output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
Re applying after fixing issues in the diff, sorry for any painful conflicts/merges!
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319430
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
Summary:
Original RFC: http://lists.llvm.org/pipermail/llvm-dev/2017-August/117028.html
I wasn't sure who to put as reviewers, so please add/remove people as appropriate.
This change adds a '.stack-size' section containing metadata on function stack sizes to output ELF files behind the new -stack-size-section flag. The section contains pairs of function symbol references (8 byte) and stack sizes (unsigned LEB128).
The contents of this section can be used to measure changes to stack sizes between different versions of the compiler or a source base. The advantage of having a section is that we can extract this information when examining binaries that we didn't build, and it allows users and tools easy access to that information just by referencing the binary.
There is a follow up change to add an option to clang.
Thanks.
Reviewers: hfinkel, MatzeB
Reviewed By: MatzeB
Subscribers: thegameg, asb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39788
llvm-svn: 319423
visitAND attempts to narrow the width of extending loads that are
then masked off. ReduceLoadWidth already exists for a similar purpose
and handles shifts, so I've moved the code to handle AND nodes there.
Differential Revision: https://reviews.llvm.org/D39595
llvm-svn: 319421
If we put in an assertsext/zext here, we're able to generate better truncate code using pack on pre-avx512 targets.
Similar is already done during type legalization. This is the equivalent for op legalization
Differential Revision: https://reviews.llvm.org/D40591
llvm-svn: 319368
If common type is different we should bail out due to we will not be
able to create a select or Phi of these values.
Basically it is done in ExtAddrMode::compare however it does not work
if we handle the null first and then two values of different types.
so add a check in initializeMap as well. The check in ExtAddrMode::compare
is used as earlier bail out.
Reviewers: reames, john.brawn
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40479
llvm-svn: 319292
The object can't straddle the address space
wrap around, so I think it's OK to assume any
offsets added to the base object pointer can't
overflow. Similar logic already appears to be
applied in SelectionDAGBuilder when lowering
aggregate returns.
llvm-svn: 319272
Previously we had an isel pattern to add the truncate. Instead use Promote to add the truncate to the DAG before isel.
The Promote legalization code had to be updated to prevent an infinite loop if promotion took multiple steps because it wasn't remembering the previously tried value.
llvm-svn: 319259
Summary:
Recommitting this with the correct sorting predicate. The Low field of Clusters is a ConstantInt and
cannot be directly compared. So we needed to invoke slt (signed less than) to compare correctly.
This fixes failures in the following tests uncovered by D39245:
LLVM :: CodeGen/ARM/ifcvt3.ll
LLVM :: CodeGen/ARM/switch-minsize.ll
LLVM :: CodeGen/X86/switch.ll
LLVM :: CodeGen/X86/switch-bt.ll
LLVM :: CodeGen/X86/switch-density.ll
Reviewers: hans, fhahn
Reviewed By: hans
Subscribers: aemerson, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D40541
llvm-svn: 319210
Summary:
They're not always mutually exclusive. read-modify-write atomics are both
at the same time. One example of this is the SWP instructions on AArch64.
Another example is GlobalISel's G_ATOMICRMW_* generic instructions which
will be added in a later patch.
Reviewers: arphaman, aemerson
Reviewed By: aemerson
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D40157
llvm-svn: 319202
The motivation behind this patch is that future directions require us to
be able to compute the hash value of records independently of actually
using them for de-duplication.
The current structure of TypeSerializer / TypeTableBuilder being a
single entry point that takes an unserialized type record, and then
hashes and de-duplicates it is not flexible enough to allow this.
At the same time, the existing TypeSerializer is already extremely
complex for this very reason -- it tries to be too many things. In
addition to serializing, hashing, and de-duplicating, ti also supports
splitting up field list records and adding continuations. All of this
functionality crammed into this one class makes it very complicated to
work with and hard to maintain.
To solve all of these problems, I've re-written everything from scratch
and split the functionality into separate pieces that can easily be
reused. The end result is that one class TypeSerializer is turned into 3
new classes SimpleTypeSerializer, ContinuationRecordBuilder, and
TypeTableBuilder, each of which in isolation is simple and
straightforward.
A quick summary of these new classes and their responsibilities are:
- SimpleTypeSerializer : Turns a non-FieldList leaf type into a series of
bytes. Does not do any hashing. Every time you call it, it will
re-serialize and return bytes again. The same instance can be re-used
over and over to avoid re-allocations, and in exchange for this
optimization the bytes returned by the serializer only live until the
caller attempts to serialize a new record.
- ContinuationRecordBuilder : Turns a FieldList-like record into a series
of fragments. Does not do any hashing. Like SimpleTypeSerializer,
returns references to privately owned bytes, so the storage is
invalidated as soon as the caller tries to re-use the instance. Works
equally well for LF_FIELDLIST as it does for LF_METHODLIST, solving a
long-standing theoretical limitation of the previous implementation.
- TypeTableBuilder : Accepts sequences of bytes that the user has already
serialized, and inserts them by de-duplicating with a hash table. For
the sake of convenience and efficiency, this class internally stores a
SimpleTypeSerializer so that it can accept unserialized records. The
same is not true of ContinuationRecordBuilder. The user is required to
create their own instance of ContinuationRecordBuilder.
Differential Revision: https://reviews.llvm.org/D40518
llvm-svn: 319198
As part of the unification of the debug format and the MIR format,
always print registers as lowercase.
* Only debug printing is affected. It now follows MIR.
Differential Revision: https://reviews.llvm.org/D40417
llvm-svn: 319187
This is needed for cases when the memory access is not as big as the width of
the data type. For instance, storing i1 (1 bit) would be done in a byte (8
bits).
Using 'BitSize >> 3' (or '/ 8') would e.g. give the memory access of an i1 a
size of 0, which for instance makes alias analysis return NoAlias even when
it shouldn't.
There are no tests as this was done as a follow-up to the bugfix for the case
where this was discovered (r318824). This handles more similar cases.
Review: Björn Petterson
https://reviews.llvm.org/D40339
llvm-svn: 319173
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
The priorities in the section name suffixes are zero padded,
allowing the linker to just do a lexical sort.
Add zero padding for .ctors sections in ELF as well.
Differential Revision: https://reviews.llvm.org/D40407
llvm-svn: 319150
Unoptimized IR can have linear sequences of stores to an array, where the
initial GEP for the first store is formed from the pointer to the array, and the
GEP for each store after the first is formed from the previous GEP with some
offset in an inductive fashion.
The (large) resulting DAG when analyzed by DAGCombine undergoes an excessive
number of combines as each store node is examined every time its' offset node
is combined with any child of the offset. One of the transformations is
findBetterNeighborChains which assists MergeConsecutiveStores. The former
relies on repeated chain walking to do its' work, however MergeConsecutiveStores
is disabled at O0 which makes the transformation redundant.
Any optimization level other than O0 would invoke InstCombine which would
resolve the chain of GEPs into flat base + offset GEP for each store which
does not exhibit the repeated examination of each store to the array.
Disabling this optimization fixes an excessive compile time issue (30~ minutes
for the test case provided) at O0.
Reviewers: niravd, craig.topper, t.p.northover
Differential Revision: https://reviews.llvm.org/D40193
llvm-svn: 319142
This fixes cases where we wouldn't perform various register operand
checks just because we didn't happen to have a definition in the
MCInstrDesc. This changes the code to only skip the tests that actually
depend on the MCInstrDesc definition.
This makes the machine verifier spot the problem from
https://llvm.org/PR33071 after the pass that actually caused it.
llvm-svn: 319141
Additional checks for phi operands:
- first operand should be a virtual register def. It should not be
tied, implicit, internalread, earlyclobber or a read.
- The other operands should be register/mbb operands next to each other
- The register operands should not be implicit, internalread,
earlyclobber, debug or tied.
- We can perform most of the PHI checks even for unreachable blocks.
llvm-svn: 319140
With AVX512 vXi1 types are legal so we shouldn't be extending them.
This change is similar to existing code in the zext(setcc) combine.
llvm-svn: 319120
The current way that trivial addressing modes are detected incorrectly thinks
that null pointers are non-trivial, leading to an infinite loop where we keep
duplicating the same select. Fix this by aware of null when deciding if an
addressing mode is trivial.
Differential Revision: https://reviews.llvm.org/D40447
llvm-svn: 319019
Summary:
Currently ScalarizeVecRes_SETCC checks for the result type being a vector and jumps to ScalarizeVecRes_VSETCC. But if we're scalarizing a vector result, aren't we guaranteed to be looking at a vector type?
This patch deletes the current ScalarizeVecRes_SETCC and renames ScalarizeVecRes_VSETCC to ScalarizeVecRes_SETCC.
Reviewers: RKSimon, arsenm, eladcohen, zvi
Reviewed By: RKSimon
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D40452
llvm-svn: 318982
CodeGenPrepare sinks address computations from one basic block to another
and attempts to reuse address computations that have already been sunk. If
the same address computation appears twice with the first instance as an
operand of a load whose result is an operand to a simplifable select,
CodeGenPrepare simplifies the select and recursively erases the now dead
instructions. CodeGenPrepare then attempts to use the erased address
computation for the second load.
Fix this by erasing the cached address value if it has zero uses before
looking for the address value in the sunken address map.
This partially resolves PR35209.
Thanks to Alexander Richardson for reporting the issue!
This fixed version relands r318032 which was reverted in r318049 due to
sanitizer buildbot failures.
Reviewers: john.brawn
Differential Revision: https://reviews.llvm.org/D39841
llvm-svn: 318956
This patch extends the recent work in optimizeMemoryInst to make it able to
combine more ExtAddrMode fields than just the BaseReg.
This fixes some benchmark regressions introduced by r309397, where GVN PRE is
hoisting a getelementptr such that it can no longer be combined into the
addressing mode of the load or store that uses it.
Differential Revision: https://reviews.llvm.org/D38133
llvm-svn: 318949
TableGen already generates code for selecting a G_FDIV, so we only need
to add a test.
For the legalizer and reg bank select, we do the same thing as for the
other floating point binary operations: either mark as legal if we have
a FP unit or lower to a libcall, and map to the floating point
registers.
llvm-svn: 318915
TableGen already generates code for selecting a G_FMUL, so we only need
to add a test for that part.
For the legalizer and reg bank select, we do the same thing as the other
floating point binary operators: either mark as legal if we have a FP
unit or lower to a libcall, and map to the floating point registers.
llvm-svn: 318910
This patch reverts change to X86TargetLowering::getScalarShiftAmountTy in
rL318727 and move the logic to DAGTypeLegalizer::SplitInteger.
The reason is that getScalarShiftAmountTy returns a shift amount type that
is suitable for common use cases in CodeGen. DAGTypeLegalizer::SplitInteger
is a rare situation which requires a shift amount type larger than what
getScalarShiftAmountTy. In this case, it is more reasonable to do special
handling of shift amount type in DAGTypeLegalizer::SplitInteger only. If
similar situations arises the logic may be moved to a separate function.
Differential Revision: https://reviews.llvm.org/D40320
llvm-svn: 318890
Since i1 is a legal type, this:
NumBytes = Op1->getMemoryVT().getSizeInBits() >> 3;
is wrong and should be instead
NumBytes = Op0->getMemoryVT().getStoreSize();
There seems to be more places where this should be fixed outside DAGCombiner.
Review: Hal Finkel
https://bugs.llvm.org/show_bug.cgi?id=35366
llvm-svn: 318824
DAGTypeLegalizer::SplitInteger uses default pointer size as shift amount constant type,
which causes less performant ISA in amdgcn---amdgiz target since the default pointer
type is i64 whereas the desired shift amount type is i32.
This patch fixes that by using TLI.getScalarShiftAmountTy in DAGTypeLegalizer::SplitInteger.
The X86 change is necessary since splitting i512 requires shifting amount of 256, which
cannot be held by i8.
Differential Revision: https://reviews.llvm.org/D40148
llvm-svn: 318727
Normally this would be cleaned up by promoting the condition operand next. But in the attached case we promoted the result from v2i48 to v2i64 and the condition from v2i1 to v2i48. Then we tried to "promote" the v2i48 condition back to v2i1 because that's what the SetCC result type for v2i64 is on X86 with VLX. But promote is either a NOP or SIGN_EXTEND and this would need a truncation.
With the change here we now get the SetCC type of v2i1 when we're handling the result promotion and the operand no longer needs to be promoted itself.
Fixes PR35272.
llvm-svn: 318706
MachineSink attempts to place instructions near the basic blocks where
they are needed. Once an instruction has been sunk, its location
relative to other instructions is no longer consistent with the
original source code. In order to ensure correct single-stepping and
profiling, the debug location for sunk instructions is either merged
with the insertion point or erased if the target successor block is
empty.
Patch by Matthew Voss!
Differential Revision: https://reviews.llvm.org/D39933
llvm-svn: 318679
The instructions addis,addi, bl are used to calculate the address of TLS thread
local variables. These TLS access code sequences are generated repeatedly every
time the thread local variable is accessed. By communicating to Machine CSE that
X2 is guaranteed to have the same value within the same function call (so called
Caller Preserved Physical Register), the redundant TLS access code sequences are
cleaned up.
Differential Revision: https://reviews.llvm.org/D39173
llvm-svn: 318661
We must collect all AddModes even if they are the same.
This is due to Original value is different but we need all original
values collected as they are used as anchors in common phi finding.
Reviewers: john.brawn, reames
Reviewed By: john.brawn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40166
llvm-svn: 318638
Instead of asserting that the type sizes are exactly equal, we check
that the new size is big enough to contain the original type.
We have to relax this constrain because, right now, we sometimes
specify that things that are smaller than a storage type are legal
instead of widening everything to the size of a storage type.
E.g., we say that G_AND s16 is legal and we map that on GPR32.
This is something we may revisit in the future (either by changing
the legalization process or keeping track separately of the storage
size and the size of the type), but let us reflect the reality of
the situation for now.
llvm-svn: 318587
If a vreg's bank is specified in the registers block and one of its
defs or uses also specifies the bank, we end up checking that the
RegBank is equal to diagnose conflicting banks. The problem comes up
for generic vregs, where we weren't fully initializing the VRegInfo
when parsing the registers block, so we'd end up comparing a null
pointer to uninitialized memory.
This fixes a non-deterministic failure when round tripping through MIR
with generic vregs.
llvm-svn: 318543
Previously we were assuming all results were vectors and calling SetWidenedVector, but if its a chain result we should just replace uses instead.
This fixes an error found by expensive checks after r318368.
llvm-svn: 318509
TransferDbgValues (capital 'T') is wired into ReplaceAllUsesWith, and
transferDbgValues (lowercase 't') is used elsewhere (e.g in Legalize).
Both functions should be doing the exact same thing. This patch
consolidates the logic into one place.
This was reverted in r318455 because some newly introduced asserts,
which I thought were NFC, were firing. I filed PR35338. For now I've
weakened the asserts.
Testing: check-llvm, check-clang, and a stage2 Rel+Deb build of clang
Differential Revision: https://reviews.llvm.org/D40104
llvm-svn: 318498
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
The sign extend might be from an i16 or i8 type and was inserted by InstCombine to match the pointer width. X86 gather legalization isn't currently detecting this to reinsert a sign extend to make things legal.
It's a bit weird for the SelectionDAGBuilder to do this kind of optimization in the first place. With this removed we can at least lean on InstCombine somewhat to ensure the index is i32 or i64.
I'll work on trying to recover some of the test cases by removing sign extends in the backend when its safe to do so with an understanding of the current legalizer capabilities.
This should fix PR30690.
llvm-svn: 318466
TransferDbgValues (capital 'T') is wired into ReplaceAllUsesWith, and
transferDbgValues (lowercase 't') is used elsewhere (e.g in Legalize).
Both functions should be doing the exact same thing. This patch
consolidates the logic into one place.
Differential Revision: https://reviews.llvm.org/D40104
llvm-svn: 318448
SelectionDAGBuilder::visitAlloca assumes alloca address space is 0, which is
incorrect for triple amdgcn---amdgiz and causes isel failure.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40095
llvm-svn: 318392
Change the calculation for the desired ValueType for non-sign
extending loads, as in those cases we don't care about the
higher bits. This creates a smaller ExtVT and allows for such
combinations as:
(srl (zextload i16, [addr]), 8) -> (zextload i8, [addr + 1])
Differential Revision: https://reviews.llvm.org/D40034
llvm-svn: 318390
The LatencyPriorityQueue doesn't currently check whether the SU being removed really exists in the Queue.
This method fails quietly when SU is not found and removes the last element from the Queue, leading to unexpected behavior.
Unfortunately, this only occurs on our custom target, with the custom scheduler. In our case, when remove() is invoked, it removes the wrong SU at the end of the Queue, which is only discovered later when VerifyScheduledDAG() is invoked and finds that some nodes were not scheduled at all.
As this is only reproducible with a lot of proprietary code, I'm hopeful this assert is straightforward enough to not necessitate a test.
Patch by Ondrej Glasnak!
Differential Revision: https://reviews.llvm.org/D40084
llvm-svn: 318387
Summary:
Use use_nodbg_empty() rather than use_empty() in
MachineRegisterInfo::EmitLiveInCopies() when determining if a livein
register has any uses or not. Otherwise a single dbg.value can make us
generate different code, meaning -g would affect code generation.
Found when compiling code for my out-of-tree target. Unfortunately I
haven't been able to reproduce the problem on X86 or any of the other
in-tree targets that I tried, so no test case.
Reviewers: MatzeB
Reviewed By: MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39044
llvm-svn: 318382
For example, this is currently reachable by X86 if you use a masked store intrinsic with a v1iX type.
Using a fatal error seems like a better user experience if someone were to encounter this on a release build. There are several other similar places that have been converted from unreachable to fatal error previously.
llvm-svn: 318379
processDbgDeclares assumes pointer size is the same for different addr spaces.
It uses pointer size for addr space 0 for all pointers, which causes assertion
in stripAndAccumulateInBoundsConstantOffsets for amdgcn---amdgiz since
pointer in addr space 5 has different size than in addr space 0.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40085
llvm-svn: 318370
Summary:
This patch adds a LLVM_ENABLE_GISEL_COV which, like LLVM_ENABLE_DAGISEL_COV,
causes TableGen to instrument the generated table to collect rule coverage
information. However, LLVM_ENABLE_GISEL_COV goes a bit further than
LLVM_ENABLE_DAGISEL_COV. The information is written to files
(${CMAKE_BINARY_DIR}/gisel-coverage-* by default). These files can then be
concatenated into ${LLVM_GISEL_COV_PREFIX}-all after which TableGen will
read this information and use it to emit warnings about untested rules.
This technique could also be used by SelectionDAG and can be further
extended to detect hot rules and give them priority over colder rules.
Usage:
* Enable LLVM_ENABLE_GISEL_COV in CMake
* Build the compiler and run some tests
* cat gisel-coverage-[0-9]* > gisel-coverage-all
* Delete lib/Target/*/*GenGlobalISel.inc*
* Build the compiler
Known issues:
* ${LLVM_GISEL_COV_PREFIX}-all must be generated as a manual
step due to a lack of a portable 'cat' command. It should be the
concatenation of all ${LLVM_GISEL_COV_PREFIX}-[0-9]* files.
* There's no mechanism to discard coverage information when the ruleset
changes
Depends on D39742
Reviewers: ab, qcolombet, t.p.northover, aditya_nandakumar, rovka
Reviewed By: rovka
Subscribers: vsk, arsenm, nhaehnle, mgorny, kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D39747
llvm-svn: 318356
Due to integer precision, we might have numerator greater than denominator in
the branch probability scaling. Add a check to prevent this from happening.
llvm-svn: 318353
In constructAbstractSubprogramScopeDIE there can be a potential mismatch
between `this` and the CU of ContextDIE when a scope is shared between
two DISubprograms belonging to a different CU. In that case, `this` is
the CU that was specified in the IR, but the CU of ContextDIE is that of
the first subprogram that was emitted. This patch fixes the mismatch by
looking up the CU of ContextDIE, and switching to use that.
This fixes PR35212 (https://bugs.llvm.org/show_bug.cgi?id=35212)
Patch by Philip Craig!
Differential revision: https://reviews.llvm.org/D39981
llvm-svn: 318289
artifacts along with DCE
Legalization Artifacts are all those insts that are there to make the
type system happy. Currently, the target needs to say all combinations
of extends and truncs are legal and there's no way of verifying that
post legalization, we only have *truly* legal instructions. This patch
changes roughly the legalization algorithm to process all illegal insts
at one go, and then process all truncs/extends that were added to
satisfy the type constraints separately trying to combine trivial cases
until they converge. This has the added benefit that, the target
legalizerinfo can only say which truncs and extends are okay and the
artifact combiner would combine away other exts and truncs.
Updated legalization algorithm to roughly the following pseudo code.
WorkList Insts, Artifacts;
collect_all_insts_and_artifacts(Insts, Artifacts);
do {
for (Inst in Insts)
legalizeInstrStep(Inst, Insts, Artifacts);
for (Artifact in Artifacts)
tryCombineArtifact(Artifact, Insts, Artifacts);
} while(!Insts.empty());
Also, wrote a simple wrapper equivalent to SetVector, except for
erasing, it avoids moving all elements over by one and instead just
nulls them out.
llvm-svn: 318210
This patch peels off the top case in switch statement into a branch if the
probability exceeds a threshold. This will help the branch prediction and
avoids the extra compares when lowering into chain of branches.
Differential Revision: http://reviews.llvm.org/D39262
llvm-svn: 318202
Clang implements the -finstrument-functions flag inherited from GCC, which
inserts calls to __cyg_profile_func_{enter,exit} on function entry and exit.
This is useful for getting a trace of how the functions in a program are
executed. Normally, the calls remain even if a function is inlined into another
function, but it is useful to be able to turn this off for users who are
interested in a lower-level trace, i.e. one that reflects what functions are
called post-inlining. (We use this to generate link order files for Chromium.)
LLVM already has a pass for inserting similar instrumentation calls to
mcount(), which it does after inlining. This patch renames and extends that
pass to handle calls both to mcount and the cygprofile functions, before and/or
after inlining as controlled by function attributes.
Differential Revision: https://reviews.llvm.org/D39287
llvm-svn: 318195
Summary:
Bypass of slow divs based on operand values is currently disabled for
-Os. Do the same when profile summary is available and the working set
size of the application is huge. This is similar to how loop peeling is
guarded by hasHugeWorkingSetSize. In the div bypass case, the generated
extra code (and the extra branch) tendss to outweigh the benefits of the
bypass. This results in noticeable performance improvement on an
internal application.
Reviewers: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39992
llvm-svn: 318179
TargetLowering::LowerCallTo assumes that sret value type corresponds to a
pointer in default address space, which is incorrect, since sret value type
should correspond to a pointer in alloca address space, which may not
be the default address space. This causes assertion for amdgcn target
in amdgiz environment.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D39996
llvm-svn: 318167
For now at least. We clearly need some kind of comdat or
linkonce_odr support for wasm but currently COMDAT is not
supported.
Disable COMDAT support in the same way we do the Mach-O. This
also causes clang not to generated COMDATs.
Differential Revision: https://reviews.llvm.org/D39873
llvm-svn: 318123
CodeGenPrepare sinks address computations from one basic block to another
and attempts to reuse address computations that have already been sunk. If
the same address computation appears twice with the first instance as an
operand of a load whose result is an operand to a simplifable select,
CodeGenPrepare simplifies the select and recursively erases the now dead
instructions. CodeGenPrepare then attempts to use the erased address
computation for the second load.
Fix this by erasing the cached address value if it has zero uses before
looking for the address value in the sunken address map.
This partially resolves PR35209.
Thanks to Alexander Richardson for reporting the issue!
Reviewers: john.brawn
Differential Revision: https://reviews.llvm.org/D39841
llvm-svn: 318032
Allow a pattern rewriter to be installed in CodeGenDAGPatterns and use it to
correct situations where SelectionDAG and GlobalISel disagree on
representation. For example, it would rewrite:
(sextload:i32 $ptr)<<unindexedload>><<sextload>><<sextloadi16>
to:
(sext:i32 (load:i16 $ptr)<<unindexedload>>)
I'd have preferred to replace the fragments and have the expansion happen
naturally as part of PatFrag expansion but the type inferencing system can't
cope with loads of types narrower than those mentioned in register classes.
This is because the SDTCisInt's on the sext constrain both the result and
operand to the 'legal' integer types (where legal is defined as 'a register
class can contain the type') which immediately rules the narrower types out.
Several targets (those with only one legal integer type) would then go on to
crash on the SDTCisOpSmallerThanOp<> when it removes all the possible types
for the result of the extend.
Also, improve isObviouslySafeToFold() slightly to automatically return true for
neighbouring instructions. There can't be any re-ordering problems if
re-ordering isn't happenning. We'll need to improve it further to handle
sign/zero-extending loads when the extend and load aren't immediate neighbours
though.
llvm-svn: 317971
This is a fix for a bug in r317947. We were supposed to check that all the indices are are constant 0, but instead we're only make sure that indices that are constant are 0. Non-constant indices are being ignored.
llvm-svn: 317950
Currently we can only get a uniform base from a simple GEP with 2 operands. This causes us to miss address folding opportunities for simple global array accesses as the test case shows.
This patch adds support for larger GEPs if the other indices are 0 since those don't require any additional computations to be inserted.
We may also want to handle constant splats of zero here, but I'm leaving that for future work when I have a real world example.
Differential Revision: https://reviews.llvm.org/D39911
llvm-svn: 317947
Summary:
The associated debug value is updated when the virtual source register
of a copy is completely eliminated and replaced with a rematerialize
value in the defed register of the copy. As the debug value now is
associated with another register it also need to be moved, otherwise
the debug value isn't valid.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: MatzeB, llvm-commits, qcolombet
Differential Revision: https://reviews.llvm.org/D38024
llvm-svn: 317880
* The method getRegAllocationHints() is now of bool type instead of void. If
true is returned, regalloc (AllocationOrder) will *only* try to allocate the
hints, as opposed to merely trying them before non-hinted registers.
* TargetRegisterInfo::getRegAllocationHints() is implemented for SystemZ with
an increase in number of LOCRs.
In this case, it is desired to force the hints even though there is a slight
increase in spilling, because if a non-hinted register would be allocated,
the LOCRMux pseudo would have to be expanded with a jump sequence. The LOCR
(Load On Condition) SystemZ instruction must have both operands in either the
low or high part of the 64 bit register.
Reviewers: Quentin Colombet and Ulrich Weigand
https://reviews.llvm.org/D36795
llvm-svn: 317879
Summary: This fixes failure in CodeGen/AArch64/global-merge-group-by-use.ll uncovered by D39245.
Reviewers: ab, asl
Reviewed By: ab
Subscribers: aemerson, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D39635
llvm-svn: 317817
In Rust, a trait can be implemented for any type, and if a trait
object pointer is used for the type, then a virtual table will be
emitted for that trait/type combination.
We would like debuggers to be able to inspect trait objects, which
requires finding the concrete type associated with a given vtable.
This patch changes LLVM so that any type can be passed to
replaceVTableHolder. This allows the Rust compiler to emit the needed
debug info -- associating a vtable with the concrete type for which it
was emitted.
This is a DWARF extension: DWARF only specifies the meaning of
DW_AT_containing_type in one specific situation. This style of DWARF
extension is routine, though, and LLVM already has one such case for
DW_AT_containing_type.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D39503
llvm-svn: 317730
This patch implements Chandler's idea [0] for supporting languages that
require support for infinite loops with side effects, such as Rust, providing
part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual
effect, but which appears to optimization passes to have obscure side effects,
such that they don't optimize away loops containing it. It also teaches
several optimization passes to ignore this intrinsic, so that it doesn't
significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts.
The second part, to change LLVM's semantics to have defined behavior
on infinite loops by default, with a function attribute for opting into
potential-undefined-behavior, will be implemented and posted for review in
a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html
[1] https://bugs.llvm.org/show_bug.cgi?id=965
[2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
This reverts r317579, originally committed as r317100.
There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.
When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
int a, c, d, e, f, g, h, i, j, k, l, m;
void n(int o, int *b) {
if (g)
f = 0;
for (; f < o; f++) {
m = a;
if (l > j * k > i)
j = i = k = d;
h = b[c] - e;
}
}
We get assembly that looks like this:
; BB#1: ; %if.then
Lloh3:
adrp x9, _f@GOTPAGE
Lloh4:
ldr x9, [x9, _f@GOTPAGEOFF]
mov w8, wzr
Lloh5:
str wzr, [x9]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.lt LBB0_3
b LBB0_7
LBB0_2: ; %entry.if.end_crit_edge
Lloh6:
adrp x8, _f@GOTPAGE
Lloh7:
ldr x8, [x8, _f@GOTPAGEOFF]
Lloh8:
ldr w8, [x8]
stp x20, x19, [sp, #-16]! ; 8-byte Folded Spill
.cfi_def_cfa_offset 16
.cfi_offset w19, -8
.cfi_offset w20, -16
cmp w8, w0
b.ge LBB0_7
LBB0_3: ; %for.body.lr.ph
Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.
llvm-svn: 317726
Previously, hasSideEffects was ? for TargetOpcode::PHI and would be inferred
as 1. D37065 sets the previously inferred properties explicitly. This patch sets
hasSideEffects=0 for PHI, as it is for G_PHI. MachineInstr::isSafeToMove has
been updated so it still returns false for PHI.
Additionally, HexagonBitSimplify relied on a PHI node having the
hasUnmodeledSideEffects property. This patch fixes that assumption.
Differential Revision: https://reviews.llvm.org/D37097
llvm-svn: 317721
In 2010 a commit with no testcase and no further explanation
explicitly disabled the handling of inlined variables in
EmitFuncArgumentDbgValue(). I don't think there is a good reason for
this any more and re-enabling this adds debug locations for variables
associated with an LLVM function argument in functions that are
inlined into the first basic block. The only downside of doing this is
that we may insert a DBG_VALUE before the inlined scope, but (1) this
could be filtered out later, and (2) LiveDebugValues will not
propagate it into subsequent basic blocks if they don't dominate the
variable's lexical scope, so this seems like a small price to pay.
rdar://problem/26228128
llvm-svn: 317702
Some of the AMDGPU stack addressing modes require knowing the sign
bit is zero. We used to accomplish this by custom lowering
frame indexes, and then putting an AssertZext around a
TargetFrameIndex. This required specifically looking for
the AssextZext + frame index pattern which was moderately
disgusting. The same could probably be accomplished
with a target specific node, but would still
require special handling of frame indexes.
llvm-svn: 317671
This patch enables the folding of address computation in
memory instruction in case adress is represented by Phi node.
The inputs of Phi node might be different in base register.
Differential Revision: https://reviews.llvm.org/D36073
llvm-svn: 317665
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().
Original r317100 message:
"Correct dwarf unwind information in function epilogue for X86"
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
llvm-svn: 317579
This changes the interface of how targets describe how to legalize, see
the below description.
1. Interface for targets to describe how to legalize.
In GlobalISel, the API in the LegalizerInfo class is the main interface
for targets to specify which types are legal for which operations, and
what to do to turn illegal type/operation combinations into legal ones.
For each operation the type sizes that can be legalized without having
to change the size of the type are specified with a call to setAction.
This isn't different to how GlobalISel worked before. For example, for a
target that supports 32 and 64 bit adds natively:
for (auto Ty : {s32, s64})
setAction({G_ADD, 0, s32}, Legal);
or for a target that needs a library call for a 32 bit division:
setAction({G_SDIV, s32}, Libcall);
The main conceptual change to the LegalizerInfo API, is in specifying
how to legalize the type sizes for which a change of size is needed. For
example, in the above example, how to specify how all types from i1 to
i8388607 (apart from s32 and s64 which are legal) need to be legalized
and expressed in terms of operations on the available legal sizes
(again, i32 and i64 in this case). Before, the implementation only
allowed specifying power-of-2-sized types (e.g. setAction({G_ADD, 0,
s128}, NarrowScalar). A worse limitation was that if you'd wanted to
specify how to legalize all the sized types as allowed by the LLVM-IR
LangRef, i1 to i8388607, you'd have to call setAction 8388607-3 times
and probably would need a lot of memory to store all of these
specifications.
Instead, the legalization actions that need to change the size of the
type are specified now using a "SizeChangeStrategy". For example:
setLegalizeScalarToDifferentSizeStrategy(
G_ADD, 0, widenToLargerAndNarrowToLargest);
This example indicates that for type sizes for which there is a larger
size that can be legalized towards, do it by Widening the size.
For example, G_ADD on s17 will be legalized by first doing WidenScalar
to make it s32, after which it's legal.
The "NarrowToLargest" indicates what to do if there is no larger size
that can be legalized towards. E.g. G_ADD on s92 will be legalized by
doing NarrowScalar to s64.
Another example, taken from the ARM backend is:
for (unsigned Op : {G_SDIV, G_UDIV}) {
setLegalizeScalarToDifferentSizeStrategy(Op, 0,
widenToLargerTypesUnsupportedOtherwise);
if (ST.hasDivideInARMMode())
setAction({Op, s32}, Legal);
else
setAction({Op, s32}, Libcall);
}
For this example, G_SDIV on s8, on a target without a divide
instruction, would be legalized by first doing action (WidenScalar,
s32), followed by (Libcall, s32).
The same principle is also followed for when the number of vector lanes
on vector data types need to be changed, e.g.:
setAction({G_ADD, LLT::vector(8, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(16, 8)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(8, 16)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(2, 32)}, LegalizerInfo::Legal);
setAction({G_ADD, LLT::vector(4, 32)}, LegalizerInfo::Legal);
setLegalizeVectorElementToDifferentSizeStrategy(
G_ADD, 0, widenToLargerTypesUnsupportedOtherwise);
As currently implemented here, vector types are legalized by first
making the vector element size legal, followed by then making the number
of lanes legal. The strategy to follow in the first step is set by a
call to setLegalizeVectorElementToDifferentSizeStrategy, see example
above. The strategy followed in the second step
"moreToWiderTypesAndLessToWidest" (see code for its definition),
indicating that vectors are widened to more elements so they map to
natively supported vector widths, or when there isn't a legal wider
vector, split the vector to map it to the widest vector supported.
Therefore, for the above specification, some example legalizations are:
* getAction({G_ADD, LLT::vector(3, 3)})
returns {WidenScalar, LLT::vector(3, 8)}
* getAction({G_ADD, LLT::vector(3, 8)})
then returns {MoreElements, LLT::vector(8, 8)}
* getAction({G_ADD, LLT::vector(20, 8)})
returns {FewerElements, LLT::vector(16, 8)}
2. Key implementation aspects.
How to legalize a specific (operation, type index, size) tuple is
represented by mapping intervals of integers representing a range of
size types to an action to take, e.g.:
setScalarAction({G_ADD, LLT:scalar(1)},
{{1, WidenScalar}, // bit sizes [ 1, 31[
{32, Legal}, // bit sizes [32, 33[
{33, WidenScalar}, // bit sizes [33, 64[
{64, Legal}, // bit sizes [64, 65[
{65, NarrowScalar} // bit sizes [65, +inf[
});
Please note that most of the code to do the actual lowering of
non-power-of-2 sized types is currently missing, this is just trying to
make it possible for targets to specify what is legal, and how non-legal
types should be legalized. Probably quite a bit of further work is
needed in the actual legalizing and the other passes in GlobalISel to
support non-power-of-2 sized types.
I hope the documentation in LegalizerInfo.h and the examples provided in the
various {Target}LegalizerInfo.cpp and LegalizerInfoTest.cpp explains well
enough how this is meant to be used.
This drops the need for LLT::{half,double}...Size().
Differential Revision: https://reviews.llvm.org/D30529
llvm-svn: 317560
This patch disables the handling of selects in optimization
extensing scope of optimizeMemoryInst.
The optimization itself is disable by default.
The idea here is just to switch optimiztion level step by step.
Specifically, first optimization will be enabled only for Phi nodes,
then select instructions will be added.
In case someone will complain about perfromance it will be easier to
detect what part of optimizations is responsible for that.
Differential Revision: https://reviews.llvm.org/D36073
llvm-svn: 317555
Summary:
Print %subreg.<subregidxname> instead of just the subregister
index when printing immediate operands corresponding to subreg
indices in INSERT_SUBREG, EXTRACT_SUBREG, SUBREG_TO_REG and
REG_SEQUENCE.
Reviewers: qcolombet, MatzeB
Reviewed By: MatzeB
Subscribers: nhaehnle, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D39696
llvm-svn: 317513
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-November/107104.html
and again more recently:
http://lists.llvm.org/pipermail/llvm-dev/2017-October/118118.html
...this is a step in cleaning up our fast-math-flags implementation in IR to better match
the capabilities of both clang's user-visible flags and the backend's flags for SDNode.
As proposed in the above threads, we're replacing the 'UnsafeAlgebra' bit (which had the
'umbrella' meaning that all flags are set) with a new bit that only applies to algebraic
reassociation - 'AllowReassoc'.
We're also adding a bit to allow approximations for library functions called 'ApproxFunc'
(this was initially proposed as 'libm' or similar).
...and we're out of bits. 7 bits ought to be enough for anyone, right? :) FWIW, I did
look at getting this out of SubclassOptionalData via SubclassData (spacious 16-bits),
but that's apparently already used for other purposes. Also, I don't think we can just
add a field to FPMathOperator because Operator is not intended to be instantiated.
We'll defer movement of FMF to another day.
We keep the 'fast' keyword. I thought about removing that, but seeing IR like this:
%f.fast = fadd reassoc nnan ninf nsz arcp contract afn float %op1, %op2
...made me think we want to keep the shortcut synonym.
Finally, this change is binary incompatible with existing IR as seen in the
compatibility tests. This statement:
"Newer releases can ignore features from older releases, but they cannot miscompile
them. For example, if nsw is ever replaced with something else, dropping it would be
a valid way to upgrade the IR."
( http://llvm.org/docs/DeveloperPolicy.html#ir-backwards-compatibility )
...provides the flexibility we want to make this change without requiring a new IR
version. Ie, we're not loosening the FP strictness of existing IR. At worst, we will
fail to optimize some previously 'fast' code because it's no longer recognized as
'fast'. This should get fixed as we audit/squash all of the uses of 'isFast()'.
Note: an inter-dependent clang commit to use the new API name should closely follow
commit.
Differential Revision: https://reviews.llvm.org/D39304
llvm-svn: 317488
This is an implementation of PR26223.
Currently optimizeMemoryInst optimization tries to fold address computation
if all possible way to get compute the address are of the form
baseGV + base + scale * Index + offset
where scale and offset are constants and baseGV, base and Index are exactly
the same instructions if defined.
The patch extends this optimization to allow different bases. In this case
it tries to find/build a Phi node merging all possible bases and use this Phi node
as a base for sunk address computation. Also it supports Select instruction on
the way.
The main motivation for this scope extension is GCRelocateInst.
If there is a relocation of derived pointer it will be represented as relocation of base + offset.
Also there will be a Phi node merging address computation for relocated derived pointer
and derived pointer itself. If we have a Phi node merging original base and relocated base
and can fold the address computation of derived pointer then we can potentially reduce
the code size and Phi node for derived pointer. The later can have a positive impact to
register allocator.
Reviewers: efriedma, dberlin, mkazantsev, reames, john.brawn
Reviewed By: john.brawn
Subscribers: javed.absar, john.brawn, dneilson, llvm-commits
Differential Revision: https://reviews.llvm.org/D36073
llvm-svn: 317429
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
This preserves the debug info for the cast operation in the original location.
rdar://problem/33460652
Reapplied r317340 with the test moved into an ARM-specific directory.
llvm-svn: 317375
DenseMaps require the definition of a type to be available when using a
pointer to that type as a key to know how many bits are available for
tombstone/etc.
llvm-svn: 317360
Make doSpillCalleeSavedRegs a member function, instead of passing most of the
members of PEI as arguments.
Differential Review: https://reviews.llvm.org/D35642
llvm-svn: 317309
mir-canon (MIRCanonicalizerPass) is a pass designed to reorder instructions and
rename operands so that two similar programs will diff more cleanly after being
run through mir-canon than they would otherwise. This project is still a work
in progress and there are ideas still being discussed for improving diff
quality.
M include/llvm/InitializePasses.h
M lib/CodeGen/CMakeLists.txt
M lib/CodeGen/CodeGen.cpp
A lib/CodeGen/MIRCanonicalizerPass.cpp
llvm-svn: 317285
Summary:
Currently the block frequency analysis is an approximation for irreducible
loops.
The new irreducible loop metadata is used to annotate the irreducible loop
headers with their header weights based on the PGO profile (currently this is
approximated to be evenly weighted) and to help improve the accuracy of the
block frequency analysis for irreducible loops.
This patch is a basic support for this.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: mehdi_amini, llvm-commits, eraman
Differential Revision: https://reviews.llvm.org/D39028
llvm-svn: 317278
undefined reference to `llvm::TargetPassConfig::ID' on
clang-ppc64le-linux-multistage
This reverts commit eea333c33fa73ad225ef28607795984829f65688.
llvm-svn: 317213
Summary:
This is mostly a noop (most of the test diffs are renamed blocks).
There are a few temporary register renames (eax<->ecx) and a few blocks are
shuffled around.
See the discussion in PR33325 for more details.
Reviewers: spatel
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D39456
llvm-svn: 317211
When splitting a large load to smaller legally-typed loads, the last load should be padded to reach the size of the previous one so a CONCAT_VECTORS node could reunite them again.
The code currently pads the last load to reach the size of the first load (instead of the previous).
Differential Revision: https://reviews.llvm.org/D38495
Change-Id: Ib60b55ed26ce901fabf68108daf52683fbd5013f
llvm-svn: 317206
As of today we only use .cfi_offset to specify the offset of a CSR, but
we never use .cfi_restore when the CSR is restored.
If we want to perform a more advanced type of shrink-wrapping, we need
to use .cfi_restore in order to switch the CFI state between blocks.
This patch only aims at adding support for the directive.
Differential Revision: https://reviews.llvm.org/D36114
llvm-svn: 317199
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.
The second part is platform independent and ensures that:
- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
different passes. This is done in a late pass by analyzing information
about cfa offset and cfa register in BBs and inserting additional CFI
directives where necessary.
Changed CFI instructions so that they:
- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal
Added CFIInstrInserter pass:
- analyzes each basic block to determine cfa offset and register valid at
its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
rule for calculating CFA
Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.
Patch by Violeta Vukobrat.
Differential Revision: https://reviews.llvm.org/D35844
llvm-svn: 317100
Change the map key from DIFile* to the absolute path string. Computing
the absolute path isn't expensive because we already have a map that
caches the full path keyed on DIFile*.
llvm-svn: 317041
Issue found by llvm-isel-fuzzer on OSS fuzz, https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=3725
If anyone actually cares about > 64 bit arithmetic, there's a lot more to do in this area. There's a bunch of obviously wrong code in the same function. I don't have the time to fix all of them and am just using this to understand what the workflow for fixing fuzzer cases might look like.
llvm-svn: 316967
Summary:
For reference, see: http://lists.llvm.org/pipermail/llvm-dev/2017-August/116589.html
This patch fleshes out the instruction class hierarchy with respect to atomic and
non-atomic memory intrinsics. With this change, the relevant part of the class
hierarchy becomes:
IntrinsicInst
-> MemIntrinsicBase (methods-only class)
-> MemIntrinsic (non-atomic intrinsics)
-> MemSetInst
-> MemTransferInst
-> MemCpyInst
-> MemMoveInst
-> AtomicMemIntrinsic (atomic intrinsics)
-> AtomicMemSetInst
-> AtomicMemTransferInst
-> AtomicMemCpyInst
-> AtomicMemMoveInst
-> AnyMemIntrinsic (both atomicities)
-> AnyMemSetInst
-> AnyMemTransferInst
-> AnyMemCpyInst
-> AnyMemMoveInst
This involves some class renaming:
ElementUnorderedAtomicMemCpyInst -> AtomicMemCpyInst
ElementUnorderedAtomicMemMoveInst -> AtomicMemMoveInst
ElementUnorderedAtomicMemSetInst -> AtomicMemSetInst
A script for doing this renaming in downstream trees is included below.
An example of where the Any* classes should be used in LLVM is when reasoning
about the effects of an instruction (ex: aliasing).
---
Script for renaming AtomicMem* classes:
PREFIXES="[<,([:space:]]"
CLASSES="MemIntrinsic|MemTransferInst|MemSetInst|MemMoveInst|MemCpyInst"
SUFFIXES="[;)>,[:space:]]"
REGEX="(${PREFIXES})ElementUnorderedAtomic(${CLASSES})(${SUFFIXES})"
REGEX2="visitElementUnorderedAtomic(${CLASSES})"
FILES=$( grep -E "(${REGEX}|${REGEX2})" -r . | tr ':' ' ' | awk '{print $1}' | sort | uniq )
SED_SCRIPT="s~${REGEX}~\1Atomic\2\3~g"
SED_SCRIPT2="s~${REGEX2}~visitAtomic\1~g"
for f in $FILES; do
echo "Processing: $f"
sed -i ".bak" -E "${SED_SCRIPT};${SED_SCRIPT2};${EA_SED_SCRIPT};${EA_SED_SCRIPT2}" $f
done
Reviewers: sanjoy, deadalnix, apilipenko, anna, skatkov, mkazantsev
Reviewed By: sanjoy
Subscribers: hfinkel, jholewinski, arsenm, sdardis, nhaehnle, JDevlieghere, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D38419
llvm-svn: 316950
- Targets that want to support memcmp expansions now return the list of
supported load sizes.
- Expansion codegen does not assume that all power-of-two load sizes
smaller than the max load size are valid. For examples, this is not the
case for x86(32bit)+sse2.
Fixes PR34887.
llvm-svn: 316905
Introduce a isConstOrDemandedConstSplat helper function that can recognise a constant splat build vector for at least the demanded elts we care about.
llvm-svn: 316866
For cases where we know the floating point representations match the bitcasted integer equivalent, allow bitcasting to these types.
This is especially useful for the X86 floating point compare results which return all/zero bits but as a floating point type.
Differential Revision: https://reviews.llvm.org/D39289
llvm-svn: 316831
In function DAGCombiner::visitSIGN_EXTEND_INREG, sext can be combined with extload even if sextload is not supported by target, then
if sext is the only user of extload, there is no big difference, no harm no benefit.
if extload has more than one user, the combined sextload may block extload from combining with other zext, causes extra zext instructions generated. As demonstrated by the attached test case.
This patch add the constraint that when sextload is not supported by target, sext can only be combined with extload if it is the only user of extload.
Differential Revision: https://reviews.llvm.org/D39108
llvm-svn: 316802
Not having the subclass data on an MemIntrinsicSDNodes means it was possible
to try to fold 2 nodes with the same operands but differing MMO flags. This
would trip an assertion when trying to refine the alignment between the 2
MachineMemOperands.
Differential Revision: https://reviews.llvm.org/D38898
llvm-svn: 316737
Summary:
Currently we skip merging when extra moves may be added in the header of switch instead of the case block, if the case block is used as an incoming
block of a PHI. If all the incoming values of the PHIs are non-constants and the destination block is dominated by the switch block then extra moves are likely not added by ISel, so there is no need to skip merging in this case.
Reviewers: efriedma, junbuml, davidxl, hfinkel, qcolombet
Reviewed By: efriedma
Subscribers: dberlin, kuhar, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D37343
llvm-svn: 316711
Summary:
This seems to be the only place in llvm we directly call qsort. We can replace
this with a call to array_pod_sort. Also minor cleanup of the sorting function.
Reviewers: bkramer, Eugene.Zelenko, rafael
Reviewed By: bkramer
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D39214
llvm-svn: 316671
Summary: Make sure shifts are legal/specified by the legalizerinfo before creating it
Reviewers: qcolombet, dsanders, rovka, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39264
llvm-svn: 316602
Compute the actual decomposition only after deciding whether to expand
of not. Else, it's easy to make the compiler OOM with:
`memcpy(dst, src, 0xffffffffffffffff);`, which typically happens if
someone mistakenly passes a negative value. Add a test.
This reverts commit f8fc02fbd4ab33383c010d33675acf9763d0bd44.
llvm-svn: 316567
Duplicated code found in three places put into a new static function:
/// Given a Count of resource usage and a Latency value, return true if a
/// SchedBoundary becomes resource limited.
static bool checkResourceLimit(unsigned LFactor, unsigned Count,
unsigned Latency) {
return (int)(Count - (Latency * LFactor)) > (int)LFactor;
}
Review: Florian Hahn, Matthias Braun
https://reviews.llvm.org/D39235
llvm-svn: 316560
This code added in r297930 assumed that it could create
a select with a condition type that is just an integer
bitcast of the selected type. For AMDGPU any vselect is
going to be scalarized (although the vector types are legal),
and all select conditions must be i1 (the same as getSetCCResultType).
This logic doesn't really make sense to me, but there's
never really been a consistent policy in what the select
condition mask type is supposed to be. Try to extend
the logic for skipping the transform for condition types
that aren't setccs. It doesn't seem quite right to me though,
but checking conditions that seem more sensible (like whether the
vselect is going to be expanded) doesn't work since this
seems to depend on that also.
llvm-svn: 316554
Similar to how llvm::salvagDebugInfo hooks into InstCombine, this adds
a hook that can be invoked before an SDNode that is associated with an
SDDbgValue is erased to capture the effect of the deleted node in a
DIExpression.
The motivating example is an SDDebugValue attached to an ADD operation
that gets folded into a LOAD+OFFSET operation.
rdar://problem/32121503
llvm-svn: 316525
This reverts commit r316417, which causes internal compiles to OOM.
I don't unfortunately have a self-contained test case but will follow up
with courbet.
llvm-svn: 316497
This updates the MIRPrinter to include the regclass when printing
virtual register defs, which is already valid syntax for the
parser. That is, given 64 bit %0 and %1 in a "gpr" regbank,
%1(s64) = COPY %0(s64)
would now be written as
%1:gpr(s64) = COPY %0(s64)
While this change alone introduces a bit of redundancy with the
registers block, it allows us to update the tests to be more concise
and understandable and brings us closer to being able to remove the
registers block completely.
Note: We generally only print the class in defs, but there is one
exception. If there are uses without any defs whatsoever, we'll print
the class on all uses. I'm not completely convinced this comes up in
meaningful machine IR, but for now the MIRParser and MachineVerifier
both accept that kind of stuff, so we don't want to have a situation
where we can print something we can't parse.
llvm-svn: 316479
Refactor ExpandMemcmp:
- Stop duplicating the logic for computation of the sequence of loads to
generate (thsi was done in three different places), this is now done
only once in MemCmpExpansion::MemCmpExpansion().
- Add a FIXME to expose a bug with the computation of the number of loads
when not all sizes are loadable. For example, on X86-32 + SSE, possible
loads are {16,4,2,1} bytes. The current code considers that all loads
starting at MaxLoadSize are possible. This is not an issue right now as
vector loads are not enabled, so I'm not fixing the issue here to keep
the change as small as possible. I'm going to address this in a
subsequent revision, where I enable vector loads.
See https://bugs.llvm.org/show_bug.cgi?id=34887
Differential Revision: https://reviews.llvm.org/D38498
llvm-svn: 316417
Infrastructure designed for padding code with nop instructions in key places such that preformance improvement will be achieved.
The infrastructure is implemented such that the padding is done in the Assembler after the layout is done and all IPs and alignments are known.
This patch by itself in a NFC. Future patches will make use of this infrastructure to implement required policies for code padding.
Reviewers:
aaboud
zvi
craig.topper
gadi.haber
Differential revision: https://reviews.llvm.org/D34393
Change-Id: I92110d0c0a757080a8405636914a93ef6f8ad00e
llvm-svn: 316413
This commit adds optimisation remarks for outlining which fire when a function
is successfully outlined.
To do this, OutlinedFunctions must now contain references to their Candidates.
Since the Candidates must still be sorted and worked on separately, this is
done by working on everything in terms of shared_ptrs to Candidates. This is
good; it means that we can easily move everything to outlining in terms of
the OutlinedFunctions rather than the individual Candidates. This is far more
intuitive than what's currently there!
(Remarks are output when a function is created for some group of Candidates.
In a later commit, all of the outlining logic should be rewritten so that we
loop over OutlinedFunctions rather than over Candidates.)
llvm-svn: 316396
This fixes a bug where we'd crash given code like the test-case from
https://bugs.llvm.org/show_bug.cgi?id=30792 . Instead, we let the
offending clobber silently slide through.
This doesn't fully fix said bug, since the assembler will still complain
the moment it sees a crypto/fp/vector op, and we still don't diagnose
calls that require vector regs.
Differential Revision: https://reviews.llvm.org/D39030
llvm-svn: 316374
combineShuffleOfScalars is very conservative about shuffled BUILD_VECTORs that can be combined together.
This patch adds one additional case - if both BUILD_VECTORs represent splats of the same scalar value but with different UNDEF elements, then we should create a single splat BUILD_VECTOR, sharing only the UNDEF elements defined by the shuffle mask.
Differential Revision: https://reviews.llvm.org/D38696
llvm-svn: 316331
This fixes bugzilla 26810
https://bugs.llvm.org/show_bug.cgi?id=26810
This is intended to prevent sequences like:
movl %ebp, 8(%esp) # 4-byte Spill
movl %ecx, %ebp
movl %ebx, %ecx
movl %edi, %ebx
movl %edx, %edi
cltd
idivl %esi
movl %edi, %edx
movl %ebx, %edi
movl %ecx, %ebx
movl %ebp, %ecx
movl 16(%esp), %ebp # 4 - byte Reload
Such sequences are created in 2 scenarios:
Scenario #1:
vreg0 is evicted from physreg0 by vreg1
Evictee vreg0 is intended for region splitting with split candidate physreg0 (the reg vreg0 was evicted from)
Region splitting creates a local interval because of interference with the evictor vreg1 (normally region spliiting creates 2 interval, the "by reg" and "by stack" intervals. Local interval created when interference occurs.)
one of the split intervals ends up evicting vreg2 from physreg1
Evictee vreg2 is intended for region splitting with split candidate physreg1
one of the split intervals ends up evicting vreg3 from physreg2 etc.. until someone spills
Scenario #2
vreg0 is evicted from physreg0 by vreg1
vreg2 is evicted from physreg2 by vreg3 etc
Evictee vreg0 is intended for region splitting with split candidate physreg1
Region splitting creates a local interval because of interference with the evictor vreg1
one of the split intervals ends up evicting back original evictor vreg1 from physreg0 (the reg vreg0 was evicted from)
Another evictee vreg2 is intended for region splitting with split candidate physreg1
one of the split intervals ends up evicting vreg3 from physreg2 etc.. until someone spills
As compile time was a concern, I've added a flag to control weather we do cost calculations for local intervals we expect to be created (it's on by default for X86 target, off for the rest).
Differential Revision: https://reviews.llvm.org/D35816
Change-Id: Id9411ff7bbb845463d289ba2ae97737a1ee7cc39
llvm-svn: 316295
We don't need to do any additional recursion, we just need to analyze the APInt stored in the node. This matches what the ValueTracking versions do for IR.
llvm-svn: 316256
Summary:
We shouldn't recurse any further but it doesn't mean we shouldn't be able to give the known bits for a constant. The caller would probably like that we always return the right answer for a constant RHS. This matches what InstCombine does in this case.
I don't have a test case because this showed up while trying to revive D31724.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D38967
llvm-svn: 316255
Move the prune logic in pruneOverlaps to a new function, prune. This lets us
reuse the prune functionality. Makes the code a bit more readable. It'll also
make it easier to emit remarks/debug statements for pruned functions.
llvm-svn: 316031
This commit moves the decrement logic for outlined functions into the class,
and makes OccurrenceCount private. It can now be accessed via
getOccurrenceCount().
This makes it more difficult to accidentally introduce bugs by incorrectly
decrementing the occurrence count on OutlinedFunctions.
llvm-svn: 316020
Cleanup to Candidate that moves all end index calculations into
Candidate.endIdx(). For the sake of consistency, StartIdx and Len are now
private members, and can be accessed with length() and startIdx() respectively.
llvm-svn: 316019
Summary:
It seems that negative offset was accidentally allowed in D17967.
AFAICT small negative offset should be valid (always raise segfault) on all archs that I'm aware of (especially x86, which is the only one with this optimization enabled) and such case can be useful when loading hiden metadata from an object.
However, like the positive side, it should only be done within a certain limit.
For now, use the same limit on the positive side for the negative side.
A separate option can be added if needs appear.
Reviewers: mcrosier, skatkov
Reviewed By: skatkov
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D38925
llvm-svn: 315991
Minor addition and follow up of r314773 and r311533: this adds more
debug messages to the type legalizer. For each node, it dumps
legalization info for results and operands nodes, rather than just the
final legalized node.
Differential Revision: https://reviews.llvm.org/D38726
llvm-svn: 315904
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
The previous commit failed on MSVC due to a failure to convert an
initializer_list to a std::vector. Hopefully, MSVC will accept this version.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
llvm-svn: 315887
Summary:
iPTR is a pointer of subtarget-specific size to any address space. Therefore
type checks on this size derive the SizeInBits from a subtarget hook.
At this point, we can import the simplests G_LOAD rules and select load
instructions using them. Further patches will support for the predicates to
enable additional loads as well as the stores.
Depends on D37457
Reviewers: ab, qcolombet, t.p.northover, rovka, aditya_nandakumar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37458
llvm-svn: 315885