: 171420
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
directly.
This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.
llvm-svn: 171253
try to reduce the width of this load, and would end up transforming:
(truncate (lshr (sextload i48 <ptr> as i64), 32) to i32)
to
(truncate (zextload i32 <ptr+4> as i64) to i32)
We lost the sext attached to the load while building the narrower i32
load, and replaced it with a zext because lshr always zext's the
results. Instead, bail out of this combine when there is a conflict
between a sextload and a zext narrowing. The rest of the DAG combiner
still optimize the code down to the proper single instruction:
movswl 6(...),%eax
Which is exactly what we wanted. Previously we read past the end *and*
missed the sign extension:
movl 6(...), %eax
llvm-svn: 169802
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
checks to avoid performing compile-time arithmetic on PPCDoubleDouble.
Now that APFloat supports arithmetic on PPCDoubleDouble, those checks
are no longer needed, and we can treat the type like any other.
llvm-svn: 166958
- If more than 1 elemennts are defined and target supports the vectorized
conversion, use the vectorized one instead to reduce the strength on
conversion operation.
llvm-svn: 166546
- Folding (trunc (concat ... X )) to (concat ... (trunc X) ...) is valid
when '...' are all 'undef's.
- r166125 relies on this transformation.
llvm-svn: 166155
- If the extracted vector has the same type of all vectored being concatenated
together, it should be simplified directly into v_i, where i is the index of
the element being extracted.
llvm-svn: 166125
This class is used by LSR and a number of places in the codegen.
This is the first step in de-coupling LSR from TLI, and creating
a new interface in between them.
llvm-svn: 165455
multiple stores with a single load. We create the wide loads and stores (and their chains)
before we remove the scalar loads and stores and fix the DAG chain. We attempted to merge
loads with a different chain. When that happened, the assumption that it is safe to RAUW
broke and a cycle was introduced.
llvm-svn: 165148
is not profitable in many cases because modern processors perform multiple stores
in parallel and merging stores prior to merging requires extra work. We handle two main cases:
1. Store of multiple consecutive constants:
q->a = 3;
q->4 = 5;
In this case we store a single legal wide integer.
2. Store of multiple consecutive loads:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
In this case we load/store either ilegal vector registers or legal wide integer registers.
llvm-svn: 165125
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
llvm-svn: 164910
buildbots. Original commit message:
A DAGCombine optimization for merging consecutive stores. This optimization is not profitable in many cases
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
llvm-svn: 164890
because moden processos can store multiple values in parallel, and preparing the consecutive store requires
some work. We only handle these cases:
1. Consecutive stores where the values and consecutive loads. For example:
int a = p->a;
int b = p->b;
q->a = a;
q->b = b;
2. Consecutive stores where the values are constants. Foe example:
q->a = 4;
q->b = 5;
llvm-svn: 164885
by xoring the high-bit. This fails if the source operand is a vector because we need to negate
each of the elements in the vector.
Fix rdar://12281066 PR13813.
llvm-svn: 163802
The DAGCombiner tries to optimise a BUILD_VECTOR by checking if it
consists purely of get_vector_elts from one or two source vectors. If
so, it either makes a concat_vectors node or a shufflevector node.
However, it doesn't check the element type width of the underlying
vector, so if you have this sequence:
Node0: v4i16 = ...
Node1: i32 = extract_vector_elt Node0
Node2: i32 = extract_vector_elt Node0
Node3: v16i8 = BUILD_VECTOR Node1, Node2, ...
It will attempt to:
Node0: v4i16 = ...
NewNode1: v16i8 = concat_vectors Node0, ...
Where this is actually invalid because the element width is completely
different. This causes an assertion failure on DAG legalization stage.
Fix:
If output item type of BUILD_VECTOR differs from input item type.
Make concat_vectors based on input element type and then bitcast it to the output vector type. So the case described above will transformed to:
Node0: v4i16 = ...
NewNode1: v8i16 = concat_vectors Node0, ...
NewNode2: v16i8 = bitcast NewNode1
llvm-svn: 162195
Add a micro-optimization to getNode of CONCAT_VECTORS when both operands are undefs.
Can't find a testcase for this because VECTOR_SHUFFLE already handles undef operands, but Duncan suggested that we add this.
Together with Michael Kuperstein <michael.m.kuperstein@intel.com>
llvm-svn: 160229
multiple scalars and insert them into a vector. Next, we shuffle the elements
into the correct places, as before.
Also fix a small dagcombine bug in SimplifyBinOpWithSameOpcodeHands, when the
migration of bitcasts happened too late in the SelectionDAG process.
llvm-svn: 159991
boolean flag to an enum: { Fast, Standard, Strict } (default = Standard).
This option controls the creation by optimizations of fused FP ops that store
intermediate results in higher precision than IEEE allows (E.g. FMAs). The
behavior of this option is intended to match the behaviour specified by a
soon-to-be-introduced frontend flag: '-ffuse-fp-ops'.
Fast mode - allows formation of fused FP ops whenever they're profitable.
Standard mode - allow fusion only for 'blessed' FP ops. At present the only
blessed op is the fmuladd intrinsic. In the future more blessed ops may be
added.
Strict mode - allow fusion only if/when it can be proven that the excess
precision won't effect the result.
Note: This option only controls formation of fused ops by the optimizers. Fused
operations that are explicitly requested (e.g. FMA via the llvm.fma.* intrinsic)
will always be honored, regardless of the value of this option.
Internally TargetOptions::AllowExcessFPPrecision has been replaced by
TargetOptions::AllowFPOpFusion.
llvm-svn: 158956
This patch adds DAG combines to form FMAs from pairs of FADD + FMUL or
FSUB + FMUL. The combines are performed when:
(a) Either
AllowExcessFPPrecision option (-enable-excess-fp-precision for llc)
OR
UnsafeFPMath option (-enable-unsafe-fp-math)
are set, and
(b) TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) is true for the type of
the FADD/FSUB, and
(c) The FMUL only has one user (the FADD/FSUB).
If your target has fast FMA instructions you can make use of these combines by
overriding TargetLoweringInfo::isFMAFasterThanMulAndAdd(VT) to return true for
types supported by your FMA instruction, and adding patterns to match ISD::FMA
to your FMA instructions.
llvm-svn: 158757
When a combine twiddles an extract_vector, care should be take to preserve
the type of the index operand. No luck extracting a reasonable testcase,
unfortunately.
rdar://11391009
llvm-svn: 156419
Instead of passing listener pointers to RAUW, let SelectionDAG itself
keep a linked list of interested listeners.
This makes it possible to have multiple listeners active at once, like
RAUWUpdateListener was already doing. It also makes it possible to
register listeners up the call stack without controlling all RAUW calls
below.
DAGUpdateListener uses an RAII pattern to add itself to the SelectionDAG
list of active listeners.
llvm-svn: 155248
Fix a dagcombine optimization which assumes that the vsetcc result type is always
of the same size as the compared values. This is ture for SSE/AVX/NEON but not
for all targets.
llvm-svn: 154490
when -ffast-math, i.e. don't just always do it if the reciprocal can
be formed exactly. There is already an IR level transform that does
that, and it does it more carefully.
llvm-svn: 154296
shuffle node because it could introduce new shuffle nodes that were not
supported efficiently by the target.
2. Add a more restrictive shuffle-of-shuffle optimization for cases where the
second shuffle reverses the transformation of the first shuffle.
llvm-svn: 154266
reciprocal if converting to the reciprocal is exact. Do it even if inexact
if -ffast-math. This substantially speeds up ac.f90 from the polyhedron
benchmarks.
llvm-svn: 154265
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.
llvm-svn: 154011
Do not try to optimize swizzles of shuffles if the source shuffle has more than
a single user, except when the source shuffle is also a swizzle.
llvm-svn: 153864
(i16 load $addr+c*sizeof(i16)) and replace uses of (i32 vextract) with the
i16 load. It should issue an extload instead: (i32 extload $addr+c*sizeof(i16)).
rdar://11035895
llvm-svn: 152675
v8i8 -> v8i32 on AVX machines. The codegen often scalarizes ANY_EXTEND nodes.
The DAGCombiner has two optimizations that can mitigate the problem. First,
if all of the operands of a BUILD_VECTOR node are extracted from an ZEXT/ANYEXT
nodes, then it is possible to create a new simplified BUILD_VECTOR which uses
UNDEFS/ZERO values to eliminate the scalar ZEXT/ANYEXT nodes.
Second, another dag combine optimization lowers BUILD_VECTOR into a shuffle
vector instruction.
In the case of zext v8i8->v8i32 on AVX, a value in an XMM register is to be
shuffled into a wide YMM register.
This patch modifes the second optimization and allows the creation of
shuffle vectors even when the newly generated vector and the original vector
from which we extract the values are of different types.
llvm-svn: 150340
In this patch we optimize this pattern and convert the sequence into extract op of a narrow type.
This allows the BUILD_VECTOR dag optimizations to construct efficient shuffle operations in many cases.
llvm-svn: 149692
overly conservative. It was concerned about cases where it would prohibit
folding simple [r, c] addressing modes. e.g.
ldr r0, [r2]
ldr r1, [r2, #4]
=>
ldr r0, [r2], #4
ldr r1, [r2]
Change the logic to look for such cases which allows it to form indexed memory
ops more aggressively.
rdar://10674430
llvm-svn: 148086
detect a pattern which can be implemented with a small 'shl' embedded in
the addressing mode scale. This happens in real code as follows:
unsigned x = my_accelerator_table[input >> 11];
Here we have some lookup table that we look into using the high bits of
'input'. Each entity in the table is 4-bytes, which means this
implicitly gets turned into (once lowered out of a GEP):
*(unsigned*)((char*)my_accelerator_table + ((input >> 11) << 2));
The shift right followed by a shift left is canonicalized to a smaller
shift right and masking off the low bits. That hides the shift right
which x86 has an addressing mode designed to support. We now detect
masks of this form, and produce the longer shift right followed by the
proper addressing mode. In addition to saving a (rather large)
instruction, this also reduces stalls in Intel chips on benchmarks I've
measured.
In order for all of this to work, one part of the DAG needs to be
canonicalized *still further* than it currently is. This involves
removing pointless 'trunc' nodes between a zextload and a zext. Without
that, we end up generating spurious masks and hiding the pattern.
llvm-svn: 147936
a combined-away node and the result of the combine isn't substantially
smaller than the input, it's just canonicalized. This is the first part
of a significant (7%) performance gain for Snappy's hot decompression
loop.
llvm-svn: 147604
undefined result. This adds new ISD nodes for the new semantics,
selecting them when the LLVM intrinsic indicates that the undef behavior
is desired. The new nodes expand trivially to the old nodes, so targets
don't actually need to do anything to support these new nodes besides
indicating that they should be expanded. I've done this for all the
operand types that I could figure out for all the targets. Owners of
various targets, please review and let me know if any of these are
incorrect.
Note that the expand behavior is *conservatively correct*, and exactly
matches LLVM's current behavior with these operations. Ideally this
patch will not change behavior in any way. For example the regtest suite
finds the exact same instruction sequences coming out of the code
generator. That's why there are no new tests here -- all of this is
being exercised by the existing test suite.
Thanks to Duncan Sands for reviewing the various bits of this patch and
helping me get the wrinkles ironed out with expanding for each target.
Also thanks to Chris for clarifying through all the discussions that
this is indeed the approach he was looking for. That said, there are
likely still rough spots. Further review much appreciated.
llvm-svn: 146466
change, now you need a TargetOptions object to create a TargetMachine. Clang
patch to follow.
One small functionality change in PTX. PTX had commented out the machine
verifier parts in their copy of printAndVerify. That now calls the version in
LLVMTargetMachine. Users of PTX who need verification disabled should rely on
not passing the command-line flag to enable it.
llvm-svn: 145714
Conservatively returns zero when the GV does not specify an alignment nor is it
initialized. Previously it returns ABI alignment for type of the GV. However, if
the type is a "packed" type, then the under-specified alignments is attached to
the load / store instructions. In that case, the alignment of the type cannot be
trusted.
rdar://10464621
llvm-svn: 145300
than ABI alignment. These are loads / stores from / to "packed" data structures.
Their alignments are intentionally under-specified.
rdar://10301431
llvm-svn: 145273
Add support for trimming constants to GetDemandedBits. This fixes some funky
constant generation that occurs when stores are expanded for targets that don't
support unaligned stores natively.
llvm-svn: 144102
When this field is true it means that the load is from constant (runt-time or compile-time) and so can be hoisted from loops or moved around other memory accesses
llvm-svn: 144100
svn r139159 caused SelectionDAG::getConstant() to promote BUILD_VECTOR operands
with illegal types, even before type legalization. For this testcase, that led
to one BUILD_VECTOR with i16 operands and another with promoted i32 operands,
which triggered the assertion.
llvm-svn: 142370
with a vector condition); such selects become VSELECT codegen nodes.
This patch also removes VSETCC codegen nodes, unifying them with SETCC
nodes (codegen was actually often using SETCC for vector SETCC already).
This ensures that various DAG combiner optimizations kick in for vector
comparisons. Passes dragonegg bootstrap with no testsuite regressions
(nightly testsuite as well as "make check-all"). Patch mostly by
Nadav Rotem.
llvm-svn: 139159