If the basic block containing the BCCi64 (or BCCZi64) instruction ends with
an unconditional branch, that branch needs to be deleted before appending
the expansion of the BCCi64 to the end of the block.
llvm-svn: 122521
Type legalization splits up i64 values into pairs of i32 values, which leads
to poor quality code when inserting or extracting i64 vector elements.
If the vector element is loaded or stored, it can be treated as an f64 value
and loaded or stored directly from a VPR register. Use the pre-legalization
DAG combiner to cast those vector elements to f64 types so that the type
legalizer won't mess them up. Radar 8755338.
llvm-svn: 122319
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
legalization time. Since at legalization time there is no mapping from
SDNode back to the corresponding LLVM instruction and the return
SDNode is target specific, this requires a target hook to check for
eligibility. Only x86 and ARM support this form of sibcall optimization
right now.
rdar://8707777
llvm-svn: 120501
We need to check if the individual vector elements are sign/zero-extended
values. For now this only handles constants values. Radar 8687140.
llvm-svn: 120034
This function was being called from two different places for completely
unrelated reasons. During type legalization, it was called to expand 64-bit
shift operations. During operation legalization, it was called to handle
Neon vector shifts. The vector shift code was not written to check for
illegal types, since it was assumed to be only called after type legalization.
Fixed this by splitting off the 64-bit shift expansion into a separate
function. I don't have a particular testcase for this; I just noticed it
by inspection.
llvm-svn: 119738
It is only supported for ARM code. Normally Thumb2 code would use DMB instead,
but depending on how the compiler is invoked (e.g., -mattr=-db) that might be
disabled. This prevents a "cannot select MEMBARRIER_MCR" error in that
situation. Radar 8644195
llvm-svn: 118642
There were a number of issues to fix up here:
* The "device" argument of the llvm.memory.barrier intrinsic should be
used to distinguish the "Full System" domain from the "Inner Shareable"
domain. It has nothing to do with using DMB vs. DSB instructions.
* The compiler should never need to emit DSB instructions. Remove the
ARMISD::SYNCBARRIER node and also remove the instruction patterns for DSB.
* Merge the separate DMB/DSB instructions for options only used for the
disassembler with the default DMB/DSB instructions. Add the default
"full system" option ARM_MB::SY to the ARM_MB::MemBOpt enum.
* Add a separate ARMISD::MEMBARRIER_MCR node for subtargets that implement
a data memory barrier using the MCR instruction.
* Fix up encodings for these instructions (except MCR).
I also updated the tests and added a few new ones to check for DMB options
that were not currently being exercised.
llvm-svn: 117756
elements than the result vector type. So, when an instruction like:
%8 = shufflevector <2 x float> %4, <2 x float> %7, <4 x i32> <i32 1, i32 0, i32 3, i32 2>
is translated to a DAG, each operand is changed to a concat_vectors node that appends 2 undef elements. That is:
shuffle [a,b], [c,d] is changed to:
shuffle [a,b,u,u], [c,d,u,u]
That's probably the right thing for x86 but for NEON, we'd much rather have:
shuffle [a,b,c,d], undef
Teach the DAG combiner how to do that transformation for ARM. Radar 8597007.
llvm-svn: 117482
new VariantKind to the MCSymbolExpr seems like overkill, but I'm not sure
there's a more straightforward way to get the printing difference captured.
(i.e., x86 uses @PLT, ARM uses (PLT)).
llvm-svn: 114613
CombineTo to avoid putting the result on the worklist. I don't think it makes
much difference for now, but it might help someday as we add more DAG
combine optimizations.
llvm-svn: 114595