Commit Graph

457 Commits

Author SHA1 Message Date
Craig Topper ddbf51f904 [X86] Make isel select the 2-byte register form of INC/DEC even in non-64-bit mode. Convert to the 1-byte form in non-64-bit mode as part of MCInst lowering.
Overall this seems simpler. It reduces duplication of patterns between both modes and it simplifies the memory folding/unfolding tables as they don't need to create fake instructions just to keep track of 64-bitness.

llvm-svn: 225252
2015-01-06 07:35:50 +00:00
Craig Topper 49758aab94 [X86] Make isel select the shorter form of jump instructions instead of the long form.
The assembler backend will relax to the long form if necessary. This removes a swap from long form to short form in the MCInstLowering code. Selecting the long form used to be required by the old JIT.

llvm-svn: 225242
2015-01-06 04:23:53 +00:00
Keno Fischer fd22c6693b [X86][ISel] Fix a regression I introduced in r224884
The else case ResultReg was not checked for validity.
To my surprise, this case was not hit in any of the
existing test cases. This includes a new test cases
that tests this path.

Also drop the `target triple` declaration from the
original test as suggested by H.J. Lu, because
apparently with it the test won't be run on Linux

llvm-svn: 224901
2014-12-28 15:20:57 +00:00
Keno Fischer 8438b08663 [FastIsel][X86] Fix invalid register replacement for bool args
Summary:
Consider the following IR:

  %3 = load i8* undef
  %4 = trunc i8 %3 to i1
  %5 = call %jl_value_t.0* @foo(..., i1 %4, ...)
  ret %jl_value_t.0* %5

Bools (that are the result of direct truncs) are lowered as whatever
the argument to the trunc was and a "and 1", causing the part of the
MBB responsible for this argument to look something like this:

  %vreg8<def,tied1> = AND8ri %vreg7<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg8,%vreg7

Later, when the load is lowered, it will insert

  %vreg15<def> = MOV8rm %vreg14, 1, %noreg, 0, %noreg; mem:LD1[undef] GR8:%vreg15 GR64:%vreg14

but remember to (at the end of isel) replace vreg7 by vreg15. Now for
the bug. In fast isel lowering, we mistakenly mark vreg8 as the result
of the load instead of the trunc. This adds a fixup to have
vreg8 replaced by whatever the result of the load is as well, so
we end up with

  %vreg15<def,tied1> = AND8ri %vreg15<kill,tied0>, 1, %EFLAGS<imp-def>; GR8:%vreg15

which is an SSA violation and causes problems later down the road.

This fixes PR21557.

Test Plan: Test test case from PR21557 is added to the test suite.

Reviewers: ributzka

Reviewed By: ributzka

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6245

llvm-svn: 224884
2014-12-27 13:10:15 +00:00
Jan Wen Voung f547861ba0 Use 32-bit ebp for NaCl64 in a limited case: llvm.frameaddress.
Summary:
Follow up to [x32] "Use ebp/esp as frame and stack pointer":
http://reviews.llvm.org/D4617

In that earlier patch, NaCl64 was made to always use rbp.
That's needed for most cases because rbp should hold a full
64-bit address within the NaCl sandbox so that load/stores
off of rbp don't require sandbox adjustment (zeroing the top
32-bits, then filling those by adding r15).

However, llvm.frameaddress returns a pointer and pointers
are 32-bit for NaCl64. In this case, use ebp instead, which
will make the register copy type check. A similar mechanism
may be needed for llvm.eh.return, but is not added in this change.

Test Plan: test/CodeGen/X86/frameaddr.ll

Reviewers: dschuff, nadav

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D6514

llvm-svn: 223510
2014-12-05 20:55:53 +00:00
Michael Liao 5bf9578ce4 [X86] Clean up whitespace as well as minor coding style
llvm-svn: 223339
2014-12-04 05:20:33 +00:00
Craig Topper 61e88f44f9 Remove a bunch of unnecessary typecasts to 'const TargetRegisterClass *'
llvm-svn: 222509
2014-11-21 05:58:21 +00:00
Derek Schuff a54222045e [x86 fast-isel] Materialize allocas with the correct-sized lea for ILP32
Summary:
X86FastISel::fastMaterializeAlloca was incorrectly conditioning its
opcode selection on subtarget bitness rather than pointer size.

Differential Revision: http://reviews.llvm.org/D6136

llvm-svn: 221386
2014-11-05 19:27:21 +00:00
Simon Pilgrim 2f9548a3ef [X86] Memory folding for commutative instructions (updated)
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.

Updated version of r219584 (reverted in r219595) - the commutation attempt now explicitly ensures that neither of the commuted source operands are tied to the destination operand / register, which was the source of all the regressions that occurred with the original patch attempt.

Added additional regression test case provided by Joerg Sonnenberger.

Differential Revision: http://reviews.llvm.org/D5818

llvm-svn: 220239
2014-10-20 22:14:22 +00:00
NAKAMURA Takumi 75a0240056 Revert r219584, "[X86] Memory folding for commutative instructions."
It broke i686 selfhosting.

llvm-svn: 219595
2014-10-13 04:17:34 +00:00
Simon Pilgrim 77ac26d279 [X86] Memory folding for commutative instructions.
This patch improves support for commutative instructions in the x86 memory folding implementation by attempting to fold a commuted version of the instruction if the original folding fails - if that folding fails as well the instruction is 're-commuted' back to its original order before returning.

This mainly helps the stack inliner better fold reloads of 3 (or more) operand instructions (VEX encoded SSE etc.) but by performing this in the lowest foldMemoryOperandImpl implementation it also replaces the X86InstrInfo::optimizeLoadInstr version and is now used by FastISel too.

Differential Revision: http://reviews.llvm.org/D5701

llvm-svn: 219584
2014-10-12 10:52:55 +00:00
Adrian Prantl 87b7eb9d0f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl b458dc2eee Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl 25a7174e7a Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Daniel Sanders 621589e7c0 Add llvm_unreachables() for [ASZ]ExtUpper to X86FastISel.cpp to appease the buildbots.
llvm-svn: 218452
2014-09-25 13:08:51 +00:00
Juergen Ributzka d111d29f90 [FastISel] Move optimizeCmpPredicate to FastISel base class. NFC.
Make the optimizeCmpPredicate function available to all targets.

llvm-svn: 217822
2014-09-15 20:47:13 +00:00
Juergen Ributzka 88e32517c4 [FastISel][tblgen] Rename tblgen generated FastISel functions. NFC.
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.

Reviewed by Eric

llvm-svn: 217075
2014-09-03 20:56:59 +00:00
Juergen Ributzka 5b8bb4d7dd [FastISel] Rename public visible FastISel functions. NFC.
This commit renames the following public FastISel functions:
LowerArguments -> lowerArguments
SelectInstruction -> selectInstruction
TargetSelectInstruction -> fastSelectInstruction
FastLowerArguments -> fastLowerArguments
FastLowerCall -> fastLowerCall
FastLowerIntrinsicCall -> fastLowerIntrinsicCall
FastEmitZExtFromI1 -> fastEmitZExtFromI1
FastEmitBranch -> fastEmitBranch
UpdateValueMap -> updateValueMap
TargetMaterializeConstant -> fastMaterializeConstant
TargetMaterializeAlloca -> fastMaterializeAlloca
TargetMaterializeFloatZero -> fastMaterializeFloatZero
LowerCallTo -> lowerCallTo

Reviewed by Eric

llvm-svn: 217074
2014-09-03 20:56:52 +00:00
Juergen Ributzka e3698ab6e3 Reapply [FastISel][X86] Add large code model support for materializing floating-point constants (r215595).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.

Original commit message:
In the large code model for X86 floating-point constants are placed in the
constant pool and materialized by loading from it. Since the constant pool
could be far away, a PC relative load might not work. Therefore we first
materialize the address of the constant pool with a movabsq and then load
from there the floating-point value.

Fixes <rdar://problem/17674628>.

llvm-svn: 216012
2014-08-19 19:44:13 +00:00
Juergen Ributzka 89d187b387 Reapply [FastISel][X86] Use XOR to materialize the "0" value (r215594).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.

llvm-svn: 216011
2014-08-19 19:44:10 +00:00
Juergen Ributzka 4952c35afd Reapply [FastISel][X86] Emit more efficient instructions for integer constant materialization (r215593).
Note: This was originally reverted to track down a buildbot error. Reapply
without any modifications.

Original commit message:
This mostly affects the i64 value type, which always resulted in an 15byte
mobavsq instruction to materialize any constant. The custom code checks the
value of the immediate and tries to use a different and smaller mov
instruction when possible.

This fixes <rdar://problem/17420988>.

llvm-svn: 216010
2014-08-19 19:44:06 +00:00
Juergen Ributzka 790bacf232 Revert several FastISel commits to track down a buildbot error.
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."

llvm-svn: 215673
2014-08-14 19:56:28 +00:00
Juergen Ributzka 0f8bc043c5 [FastISel][X86] Add large code model support for materializing floating-point constants.
In the large code model for X86 floating-point constants are placed in the
constant pool and materialized by loading from it. Since the constant pool
could be far away, a PC relative load might not work. Therefore we first
materialize the address of the constant pool with a movabsq and then load
from there the floating-point value.

Fixes <rdar://problem/17674628>.

llvm-svn: 215595
2014-08-13 22:25:35 +00:00
Juergen Ributzka ba8b79e932 [FastISel][X86] Use XOR to materialize the "0" value.
llvm-svn: 215594
2014-08-13 22:22:17 +00:00
Juergen Ributzka 230494b399 [FastISel][X86] Emit more efficient instructions for integer constant materialization.
This mostly affects the i64 value type, which always resulted in an 15byte
mobavsq instruction to materialize any constant. The custom code checks the
value of the immediate and tries to use a different and smaller mov
instruction when possible.

This fixes <rdar://problem/17420988>.

llvm-svn: 215593
2014-08-13 22:18:11 +00:00
Juergen Ributzka 2b98e393f2 [FastISel][X86] Refactor constant materialization. NFCI.
Split the constant materialization code into three separate helper functions for
Integer-, Floating-Point-, and GlobalValue-Constants.

llvm-svn: 215586
2014-08-13 22:01:55 +00:00
Rui Ueyama 4c956fe129 [FastISel][X86] Silence -Wenum-compare warning
llvm-svn: 215253
2014-08-08 22:47:49 +00:00
Juergen Ributzka 793f28d274 [FastISel][X86] Fix INC/DEC optimization (r215230)
I accidentally also used INC/DEC for unsigned arithmetic which doesn't work,
because INC/DEC don't set the required flag which is used for the overflow
check.

llvm-svn: 215237
2014-08-08 18:47:04 +00:00
Juergen Ributzka 4022614899 [FastISel][X86] Use INC/DEC when possible for {sadd|ssub}.with.overflow intrinsics.
This is a small peephole optimization to emit INC/DEC when possible.

Fixes <rdar://problem/17952308>.

llvm-svn: 215230
2014-08-08 17:21:37 +00:00
Eric Christopher b5217507c7 Remove the target machine from CCState. Previously it was only used
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.

llvm-svn: 214988
2014-08-06 18:45:26 +00:00
Eric Christopher d913448b38 Remove the TargetMachine forwards for TargetSubtargetInfo based
information and update all callers. No functional change.

llvm-svn: 214781
2014-08-04 21:25:23 +00:00
Akira Hatanaka 3516669a50 [X86] Simplify X87 stackifier pass.
Stop using ST registers for function returns and inline-asm instructions and use
FP registers instead. This allows removing a large amount of code in the
stackifier pass that was needed to track register liveness and handle copies
between ST and FP registers and function calls returning floating point values.

It also fixes a bug which manifests when an ST register defined by an
inline-asm instruction was live across another inline-asm instruction, as shown
in the following sequence of machine instructions:

1. INLINEASM <es:frndint> $0:[regdef], %ST0<imp-def,tied5>
2. INLINEASM <es:fldcw $0>
3. %FP0<def> = COPY %ST0

<rdar://problem/16952634>

llvm-svn: 214580
2014-08-01 22:19:41 +00:00
Juergen Ributzka 39032673da [FastISel][AArch64 and X86] Don't emit stores for UNDEF arguments during function call lowering.
UNDEF arguments are not ment to be touched - especially for the webkit_js
calling convention. This fix reproduces the already existing behavior of
SelectionDAG in FastISel.

llvm-svn: 214366
2014-07-31 00:11:11 +00:00
Juergen Ributzka fa1d61e6c3 [FastISel] Move the helper function isCommutativeIntrinsic into FastISel base class.
Move the helper function isCommutativeIntrinsic into the FastISel base class,
so it can be used by more than just one backend.

llvm-svn: 214347
2014-07-30 22:04:28 +00:00
Andrea Di Biagio 04d5a7b337 Silence a warning in conditional expression.
Fixes a gcc warning caused by a typo. A redundant assignment operation was
accidentally used as the third operand of a conditional expression.
No functional change intended.

llvm-svn: 213061
2014-07-15 10:53:44 +00:00
Juergen Ributzka 8f073c8d60 [FastISel][X86] Remove no longer needed functions.
llvm-svn: 213051
2014-07-15 06:35:53 +00:00
Juergen Ributzka 3566c08dd9 [FastISel][X86] Implement the FastLowerIntrinsicCall hook.
Rename X86VisitIntrinsicCall -> FastLowerIntrinsicCall, which effectively
implements the target hook.

llvm-svn: 213050
2014-07-15 06:35:50 +00:00
Juergen Ributzka 23d43318c7 [FastISel][X86] Implement the FastLowerCall hook.
This implements the FastLowerCall hook, which is based on the DoSelectCall
function. The implementation is very similar, but the target-independent call
lowering part has been factored out.

This should also enable patchpoint intrinsic lowering for FastISel on X86.

Related to <rdar://problem/17427052>.

llvm-svn: 213049
2014-07-15 06:35:47 +00:00
Juergen Ributzka 5ee9d90248 Revert "[FastISel][X86] Remove no longer needed functions."
Revert "[FastISel][X86] Implement the FastLowerIntrinsicCall hook."
Revert "[FastISel][X86] Implement the FastLowerCall hook."

This reverts commit r213035, r213036, and r213037 to make the
buildbots happy again.

llvm-svn: 213048
2014-07-15 05:23:40 +00:00
Juergen Ributzka 9fbf33d70f [FastISel][X86] Remove no longer needed functions.
llvm-svn: 213037
2014-07-15 02:22:56 +00:00
Juergen Ributzka 170f9354bb [FastISel][X86] Implement the FastLowerIntrinsicCall hook.
Rename X86VisitIntrinsicCall -> FastLowerIntrinsicCall, which effectively
implements the target hook.

llvm-svn: 213036
2014-07-15 02:22:53 +00:00
Juergen Ributzka a9cced8a94 [FastISel][X86] Implement the FastLowerCall hook.
This implements the FastLowerCall hook, which is based on the DoSelectCall
function. The implementation is very similar, but the target-independent call
lowering part has been factored out.

This should also enable patchpoint intrinsic lowering for FastISel on X86.

Related to <rdar://problem/17427052>.

llvm-svn: 213035
2014-07-15 02:22:49 +00:00
Juergen Ributzka d755e9f730 Revert "[FastISel][X86] Implement the FastLowerIntrinsicCall hook."
This reverts commit r212851, because it broke the memset lowering.

llvm-svn: 212855
2014-07-11 23:10:08 +00:00
Juergen Ributzka 04b444913b [FastISel][X86] Implement the FastLowerIntrinsicCall hook.
Rename X86VisitIntrinsicCall -> FastLowerIntrinsicCall, which effectively
implements the target hook.

llvm-svn: 212851
2014-07-11 22:37:43 +00:00
Juergen Ributzka 665ea71fcd [FastISel][X86] Fix smul.with.overflow.i8 lowering.
Add custom lowering code for signed multiply instruction selection, because the
default FastISel instruction selection for ISD::MUL will use unsigned multiply
for the i8 type and signed multiply for all other types. This would set the
incorrect flags for the overflow check.

This fixes <rdar://problem/17549300>

llvm-svn: 212493
2014-07-07 21:52:21 +00:00
Tim Northover 3705283b24 X86: revert unintentional change to X86FastISel.
This crept in with r212443.

llvm-svn: 212459
2014-07-07 14:06:42 +00:00
Tim Northover 55beb64bd0 CodeGen: it turns out that NAND is not the same thing as BIC. At all.
We've been performing the wrong operation on ARM for "atomicrmw nand" for
years, since "a NAND b" is "~(a & b)" rather than ARM's very tempting "a & ~b".
This bled over into the generic expansion pass.

So I assume no-one has ever actually tried to do an atomic nand in the real
world. Oh well.

llvm-svn: 212443
2014-07-07 09:06:35 +00:00
Saleem Abdulrasool e3c3fe53eb X86: fix comment
Fix a comment typo `DbgLocLImport` instead of `DLLImport`.

llvm-svn: 212012
2014-06-30 03:11:18 +00:00
Juergen Ributzka 345589e257 [FastISel][X86] Fix typos.
llvm-svn: 211911
2014-06-27 17:16:34 +00:00
Craig Topper 9f62d8006a Rename getX86ConditonCode -> getX86ConditionCode
llvm-svn: 211869
2014-06-27 05:18:21 +00:00