Commit Graph

7 Commits

Author SHA1 Message Date
Greg Clayton 274060b6f1 Fixed an issue where we were resolving paths when we should have been.
So the issue here was that we have lldb_private::FileSpec that by default was 
always resolving a path when using the:

FileSpec::FileSpec (const char *path);

and in the:

void FileSpec::SetFile(const char *pathname, bool resolve = true);

This isn't what we want in many many cases. One example is you have "/tmp" on
your file system which is really "/private/tmp". You compile code in that
directory and end up with debug info that mentions "/tmp/file.c". Then you 
type:

(lldb) breakpoint set --file file.c --line 5

If your current working directory is "/tmp", then "file.c" would be turned 
into "/private/tmp/file.c" which won't match anything in the debug info.
Also, it should have been just a FileSpec with no directory and a filename
of "file.c" which could (and should) potentially match any instances of "file.c"
in the debug info.

So I removed the constructor that just takes a path:

FileSpec::FileSpec (const char *path); // REMOVED

You must now use the other constructor that has a "bool resolve" parameter that you must always supply:

FileSpec::FileSpec (const char *path, bool resolve);

I also removed the default parameter to SetFile():

void FileSpec::SetFile(const char *pathname, bool resolve);

And fixed all of the code to use the right settings.

llvm-svn: 116944
2010-10-20 20:54:39 +00:00
Jason Molenda fbcb7f2c4e The first part of an lldb native stack unwinder.
The Unwind and RegisterContext subclasses still need
to be finished; none of this code is used by lldb at
this point (unless you call into it by hand).

The ObjectFile class now has an UnwindTable object.

The UnwindTable object has a series of FuncUnwinders
objects (Function Unwinders) -- one for each function
in that ObjectFile we've backtraced through during this
debug session.

The FuncUnwinders object has a few different UnwindPlans.
UnwindPlans are a generic way of describing how to find
the canonical address of a given function's stack frame
(the CFA idea from DWARF/eh_frame) and how to restore the
caller frame's register values, if they have been saved
by this function.

UnwindPlans are created from different sources.  One source is the
eh_frame exception handling information generated by the compiler
for unwinding an exception throw.  Another source is an assembly
language inspection class (UnwindAssemblyProfiler, uses the Plugin
architecture) which looks at the instructions in the funciton
prologue and describes the stack movements/register saves that are
done.

Two additional types of UnwindPlans that are worth noting are
the "fast" stack UnwindPlan which is useful for making a first
pass over a thread's stack, determining how many stack frames there
are and retrieving the pc and CFA values for each frame (enough
to create StackFrameIDs).  Only a minimal set of registers is
recovered during a fast stack walk.  

The final UnwindPlan is an architectural default unwind plan.
These are provided by the ArchDefaultUnwindPlan class (which uses
the plugin architecture).  When no symbol/function address range can
be found for a given pc value -- when we have no eh_frame information
and when we don't have a start address so we can't examine the assembly
language instrucitons -- we have to make a best guess about how to 
unwind.  That's when we use the architectural default UnwindPlan.
On x86_64, this would be to assume that rbp is used as a stack pointer
and we can use that to find the caller's frame pointer and pc value.
It's a last-ditch best guess about how to unwind out of a frame.

There are heuristics about when to use one UnwindPlan versues the other --
this will all happen in the still-begin-written UnwindLLDB subclass of
Unwind which runs the UnwindPlans.

llvm-svn: 113581
2010-09-10 07:49:16 +00:00
Chris Lattner 311adf3d5b eliminate some clang warnings.
llvm-svn: 113438
2010-09-08 23:01:14 +00:00
Greg Clayton e1a916a74d Change over to using the definitions for mach-o types and defines to the
defines that are in "llvm/Support/MachO.h". This should allow ObjectFileMachO
and ObjectContainerUniversalMachO to be able to be cross compiled in Linux.

Also did some cleanup on the ASTType by renaming it to ClangASTType and
renaming the header file. Moved a lot of "AST * + opaque clang type *"
functionality from lldb_private::Type over into ClangASTType.

llvm-svn: 109046
2010-07-21 22:12:05 +00:00
Greg Clayton c982c768d2 Merged Eli Friedman's linux build changes where he added Makefile files that
enabled LLVM make style building and made this compile LLDB on Mac OS X. We
can now iterate on this to make the build work on both linux and macosx.

llvm-svn: 108009
2010-07-09 20:39:50 +00:00
Greg Clayton 41f923275e Made lldb_private::ArchSpec more generic so that it can take a mach-o cpu
type and sub-type, or an ELF e_machine value. Also added a generic CPU type
to the arch spec class so we can have a single arch definition that the LLDB
core code can use. Previously a lot of places in the code were using the
mach-o definitions from a macosx header file. 

Switches over to using "llvm/Support/MachO.h" for the llvm::MachO::XXX for the
CPU types and sub types for mach-o ArchSpecs. Added "llvm/Support/ELF.h" so 
we can use the "llvm::ELF::XXX" defines for the ELF ArchSpecs.

Got rid of all CPU_TYPE_ and CPU_SUBTYPE_ defines that were previously being
used in LLDB.

llvm-svn: 105806
2010-06-11 03:25:34 +00:00
Chris Lattner 30fdc8d841 Initial checkin of lldb code from internal Apple repo.
llvm-svn: 105619
2010-06-08 16:52:24 +00:00