Currently when DAGCombine converts loads feeding a switch into a switch of
addresses feeding a load the new load inherits the isInvariant flag of the left
side. This is incorrect since invariant loads can be reordered in cases where it
is illegal to reoarder normal loads.
This patch adds an isInvariant parameter to getExtLoad() and updates all call
sites to pass in the data if they have it or false if they don't. It also
changes the DAGCombine to use that data to make the right decision when
creating the new load.
llvm-svn: 214449
SDValues, fixing the two bugs left in the regression suite.
The key for both of these was the use a single value type rather than
a VTList which caused an unintentionally single-result merge-value node.
Fix this by getting the appropriate VTList in place.
Doing this exposed that the comments in x86's code abouth how MUL_LOHI
operands are handle is wrong. The bug with the use of out-of-range
result numbers was hiding the bug about the order of operands here (as
best i can tell). There are more places where the code appears to get
this backwards still...
llvm-svn: 213931
Use ComputeNumSignBits instead of checking for i8 / i16 which only
worked when AMDIL was lying about having legal i8 / i16.
If an integer is known to fit in 24-bits, we can
do division faster with float ops.
llvm-svn: 213843
This implements a solution for constant initializers suggested
by Vadim Girlin, where we store the data after the shader code
and then use the S_GETPC instruction to compute its address.
This saves use the trouble of creating a new buffer for constant data
and then having to pass the pointer to the kernel via user SGPRs or the
input buffer.
llvm-svn: 213530
Unfortunately, we don't seem to have a direct truncation, but the
extension can be legally split into two operations so we should
support that.
llvm-svn: 213357
v2: use ffbh/l if available
v3: Rebase on top of Matt's SI patches
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
llvm-svn: 213072
This helps avoid redundant instructions to unpack, and repack
the vectors. Ideally we could recognize that pattern and eliminate
it. Currently v4i8 and other small element type vectors are scalarized,
so this has the added bonus of avoiding that.
llvm-svn: 213031
Use alg. from LegalizeDAG.cpp
Move Expand setting to SIISellowering
v2: Extend existing tests instead of creating new ones
v3: use separate LowerFPTOSINT function
v4: use TargetLowering::expandFP_TO_SINT
add comment about using FP_TO_SINT for uints
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <tom@stellard.net>
llvm-svn: 212773
R600 was using a clamped version of rsq, but SI was not. Add a
new rsq_clamped intrinsic and use them consistently.
It's unclear to me from the documentation what behavior
the R600 instructions have, so I assume they have the legacy behavior
described by the SI documents. For R600, use RECIPSQRT_IEEE
for both llvm.AMDGPU.rsq.legacy and llvm.AMDGPU.rsq. R600 also
has RECIPSQRT_FF, which I'm not sure how it fits in here.
llvm-svn: 211637
Instead of separate SDIV/SREM. SDIV used UDIV which in turn used UDIVREM anyway.
SREM used SDIV(UDIV->UDIVREM)+MUL+SUB, using UDIVREM directly is more efficient.
v2: Don't use all caps names
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 211477
These will be used for custom lowering and for library
implementations of various math functions, so it's useful
to expose these as builtins.
llvm-svn: 211247
The difference from rint isn't really relevant here,
so treat them as equivalent. OpenCL doesn't have nearbyint,
so this is sort of pointless other than for completeness.
llvm-svn: 211229
This would assert if a constant address space was extern
and therefore didn't have an initializer. If the initializer
was undef, it would hit the unreachable unhandled initializer case.
An extern global should never really occur since we don't have
machine linking, but bugpoint likes to remove initializers.
llvm-svn: 210967
Move / delete some of the more obviously wrong
setOperationAction calls. Most of these are setting Expand
for types that aren't legal which is the default anyway.
Leave stuff that might require more thought on whether it's
junk or not as it is.
No functionality change.
llvm-svn: 210922
Delete all unused ones, and add new AMDGPU named intrinsics for
the ones that are. Handle the old AMDIL names for comptability (although
remove their GCCBuiltin names) and add tests since there weren't any
for these before.
llvm-svn: 210827
This is a squash of several optimization commits:
- calculate DIV_Lo and DIV_Hi separately
- use BFE_U32 if we are operating on 32bit values
- use precomputed constants instead of shifting in UDVIREM
- skip the first 32 iterations of udivrem
v2: Check whether BFE is supported before using it
Patch by: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 207589
Initial implementation, rather slow
Patch by: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 207588
When legalizing ops, with UDIV/UREM set to expand, they automatically
expand to UDIVREM (if legal or custom).
We need to do this manually for legalize types.
v2:
SI should be set to Expand because the type is legal, and it is
automatically lowered to UDIVREM if UDIVREM is Legal/Custom
R600 should set to UDIV/UREM to Custom because it needs to lower them
during type legalization
Patch by: Jan Vesely
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 207587
Setting vector types to expand will result in scalarization on pre SI hw,
as those gpus don't have vector shifts either.
Expand also i32 vectors, this helps llvm make the correct decision
about scalarizing the vector ops.
v2: move setOperation() calls to R600ISelLowering.cpp.
cleanup the SI code to make it obvious that this patch does is nop for SI
Patch by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 206348