Diagnose 'unreachable' UB when a noreturn function returns.
1. Insert a check at the end of functions marked noreturn.
2. A decl may be marked noreturn in the caller TU, but not marked in
the TU where it's defined. To diagnose this scenario, strip away the
noreturn attribute on the callee and insert check after calls to it.
Testing: check-clang, check-ubsan, check-ubsan-minimal, D40700
rdar://33660464
Differential Revision: https://reviews.llvm.org/D40698
llvm-svn: 321231
This patch introduces a specialized way to lower overflow-checked
multiplications with mixed-sign operands. This fixes link failures and
ICEs on code like this:
void mul(int64_t a, uint64_t b) {
int64_t res;
__builtin_mul_overflow(a, b, &res);
}
The generic checked-binop irgen would use a 65-bit multiplication
intrinsic here, which requires runtime support for _muloti4 (128-bit
multiplication), and therefore fails to link on i386. To get an ICE
on x86_64, change the example to use __int128_t / __uint128_t.
Adding runtime and backend support for 65-bit or 129-bit checked
multiplication on all of our supported targets is infeasible.
This patch solves the problem by using simpler, specialized irgen for
the mixed-sign case.
llvm.org/PR34920, rdar://34963321
Testing: Apart from check-clang, I compared the output from this fairly
comprehensive test driver using unpatched & patched clangs:
https://gist.github.com/vedantk/3eb9c88f82e5c32f2e590555b4af5081
Differential Revision: https://reviews.llvm.org/D41149
llvm-svn: 320902
Summary:
InterlockedCompareExchange128 is a bit more complicated than the other
InterlockedCompareExchange functions, so it requires a bit more work. It
doesn't directly refer to 128bit ints, instead it takes pointers to
64bit ints for Destination and ComparandResult, and exchange is taken as
two 64bit ints (high & low). The previous value is written to
ComparandResult, and success is returned. This implementation does the
following in order to produce a cmpxchg instruction:
1. Cast everything to 128bit ints or int pointers, and glues together
the Exchange values
2. Reads from CompareandResult to get the comparand
3. Calls cmpxchg volatile (on X86 this will produce a lock cmpxchg16b
instruction)
1. Result 0 (previous value) is written back to ComparandResult
2. Result 1 (success bool) is zext'ed to a uchar and returned
Resolves bug https://llvm.org/PR35251
Patch by Colden Cullen!
Reviewers: rnk, agutowski
Reviewed By: rnk
Subscribers: majnemer, cfe-commits
Differential Revision: https://reviews.llvm.org/D41032
llvm-svn: 320730
There are 20 LLVM math intrinsics that correspond to mathlib calls according to the LangRef:
http://llvm.org/docs/LangRef.html#standard-c-library-intrinsics
We were only converting 3 mathlib calls (sqrt, fma, pow) and 12 builtin calls (ceil, copysign,
fabs, floor, fma, fmax, fmin, nearbyint, pow, rint, round, trunc) to their intrinsic-equivalents.
This patch pulls the transforms together and handles all 20 cases. The switch is guarded by a
check for const-ness to make sure we're not doing the transform if errno could possibly be set by
the libcall or builtin.
Differential Revision: https://reviews.llvm.org/D40044
llvm-svn: 319593
Summary:
The -fxray-always-emit-customevents flag instructs clang to always emit
the LLVM IR for calls to the `__xray_customevent(...)` built-in
function. The default behaviour currently respects whether the function
has an `[[clang::xray_never_instrument]]` attribute, and thus not lower
the appropriate IR code for the custom event built-in.
This change allows users calling through to the
`__xray_customevent(...)` built-in to always see those calls lowered to
the corresponding LLVM IR to lay down instrumentation points for these
custom event calls.
Using this flag enables us to emit even just the user-provided custom
events even while never instrumenting the start/end of the function
where they appear. This is useful in cases where "phase markers" using
__xray_customevent(...) can have very few instructions, must never be
instrumented when entered/exited.
Reviewers: rnk, dblaikie, kpw
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D40601
llvm-svn: 319388
LLVM exposes a file in the backend (X86TargetParser.def) that
contains information about the correct list of CpuIs values.
This patch removes 2 of the copied and pasted versions of this
list from clang and instead includes the data from the .def file.
Differential Revision: https://reviews.llvm.org/D40054
llvm-svn: 318234
cbrt() is always constant because it can't overflow or underflow. Therefore, it can't set errno.
fma() is not always constant because it can overflow or underflow. Therefore, it can set errno.
But we know that it never sets errno on GNU / MSVC, so make it constant in those environments.
Differential Revision: https://reviews.llvm.org/D39641
llvm-svn: 318093
Summary:
This just seems to have been an oversight. We already supported the f64
atomic add with an explicit scope (e.g. "cta"), but not the scopeless
version.
Reviewers: tra
Subscribers: jholewinski, sanjoy, cfe-commits, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D39638
llvm-svn: 317623
The LLVM sqrt intrinsic definition changed with:
D28797
...so we don't have to use any relaxed FP settings other than errno handling.
This patch sidesteps a question raised in PR27435:
https://bugs.llvm.org/show_bug.cgi?id=27435
Is a programmer using __builtin_sqrt() invoking the compiler's intrinsic definition of sqrt or the mathlib definition of sqrt?
But we have an answer now: the builtin should match the behavior of the libm function including errno handling.
Differential Revision: https://reviews.llvm.org/D39204
llvm-svn: 317031
In OpenCL the kernel function and non-kernel function has different calling conventions.
For certain targets they have different argument ABIs. Also kernels have special function
attributes and metadata for runtime to launch them.
The blocks passed to enqueue_kernel is supposed to be executed as kernels. As such,
the block invoke function should be emitted as kernel with proper calling convention and
argument ABI.
This patch emits enqueued block as kernel. If a block is both called directly and passed
to enqueue_kernel, separate functions will be generated.
Differential Revision: https://reviews.llvm.org/D38134
llvm-svn: 315804
The Cpu Init functionality is required for the target
attribute, so this patch simply splits it out into its own
function, exactly like CpuIs and CpuSupports.
llvm-svn: 315075
code size.
Currently clang expands a call to __builtin_os_log_format into a long
sequence of instructions at the call site, causing code size to
increase in some cases.
This commit attempts to reduce code size by emitting a helper function
that can be shared by calls to __builtin_os_log_format with similar
formats and arguments. The helper function has linkonce_odr linkage to
enable the linker to merge identical functions across translation units.
Attribute 'noinline' is attached to the helper function at -Oz so that
the inliner doesn't inline functions that can potentially be merged.
This commit also fixes a bug where the generated IR writes past the end
of the buffer when "%m" is the last specifier appearing in the format
string passed to __builtin_os_log_format.
Original patch by Duncan Exon Smith.
rdar://problem/34065973
rdar://problem/34196543
Differential Revision: https://reviews.llvm.org/D38606
llvm-svn: 315045
Summary:
Restore the `__builtin_wasm_rethrow` builtin deleted in D37931. On second
thought, it appears it can be used to implement `__cxa_rethrow`.
Reviewers: dschuff, sunfish
Reviewed By: dschuff
Subscribers: jfb, sbc100, jgravelle-google
Differential Revision: https://reviews.llvm.org/D37942
llvm-svn: 313430
This patch replaces the perm2f128 intrinsics with native shuffle vectors.
This uses a pretty simple approach to allocate source 0 to the lower half input and source 1 to the upper half input. Then its just a matter of filling in the indices to use either the lower or upper half of that specific source. This can result in the same source being used by both operands. InstCombine or SelectionDAGBuilder should be able to clean that up.
Differential Revision: https://reviews.llvm.org/D37892
llvm-svn: 313418
Summary:
Remove `__builtin_wasm_rethrow` builtin. I thought it was required to implement
`__cxa_rethrow` function in libcxxabi, but it turned out it will be using
`__builtin_wasm_throw` instead.
Reviewers: dschuff, jgravelle-google
Reviewed By: jgravelle-google
Subscribers: jfb, sbc100, jgravelle-google
Differential Revision: https://reviews.llvm.org/D37931
llvm-svn: 313402
Not all targets support vararg (e.g. amdgpu). Instead of using vararg in the emitted functions for enqueue_kernel,
this patch creates a temporary array of size_t, stores the size arguments in the temporary array
and passes it to the emitted functions for enqueue_kernel.
Differential Revision: https://reviews.llvm.org/D36678
llvm-svn: 312441
"target" implementation
A small set of refactors that'll make it easier for me to implement 'target'
support.
First, extract the CPUSupports functionality into its own function.
THis has the advantage of not wasting time in this builtin to deal with
arguments.
Second, pulls both CPUSupports and CPUIs implementation into a member-function,
so that it can be called from the resolver generation that I'm working on.
Third, creates an overload that takes simply the feature/cpu name (rather than
extracting it from a callexpr), since that info isn't available later.
Note that despite how the 'diff' looks, the EmitX86CPUSupports function simply
takes the implementation out of the 'switch'.
llvm-svn: 312355
This adds builtin_cpu_init which will emit a call to cpu_indicator_init in libgcc or compiler-rt.
This is needed to support builtin_cpu_supports/builtin_cpu_is in an ifunc resolver.
Differential Revision: https://reviews.llvm.org/D36336
llvm-svn: 311874
the interface.
The ultimate goal here is to make it easier to do some more interesting
things in constant emission, like emit constant initializers that have
ignorable side-effects, or doing the majority of an initialization
in-place and then patching up the last few things with calls. But for
now this is mostly just a refactoring.
llvm-svn: 310964
This patch adds support for __builtin_cpu_is. I've tried to match the strings supported to the latest version of gcc.
Differential Revision: https://reviews.llvm.org/D35449
llvm-svn: 310657
They still need to be implemented in the intrinsics, the command line, and the backend. But this change isn't dependent on any of that and resolves a TODO.
llvm-svn: 310386
On some targets, passing zero to the clz() or ctz() builtins has undefined
behavior. I ran into this issue while debugging UB in __hash_table from libcxx:
the bug I was seeing manifested itself differently under -O0 vs -Os, due to a
UB call to clz() (see: libcxx/r304617).
This patch introduces a check which can detect UB calls to builtins.
llvm.org/PR26979
Differential Revision: https://reviews.llvm.org/D34590
llvm-svn: 309459
Move builtins from the x86 specific scope into the global
scope. Their use is still limited to x86_64 and aarch64 though.
This allows wine on aarch64 to properly handle variadic functions.
Differential Revision: https://reviews.llvm.org/D34475
llvm-svn: 308218
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for low-level builtins mapped to new LLVM intrinsics.
Support for the -fzvector extension to vector float and the new
high-level vector intrinsics is provided by separate patches.
llvm-svn: 308197