Summary:
Add citations to the Coroutines TS to the `isValidCoroutineContext`
function, as well as a FIXME and test for [expr.await]p2, which states
a co_await expression cannot be used in a default argument.
Test Plan: check-clang
Reviewers: GorNishanov, EricWF
Reviewed By: GorNishanov
Subscribers: rsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D48519
llvm-svn: 335420
Summary:
Pick D42933 back up, and make NSInteger/NSUInteger with %zu/%zi specifiers on Darwin warn only in pedantic mode. The default -Wformat recently started warning for the following code because of the added support for analysis for the '%zi' specifier.
NSInteger i = NSIntegerMax;
NSLog(@"max NSInteger = %zi", i);
The problem is that on armv7 %zi is 'long', and NSInteger is typedefed to 'int' in Foundation. We should avoid this warning as it's inconvenient to our users: it's target specific (happens only on armv7 and not arm64), and breaks their existing code. We should also silence the warning for the '%zu' specifier to ensure consistency. This is acceptable because Darwin guarantees that, despite the unfortunate choice of typedef, sizeof(size_t) == sizeof(NS[U]Integer), the warning is therefore noisy for pedantic reasons. Once this is in I'll update public documentation.
Related discussion on cfe-dev:
http://lists.llvm.org/pipermail/cfe-dev/2018-May/058050.html
<rdar://36874921&40501559>
Reviewers: ahatanak, vsapsai, alexshap, aaron.ballman, javed.absar, jfb, rjmccall
Subscribers: kristof.beyls, aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D47290
llvm-svn: 335393
members of dependent contexts.
This permits cases where the names before and after the '::' in a
dependent inherited constructor using-declaration do not match, but
where we can nonetheless tell when parsing the template that a
constructor is being named. Under (open) core language DR 2070, such
cases will probably be ill-formed, but r335182 does not quite give
that result and didn't intend to change this, so restore the old
behavior for now.
llvm-svn: 335381
This if/elseif structure seems to be missing this case.
Previously, this would report a size of 1 pointer too small.
This didn't really change anything besides failing to reclaim
a very small amount of memory.
llvm-svn: 335372
dead code.
This is important for C++ templates that essentially compute the valid
input in a way that is constant and will cause all the invalid cases to
be dead code that is deleted. Code in the wild actually does this and
GCC also accepts these kinds of patterns so it is important to support
it.
To make this work, we provide a non-error path to diagnose these issues,
and use a default-error warning instead. This keeps the relatively
strict handling but prevents nastiness like SFINAE on these errors. It
also allows us to safely use the system to diagnose this only when it
occurs at runtime (in emitted code).
Entertainingly, this required fixing the syntax in various other ways
for the x86 test because we never bothered to diagnose that the returns
were invalid.
Since debugging these compile failures was super confusing, I've also
improved the diagnostic to actually say what the value was. Most of the
checks I've made ignore this to simplify maintenance, but I've checked
it in a few places to make sure the diagnsotic is working.
Depends on D48462. Without that, we might actually crash some part of
the compiler after bypassing the error here.
Thanks to Richard, Ben Kramer, and especially Craig Topper for all the
help here.
Differential Revision: https://reviews.llvm.org/D48464
llvm-svn: 335309
Diagnose the name of the class being shadowed by using declarations, and
improve the diagnostics for the case where the name of the class is
shadowed by a non-static data member in a class with constructors. In
the latter case, we now always give the "member with the same name as
its class" diagnostic regardless of the relative order of the member and
the constructor, rather than giving an inscrutible diagnostic if the
constructor appears second.
llvm-svn: 335182
This diff includes the logic for setting the precision bits for each primary fixed point type in the target info and logic for initializing a fixed point literal.
Fixed point literals are declared using the suffixes
```
hr: short _Fract
uhr: unsigned short _Fract
r: _Fract
ur: unsigned _Fract
lr: long _Fract
ulr: unsigned long _Fract
hk: short _Accum
uhk: unsigned short _Accum
k: _Accum
uk: unsigned _Accum
```
Errors are also thrown for illegal literal values
```
unsigned short _Accum u_short_accum = 256.0uhk; // expected-error{{the integral part of this literal is too large for this unsigned _Accum type}}
```
Differential Revision: https://reviews.llvm.org/D46915
llvm-svn: 335148
Summary:
The comment with the OpenCL clause about this clearly
says: "No type shall be qualified by qualifiers for
two or more different address spaces."
This must mean that two or more qualifiers for the
_same_ address space is allowed. However, it is
likely unintended by the programmer, so emit a
warning.
For dependent address space types, reject them like
before since we cannot know what the address space
will be.
Patch by Bevin Hansson (ebevhan).
Reviewers: Anastasia
Reviewed By: Anastasia
Subscribers: bader, cfe-commits
Differential Revision: https://reviews.llvm.org/D47630
llvm-svn: 335103
... instead of prepending it at the beginning (the original behavior
since implemented in r122535 2010-12-23). This builds up an
AttributeList in the the order in which the attributes appear in the
source.
The reverse order caused nodes for attributes in the AST (e.g. LoopHint)
to be in the reverse, and therefore printed in the wrong order by
-ast-dump. Some TODO comments mention this. The order was explicitly
reversed for enable_if attribute overload resolution and name mangling,
which is not necessary anymore with this patch.
The change unfortunately has some secondary effects, especially for
diagnostic output. In the simplest cases, the CHECK lines or expected
diagnostic were changed to the the new output. If the kind of
error/warning changed, the attribute's order was changed instead.
It also causes some 'previous occurrence here' hints to be textually
after the main marker. This typically happens when attributes are
merged, but are incompatible. Interchanging the role of the the main
and note SourceLocation will also cause the case where two different
declaration's attributes (in contrast to multiple attributes of the
same declaration) are merged to be reversed. There is no easy fix
because sometimes previous attributes are merged into a new
declaration's attribute list, sometimes new attributes are added to a
previous declaration's attribute list. Since 'previous occurrence here'
pointing to locations after the main marker is not rare, I left the
markers as-is; it is only relevant when the attributes are declared in
the same declaration anyway, which often is on the same line.
Differential Revision: https://reviews.llvm.org/D48100
llvm-svn: 335084
Diagnostics for narrowing conversions in initializer lists are currently
DefaultIgnored in Microsoft mode. But MSVC 2015 did add warnings about
narrowing conversions (C2397), so clang-cl can remove its special case code if
MSCompatibilityVersion is new enough.
(In MSVC, C2397 is just a warning and in clang it's default-mapped to an error,
but it can be remapped, and disabled with -Wno-c++11-narrowing, so that should
be fine.)
Fixes PR37314.
https://reviews.llvm.org/D48296
llvm-svn: 335082
r242675 changed the signature for the signbit builtin but did not introduce proper semantic checking to ensure the arguments are as-expected. This patch groups the signbit builtin along with the other fp classification builtins. Fixes PR28172.
llvm-svn: 335050
r242675 changed the signature for the signbit builtin but did not introduce proper semantic checking to ensure the arguments are as-expected. This patch groups the signbit builtin along with the other fp classification builtins. Fixes PR28172.
llvm-svn: 335048
after the closing brace of a class declaration.
Merge the two call sites of checkIllFormedTrivialABIStruct and sink it
into CheckCompletedCXXClass so that it is called after the attribute has
been attached to the CXXRecordDecl.
rdar://problem/40873297
llvm-svn: 335021
Summary:
This is the second attempt of r333500 (Update NRVO logic to support early return).
The previous one was reverted for a miscompilation for an incorrect NRVO set up on templates such as:
```
struct Foo {};
template <typename T>
T bar() {
T t;
if (false)
return T();
return t;
}
```
Where, `t` is marked as non-NRVO variable before its instantiation. However, while its instantiation, it's left an NRVO candidate, turned into an NRVO variable later.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47586
llvm-svn: 335019
The previous names took the shift amount in bits to match gcc and required a multiply by 8 in the header. This creates a misleading error message when we check the range of the immediate to the builtin since the allowed range also got multiplied by 8.
This commit changes the builtins to use a byte shift amount to match the underlying instruction and the Intel intrinsic.
Fixes the remaining issue from PR37795.
llvm-svn: 334773
This diff includes changes for the remaining _Fract and _Sat fixed point types.
```
signed short _Fract s_short_fract;
signed _Fract s_fract;
signed long _Fract s_long_fract;
unsigned short _Fract u_short_fract;
unsigned _Fract u_fract;
unsigned long _Fract u_long_fract;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
short _Fract short_fract;
_Fract fract;
long _Fract long_fract;
// Saturated fixed point types
_Sat signed short _Accum sat_s_short_accum;
_Sat signed _Accum sat_s_accum;
_Sat signed long _Accum sat_s_long_accum;
_Sat unsigned short _Accum sat_u_short_accum;
_Sat unsigned _Accum sat_u_accum;
_Sat unsigned long _Accum sat_u_long_accum;
_Sat signed short _Fract sat_s_short_fract;
_Sat signed _Fract sat_s_fract;
_Sat signed long _Fract sat_s_long_fract;
_Sat unsigned short _Fract sat_u_short_fract;
_Sat unsigned _Fract sat_u_fract;
_Sat unsigned long _Fract sat_u_long_fract;
// Aliased saturated fixed point types
_Sat short _Accum sat_short_accum;
_Sat _Accum sat_accum;
_Sat long _Accum sat_long_accum;
_Sat short _Fract sat_short_fract;
_Sat _Fract sat_fract;
_Sat long _Fract sat_long_fract;
```
This diff only allows for declaration of these fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches.
Differential Revision: https://reviews.llvm.org/D46911
llvm-svn: 334718
Reject uses of the default new/delete operators with a diagnostic
instead of a crash in OpenCL C++ mode and accept user-defined forms.
Differential Revision: https://reviews.llvm.org/D46651
llvm-svn: 334700
Summary:
In many cases we can't devirtualize
because definition of vtable is not present. Most of the
time it is caused by inline virtual function not beeing
emitted. Forcing emitting of vtable adds a reference of these
inline virtual functions.
Note that GCC was always doing it.
Reviewers: rjmccall, rsmith, amharc, kuhar
Subscribers: llvm-commits, cfe-commits
Differential Revision: https://reviews.llvm.org/D47108
Co-authored-by: Krzysztof Pszeniczny <krzysztof.pszeniczny@gmail.com>
llvm-svn: 334600
argument, use the context in which it is used for checking its
accessibility.
This fixes PR32898.
rdar://problem/33737747
Differential Revision: https://reviews.llvm.org/D36918
llvm-svn: 334569
There are HIP applications e.g. Tensorflow 1.3 using amdgpu kernel attributes, however
currently they are only allowed on OpenCL kernel functions.
This patch will allow amdgpu kernel attributes to be applied to CUDA/HIP __global__
functions.
Differential Revision: https://reviews.llvm.org/D47958
llvm-svn: 334561
As reported here (https://bugs.llvm.org/show_bug.cgi?id=19808)
and discovered independently when looking at plum-hall tests,
we incorrectly implemented over.ics.rank, which says "A conversion
that is not a conversion of a pointer, or pointer to member, to bool
is better than another conversion that is such a conversion.".
In the current Draft (N4750), this is phrased slightly differently in
paragraph 4.1: A conversion that does not convert a pointer, a pointer
to member, or std::nullptr_t to bool is better than one that does.
The comment on isPointerConversionToBool (the changed function)
also confirms that this is the case (note outdated reference):
isPointerConversionToBool - Determines whether this conversion is
a conversion of a pointer or pointer-to-member to bool. This is
used as part of the ranking of standard conversion sequences
(C++ 13.3.3.2p4).
However, despite this comment, it didn't check isMemberPointerType
on the 'FromType', presumably incorrectly assuming that 'isPointerType'
matched it. This patch fixes this by adding isMemberPointerType to
this function. Additionally, member function pointers are just
MemberPointerTypes that point to functions insted of data, so that
is fixed in this patch as well.
llvm-svn: 334503
Summary:
This fixes the ranges for the vcvth family of FP16 intrinsics in the clang front end. Previously it was accepting incorrect ranges
-Changed builtin range checking in SemaChecking
-added tests SemaCheck changes - included in their own file since no similar one exists
-modified existing tests to reflect new ranges
Reviewers: SjoerdMeijer, javed.absar
Reviewed By: SjoerdMeijer
Subscribers: kristof.beyls, cfe-commits
Differential Revision: https://reviews.llvm.org/D47592
llvm-svn: 334489
SmallSet forwards to SmallPtrSet for pointer types. SmallPtrSet supports iteration, but a normal SmallSet doesn't. So if it wasn't for the forwarding, this wouldn't work.
These places were found by hiding the begin/end methods in the SmallSet forwarding.
llvm-svn: 334339
I'm looking into making the select builtins require avx512f, avx512bw, or avx512vl since masking operations generally require those features.
The extract builtins are funny because the 512-bit versions return a 128 or 256 bit vector with masking even when avx512vl is not supported.
llvm-svn: 334330
These builtins are all handled by CGBuiltin.cpp so it doesn't much matter what the immediate type is, but int matches the intrinsic spec.
llvm-svn: 334310
Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
Adds support for these intrinsics, which are ARM and ARM64 only:
_interlockedbittestandreset_acq
_interlockedbittestandreset_rel
_interlockedbittestandreset_nf
_interlockedbittestandset_acq
_interlockedbittestandset_rel
_interlockedbittestandset_nf
Refactor the bittest intrinsic handling to decompose each intrinsic into
its action, its width, and its atomicity.
llvm-svn: 334239
We still emit shufflevector instructions we just do it from CGBuiltin.cpp now. This ensures the intrinsics that use this are only available on CPUs that support the feature.
I also added range checking to the immediate, but only checked it is 8 bits or smaller. We should maybe be stricter since we never use all 8 bits, but gcc doesn't seem to do that.
llvm-svn: 334237
We still lower them to native shuffle IR, but we do it in CGBuiltin.cpp now. This allows us to check the target feature and ensure the immediate fits in 8 bits.
This also improves our -O0 codegen slightly because we're able to see the zeroinitializer in the shuffle. It looks like it got lost behind a store+load previously.
llvm-svn: 334208
Previous, if no Decl's were checked, visibility was set to false. Switch it
so that in cases of no Decl's, return true. These are the Decl's after being
filtered. Also remove an unreachable return statement since it is directly
after another return statement.
llvm-svn: 334160
Summary:
We recently switch to using a selects in the intrinsics header files for FMA instructions. But the 512-bit versions support flavors with rounding mode which must be an Integer Constant Expression. This has forced those intrinsics to be implemented as macros. As it stands now the mask and mask3 intrinsics evaluate one of their macro arguments twice. If that argument itself is another intrinsic macro, we can end up over expanding macros. Or if its something we can CSE later it would show up multiple times when it shouldn't.
I tried adding __extension__ around the macro and making it an expression statement and declaring a local variable. But whatever name you choose for the local variable can never be used as the name of an input to the macro in user code. If that happens you would end up with the same name on the LHS and RHS of an assignment after expansion. We might be safe if we use __ in front of the variable names because those names are reserved and user code shouldn't use that, but I wasn't sure I wanted to make that claim.
The other option which I've chosen here, is to add back _mask, _maskz, and _mask3 flavors of the builtin which we will expand in CGBuiltin.cpp to replicate the argument as needed and insert any fneg needed on the third operand to make a subtract. The _maskz isn't truly necessary if we have an unmasked version or if we use the masked version with a -1 mask and wrap a select around it. But I've chosen to make things more uniform.
I separated out the scalar builtin handling to avoid too many things going on in EmitX86FMAExpr. It was different enough due to the extract and insert that the minor duplication of the CreateCall was probably worth it.
Reviewers: tkrupa, RKSimon, spatel, GBuella
Reviewed By: tkrupa
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47724
llvm-svn: 334159
We were already performing checks on non-template variables,
but the checks on templated ones were missing.
Differential Revision: https://reviews.llvm.org/D45231
llvm-svn: 334143
Previously we were just using extended vector operations in the header file.
This unfortunately allowed non-constant indices to be used with the intrinsics. This is incompatible with gcc, icc, and MSVC. It also introduces a different performance characteristic because non-constant index gets lowered to a vector store and an element sized load.
By adding the builtins we can check for the index to be a constant and ensure its in range of the vector element count.
User code still has the option to use extended vector operations themselves if they need non-constant indexing.
llvm-svn: 334057
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent _Fract types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Fixed the test that was failing by not checking for dso_local on some
targets.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333923
```
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
```
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent `_Fract` types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333814
Ensure latest MPT decl has a MSInheritanceAttr when instantiating
templates, to avoid null MSInheritanceAttr deref in
CXXRecordDecl::getMSInheritanceModel().
See PR#37399 for repo / details.
Patch by Andrew Rogers!
Differential Revision: https://reviews.llvm.org/D46664
llvm-svn: 333680
For example, given:
enum __attribute__((deprecated)) T *p;
-ast-print produced:
enum T *p;
The attribute was lost because the enum forward decl was lost.
Another example is the loss of enum forward decls from C++ namespaces
(in MS compatibility mode).
The trouble was that the EnumDecl node was suppressed, as revealed by
-ast-dump. The suppression of the EnumDecl was intentional in
r116122, but I don't understand why. The suppression isn't needed for
the test suite to behave.
Reviewed by: rsmith
Differential Revision: https://reviews.llvm.org/D46846
llvm-svn: 333574
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
Summary:
Skipping them was clearly not intentional. It's impossible to
guarantee correctness if the bodies are skipped.
Also adds a test case for r327504, now that it does not produce
invalid errors that made the test fail.
Reviewers: aaron.ballman, sammccall, rsmith
Reviewed By: rsmith
Subscribers: rayglover-ibm, rwols, cfe-commits
Differential Revision: https://reviews.llvm.org/D44480
llvm-svn: 333538
Summary:
The previous implementation misses an opportunity to apply NRVO (Named Return Value
Optimization) below. That discourages user to write early return code.
```
struct Foo {};
Foo f(bool b) {
if (b)
return Foo();
Foo oo;
return oo;
}
```
That is, we can/should apply RVO for a local variable if:
* It's directly returned by at least one return statement.
* And, all reachable return statements in its scope returns the variable directly.
While, the previous implementation disables the RVO in a scope if there are multiple return
statements that refers different variables.
On the new algorithm, local variables are in NRVO_Candidate state at first, and a return
statement changes it to NRVO_Disabled for all visible variables but the return statement refers.
Then, at the end of the function AST traversal, NRVO is enabled for variables in NRVO_Candidate
state and refers from at least one return statement.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: xbolva00, Quuxplusone, arthur.j.odwyer, cfe-commits
Differential Revision: https://reviews.llvm.org/D47067
llvm-svn: 333500
Codebases that need to be compatible with the Microsoft ABI can pass
this flag to avoid issues caused by the lack of a fixed ABI for
incomplete member pointers.
Differential Revision: https://reviews.llvm.org/D47503
llvm-svn: 333498
Summary:
This patch adds the newly added `%sub` diagnostic modifier to cleanup repetition in the overload candidate diagnostics.
I think this should be good to go.
@rsmith: Some of the notes now emit `function template` where they only said `function` previously. It seems OK to me, but I would like your sign off on it.
Reviewers: rsmith, EricWF
Reviewed By: EricWF
Subscribers: cfe-commits, rsmith
Differential Revision: https://reviews.llvm.org/D47101
llvm-svn: 333485
-Warc-repeated-use-of-weak may trigger a segmentation fault when the Decl
being checked is outside of a function scope, leaving the current function
info pointer null. This adds a check before using the function info.
llvm-svn: 333471
Handling of the third parameter was only checking for *_n and not for the C11 variant, which means that cmpxchg of a 'desired' 0 value was erroneously warning. Handle C11 properly, and add extgensive tests for this as well as NULL pointers in a bunch of places.
Fixes r333246 from D47229.
llvm-svn: 333290
Currently getting such completions requires source correction, reparsing
and calling completion again. And if it shows no results and rollback is
required then it costs one more reparse.
With this change it's possible to get all results which can be later
filtered to split changes which require correction.
Differential Revision: https://reviews.llvm.org/D41537
llvm-svn: 333272
Summary:
As a companion to libc++ patch https://reviews.llvm.org/D47225, mark builtin atomic non-member functions which accept pointers as nonnull.
The atomic non-member functions accept pointers to std::atomic / std::atomic_flag as well as to the non-atomic value. These are all dereferenced unconditionally when lowered, and therefore will fault if null. It's a tiny gotcha for new users, especially when they pass in NULL as expected value (instead of passing a pointer to a NULL value).
<rdar://problem/18473124>
Reviewers: arphaman
Subscribers: aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D47229
llvm-svn: 333246
Summary:
Remove the call to DiagnoseUseOfDecl in LookupMemberExpr because:
1. LookupMemberExpr eagerly lookup both getter and setter, reguardless
if they are used or not. It causes wrong diagnostics if you are only
using getter.
2. LookupMemberExpr only diagnoses getter, but not setter.
3. ObjCPropertyOpBuilder already DiagnoseUseOfDecl when building getter
and setter. Doing it again in LookupMemberExpr causes duplicated
diagnostics.
rdar://problem/38479756
Reviewers: erik.pilkington, arphaman, doug.gregor
Reviewed By: arphaman
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47280
llvm-svn: 333148
It caused asserts, see PR37560.
> Use zeroinitializer for (trailing zero portion of) large array initializers
> more reliably.
>
> Clang has two different ways it emits array constants (from InitListExprs and
> from APValues), and both had some ability to emit zeroinitializer, but neither
> was able to catch all cases where we could use zeroinitializer reliably. In
> particular, emitting from an APValue would fail to notice if all the explicit
> array elements happened to be zero. In addition, for large arrays where only an
> initial portion has an explicit initializer, we would emit the complete
> initializer (which could be huge) rather than emitting only the non-zero
> portion. With this change, when the element would have a suffix of more than 8
> zero elements, we emit the array constant as a packed struct of its initial
> portion followed by a zeroinitializer constant for the trailing zero portion.
>
> In passing, I found a bug where SemaInit would sometimes walk the entire array
> when checking an initializer that only covers the first few elements; that's
> fixed here to unblock testing of the rest.
>
> Differential Revision: https://reviews.llvm.org/D47166
llvm-svn: 333067
more reliably.
Clang has two different ways it emits array constants (from InitListExprs and
from APValues), and both had some ability to emit zeroinitializer, but neither
was able to catch all cases where we could use zeroinitializer reliably. In
particular, emitting from an APValue would fail to notice if all the explicit
array elements happened to be zero. In addition, for large arrays where only an
initial portion has an explicit initializer, we would emit the complete
initializer (which could be huge) rather than emitting only the non-zero
portion. With this change, when the element would have a suffix of more than 8
zero elements, we emit the array constant as a packed struct of its initial
portion followed by a zeroinitializer constant for the trailing zero portion.
In passing, I found a bug where SemaInit would sometimes walk the entire array
when checking an initializer that only covers the first few elements; that's
fixed here to unblock testing of the rest.
Differential Revision: https://reviews.llvm.org/D47166
llvm-svn: 333044
Handle attributes before checking the record layout (e.g. underalignment check
during `alignas` processing), as layout may be cached without taking into
account attributes that may affect it.
Differential Revision: https://reviews.llvm.org/D46439
llvm-svn: 332843
Summary:
Previously this triggered a -Wundefined-internal warning. But it's not
an undefined variable -- any variable of this form is a pointer to the
base of GPU core's shared memory.
Reviewers: tra
Subscribers: sanjoy, rsmith
Differential Revision: https://reviews.llvm.org/D46782
llvm-svn: 332621
Clang used to pass the base lvalue of a non-type template parameter
to the template instantiation phase when the base part is __uuidof
and it's running in C++17 mode.
However, that drops its LValuePath, and unintentionally transforms
&__uuidof(...) to __uuidof(...).
This CL fixes that by passing whole expr. Fixes PR24986.
https://reviews.llvm.org/D46820?id=146557
Patch from Taiju Tsuiki <tzik@chromium.org>!
llvm-svn: 332614
The added test case was triggering assertion
> Assertion failed: (!SpecializedTemplate.is<SpecializedPartialSpecialization*>() && "Already set to a class template partial specialization!"), function setInstantiationOf, file clang/include/clang/AST/DeclTemplate.h, line 1825.
It was happening with ClassTemplateSpecializationDecl
`enable_if_not_same<int, int>`. Because this template is specialized for
equal types not to have a definition, it wasn't instantiated and its
specialization kind remained TSK_Undeclared. And because it was implicit
instantiation, we didn't mark the decl as invalid. So when we try to
find the best matching partial specialization the second time, we hit
the assertion as partial specialization is already set.
Fix by reusing stored partial specialization when available, instead of
looking for the best match every time.
rdar://problem/39524996
Reviewers: rsmith, arphaman
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D46909
llvm-svn: 332509
Clang often tries to create implicit module import for error recovery,
which does a great job helping out with diagnostics. However, sometimes
clang does not have enough information given that it's using an invalid
context to move on. Be more strict in those cases to avoid crashes.
We hit crash on invalids because of this but unfortunately there are no
testcases and I couldn't manage to create one. The crashtrace however
indicates pretty clear why it's happening.
rdar://problem/39313933
llvm-svn: 332491
Add support for __declspec(code_seg("segname"))
This patch is built on the existing support for #pragma code_seg. The code_seg
declspec is allowed on functions and classes. The attribute enables the
placement of code into separate named segments, including compiler-generated
members and template instantiations.
For more information, please see the following:
https://msdn.microsoft.com/en-us/library/dn636922.aspx
A new CodeSeg attribute is used instead of adding a new spelling to the existing
Section attribute since they don’t apply to the same Subjects. Section
attributes are also added for the code_seg declspec since they are used for
#pragma code_seg. No CodeSeg attributes are added to the AST.
The patch is written to match with the Microsoft compiler’s behavior even where
that behavior is a little complicated (see https://reviews.llvm.org/D22931, the
Microsoft feedback page is no longer available since MS has removed the page).
That code is in getImplicitSectionAttrFromClass routine.
Diagnostics messages are added to match with the Microsoft compiler for code-seg
attribute mismatches on base and derived classes and virtual overrides.
Differential Revision: https://reviews.llvm.org/D43352
llvm-svn: 332470
Like other conversion warnings, allow float overflow warnings to be disabled
in known dead paths of template instantiation. This often occurs when a
template template type is a numeric type and the template will check the
range of the numeric type before performing the conversion.
llvm-svn: 332310
After a fatal error Sema::InstantiatingTemplate doesn't allow further
instantiation and doesn't push a CodeSynthesisContext. When we tried to
synthesize implicit deduction guides from constructors we hit the
assertion
> Assertion failed: (!CodeSynthesisContexts.empty() && "Cannot perform an instantiation without some context on the " "instantiation stack"), function SubstType, file clang/lib/Sema/SemaTemplateInstantiate.cpp, line 1580.
Fix by avoiding deduction guide synthesis if InstantiatingTemplate is invalid.
rdar://problem/39051732
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D46446
llvm-svn: 332307
If the name after 'template' is an unresolved using declaration (not containing
'typename'), then we don't yet know if it's a valid template-name, so don't
reject it prior to instantiation. Instead, treat it as naming a dependent
member of the current instantiation.
llvm-svn: 332291
The fixit is actively harmful, as it encourages developers to ignore the
warning and to write unsafe code.
It is almost impossible to write safe code while capturing autoreleasing
variables in the block, as in order to check that the block is never
called in the autoreleasing pool the developer has to check the
transitive closure of all potential callers of the block.
Differential Revision: https://reviews.llvm.org/D46778
llvm-svn: 332288
For example, given:
void fn() {
struct T *p0;
struct T { int i; } *p1;
}
-ast-print produced:
void fn() {
struct T { int i; } *p0;
struct T { int i; } *p1;
}
Compiling that fails with a redefinition error.
Given:
void fn() {
struct T *p0;
struct __attribute__((deprecated)) T *p1;
}
-ast-print dropped the attribute.
Details:
For a tag specifier (that is, struct/union/class/enum used as a type
specifier in a declaration) that was also a tag declaration (that is,
first occurrence of the tag) or tag redeclaration (that is, later
occurrence that specifies attributes or a member list), clang printed
the tag specifier as either (1) the full tag definition if one
existed, or (2) the first tag declaration otherwise. Redefinition
errors were sometimes introduced, as in the first example above. Even
when that was impossible because no member list was ever specified,
attributes were sometimes lost, thus changing semantics and
diagnostics, as in the second example above.
This patch fixes a major culprit for these problems. It does so by
creating an ElaboratedType with a new OwnedDecl member wherever an
occurrence of a tag type is a (re)declaration of that tag type.
PrintingPolicy's IncludeTagDefinition used to trigger printing of the
member list, attributes, etc. for a tag specifier by using a tag
(re)declaration selected as described above. Now, it triggers the
same thing except it uses the tag (re)declaration stored in the
OwnedDecl. Of course, other tooling can now make use of the new
OwnedDecl as well.
Also, to be more faithful to the original source, this patch
suppresses printing of attributes inherited from previous
declarations.
Reviewed by: rsmith, aaron.ballman
Differential Revision: https://reviews.llvm.org/D45463
llvm-svn: 332281
For example, given:
#define bool _Bool
_Bool i;
void fn() { 1; }
-ast-print produced:
tmp.c:3:13: warning: expression result unused
void fn() { 1; }
^
bool i;
void fn() {
1;
}
That fails to compile because bool is undefined.
Details:
Diagnostics print _Bool as bool when the latter is defined as the
former. However, diagnostics were altering the printing policy for
-ast-print as well. The printed source was then invalid because the
preprocessor eats the bool definition.
Problematic diagnostics included suppressed warnings (e.g., add
-Wno-unused-value to the above example), including those that are
suppressed by default.
This patch fixes this bug and cleans up some related comments.
Reviewed by: aaron.ballman, rsmith
Differential Revision: https://reviews.llvm.org/D45093
llvm-svn: 332275
These intrinsics work exactly as all other atomic_fetch_* intrinsics and allow to create *atomicrmw* with ordering.
Updated the clang-extensions document.
Differential Revision: https://reviews.llvm.org/D46386
llvm-svn: 332193
For 'x::template y', consistently give a "no member named 'y' in 'x'"
diagnostic if there is no such member, and give a 'template keyword not
followed by a template' name error if there is such a member but it's not a
template. In the latter case, add a note pointing at the non-template.
Don't suggest inserting a 'template' keyword in 'X::Y<' if X is dependent
if the lookup of X::Y was actually not a dependent lookup and found only
non-templates.
llvm-svn: 332076
Summary:
This attribute tells clang to skip this function from stack protector
when -stack-protector option is passed.
GCC option for this is:
__attribute__((__optimize__("no-stack-protector"))) and the
equivalent clang syntax would be: __attribute__((no_stack_protector))
This is used in Linux kernel to selectively disable stack protector
in certain functions.
Reviewers: aaron.ballman, rsmith, rnk, probinson
Reviewed By: aaron.ballman
Subscribers: probinson, srhines, cfe-commits
Differential Revision: https://reviews.llvm.org/D46300
llvm-svn: 331925
Added string literal helper function to obtain the type
attributed by a constant address space.
Also fixed predefind __func__ expr to use the helper
to constract the string literal correctly.
Differential Revision: https://reviews.llvm.org/D46049
llvm-svn: 331877
Restrict the following keywords in the OpenCL C++ language mode,
according to Sections 2.2 & 2.9 of the OpenCL C++ 1.0 Specification.
- dynamic_cast
- typeid
- register (already restricted in OpenCL C, update the diagnostic)
- thread_local
- exceptions (try/catch/throw)
- access qualifiers read_only, write_only, read_write
Support the `__global`, `__local`, `__constant`, `__private`, and
`__generic` keywords in OpenCL C++. Leave the unprefixed address
space qualifiers such as global available, i.e., do not mark them as
reserved keywords in OpenCL C++. libclcxx provides explicit address
space pointer classes such as `global_ptr` and `global<T>` that are
implemented using the `__`-prefixed qualifiers.
Differential Revision: https://reviews.llvm.org/D46022
llvm-svn: 331874
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
As Eli brought up here: https://reviews.llvm.org/D46535
I'd previously messed up this fix by missing conversions
that are just slightly outside the range. This patch fixes
this by no longer ignoring the return value of
convertToInteger. Additionally, one of the error messages
wasn't very sensical (mentioning out of range value, when it
really was not), so it was cleaned up as well.
llvm-svn: 331812
This patch addresses some mostly trivial post-commit review comments received
on r331677.
Additionally, this patch fixes an assertion in `getNarrowingKind` caused by
the use of an uninitialized value from `checkThreeWayNarrowingConversion`.
llvm-svn: 331707
Summary:
This patch tackles long hanging fruit for the builtin operator<=> expressions. It is currently needs some cleanup before landing, but I want to get some initial feedback.
The main changes are:
* Lookup, build, and store the required standard library types and expressions in `ASTContext`. By storing them in ASTContext we don't need to store (and duplicate) the required expressions in the BinaryOperator AST nodes.
* Implement [expr.spaceship] checking, including diagnosing narrowing conversions.
* Implement `ExprConstant` for builtin spaceship operators.
* Implement builitin operator<=> support in `CodeGenAgg`. Initially I emitted the required comparisons using `ScalarExprEmitter::VisitBinaryOperator`, but this caused the operand expressions to be emitted once for every required cmp.
* Implement [builtin.over] with modifications to support the intent of P0946R0. See the note on `BuiltinOperatorOverloadBuilder::addThreeWayArithmeticOverloads` for more information about the workaround.
Reviewers: rsmith, aaron.ballman, majnemer, rnk, compnerd, rjmccall
Reviewed By: rjmccall
Subscribers: rjmccall, rsmith, aaron.ballman, junbuml, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D45476
llvm-svn: 331677
As identified and briefly discussed here:
https://bugs.llvm.org/show_bug.cgi?id=37305
Converting a floating point number to an integer type when
the integral part is out of the range of the integer type is
undefined behavior in C. Additionally, CodeGen emits an undef
in this situation.
HOWEVER, we've been giving a warning that says that the value is
changed. This patch corrects the warning to list that it is actually
undefined behavior.
Differential Revision: https://reviews.llvm.org/D46535
llvm-svn: 331673
I found that explicit template parameters that caused a
narrowing integer conversion resulted in the incorrect parameter
being mentioned in the note (see test attached). This is because
the argument checking code doesn't check to see if it caused
SFINAE errors when checking the arguments, so instead of giving
up on the first error, it continues through the list. This
makes the error reporting pick up the last template param every time.
This patch checks these parameters on each argument and gives up
if there is an error. The result is that only the required amount
of arguments are checked, and that the 'Converted' array contains
only the successful arguments before the first failure, as the
calls seem to all expect.
llvm-svn: 331651
Calling convention attributes notionally appertain to the function type -- they modify the mangling of the function, change the behavior of assignment operations, etc. This commit allows the calling convention attributes to be written in the type position as well as the declaration position.
llvm-svn: 331459
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
llvm-svn: 331428
the method declaration is unavailable for an app extension platform
Rationale:
Classes are often shared between an app extension code and
non-app extension code. There's no way to remove the implementation
using preprocessor when building the app extension, so we should not warn here.
rdar://38150617
llvm-svn: 331421
enabled for the host.
If the compilation for the host enables C++ exceptions, but they are not
supported by the device, we still need to allow the code with the
exception handling constructs outside of the target regions.
llvm-svn: 331372
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
llvm-svn: 331244
We should not emit warning that the parameters are not marked as declare
target, these declaration are local and cannot be marked as declare
target.
llvm-svn: 331211
When a '>>' token is split into two '>' tokens (in C++11 onwards), or (as an
extension) when we do the same for other tokens starting with a '>', we can't
just use a location pointing to the first '>' as the location of the split
token, because that would result in our miscomputing the length and spelling
for the token. As a consequence, for example, a refactoring replacing 'A<X>'
with something else would sometimes replace one character too many, and
similarly diagnostics highlighting a template-id source range would highlight
one character too many.
Fix this by creating an expansion range covering the first character of the
'>>' token, whose spelling is '>'. For this to work, we generalize the
expansion range of a macro FileID to be either a token range (the common case)
or a character range (used in this new case).
llvm-svn: 331155
template arguments.
This fixes some cases where we'd incorrectly accept "A::template B" when B is a
kind of template that requires template arguments (in particular, a variable
template or a concept).
llvm-svn: 331013
These builtins can't be handled by the backend on 64-bit targets. So error up front instead of throwing an isel error.
Fixes PR37225
Differential Revision: https://reviews.llvm.org/D46132
llvm-svn: 330987
a preceding 'template' keyword.
We only diagnose in the dependent case (wherein we used to crash). Another bug
prevents the diagnostic from appearing in the non-template case.
llvm-svn: 330894
This patch is a tweak of changyu's patch: https://reviews.llvm.org/D40381. It differs in that the recognition of the 'concept' token is moved into the machinery that recognizes declaration-specifiers - this allows us to leverage the attribute handling machinery more seamlessly.
See the test file to get a sense of the basic parsing that this patch supports.
There is much more work to be done before concepts are usable...
Thanks Changyu!
llvm-svn: 330794
HIP is a language similar to CUDA (https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md ).
The language syntax is very similar, which allows a hip program to be compiled as a CUDA program by Clang. The main difference
is the host API. HIP has a set of vendor neutral host API which can be implemented on different platforms. Currently there is open source
implementation of HIP runtime on amdgpu target (https://github.com/ROCm-Developer-Tools/HIP).
This patch adds support of input kind and language standard hip.
When hip file is compiled, both LangOpts.CUDA and LangOpts.HIP is turned on. This allows compilation of hip program as CUDA
in most cases and only special handling of hip program is needed LangOpts.HIP is checked.
This patch also adds support of kernel launching of HIP program using HIP host API.
When -x hip is not specified, there is no behaviour change for CUDA.
Patch by Greg Rodgers.
Revised and lit test added by Yaxun Liu.
Differential Revision: https://reviews.llvm.org/D44984
llvm-svn: 330790
Summary:
It seems there isn't much enthusiasm for `-wtest` D45685.
This is more conservative version, which i had in the very first
revision of D44883, but that 'erroneously' got removed because of the review.
**Based on some [irc] discussions, it must really be documented that
we want all the new diagnostics to have their own flags, to ease
rollouts, transitions, etc.**
Please do note that i'm only adding `-Wno-self-assign-overloaded`,
but not `-Wno-self-assign-field-overloaded`, because i'm honestly
not aware of any false-positives from the `-field` variant,
but i can just as easily add it if wanted.
https://reviews.llvm.org/D44883#1068561
Reviewers: dblaikie, aaron.ballman, thakis, rjmccall, rsmith
Reviewed By: dblaikie
Subscribers: Quuxplusone, chandlerc, cfe-commits
Differential Revision: https://reviews.llvm.org/D45766
llvm-svn: 330651
Following: https://llvm.org/svn/llvm-project/cfe/trunk@329804
For C++17 the wording of [over.built] p4 excluded bool:
For every pair (T , vq), where T is an arithmetic type other than bool, there exist
candidate operator functions of the form
vq T & operator++(vq T &);
T operator++(vq T &, int);
Differential Revision: https://reviews.llvm.org/D45569
llvm-svn: 330254
Issue a warning when non-trivial C structs are copied or initialized by
calls to memset, bzero, memcpy, or memmove.
rdar://problem/36124208
Differential Revision: https://reviews.llvm.org/D45310
llvm-svn: 330202
Summary:
There are some functions/methods that run when the application launches
or the library loads. Those functions will run reguardless the OS
version as long as it satifies the minimum deployment target. Annotate
them with availability attributes doesn't really make sense because they
are essentially available on all targets since minimum deployment
target.
rdar://problem/36093384
Reviewers: arphaman, erik.pilkington
Reviewed By: erik.pilkington
Subscribers: erik.pilkington, cfe-commits
Differential Revision: https://reviews.llvm.org/D45699
llvm-svn: 330166
As reported here: https://bugs.llvm.org/show_bug.cgi?id=37033
Any usage of a builtin function that uses a va_list by reference
will cause an assertion when redeclaring it.
After discussion in the review, it was concluded that the correct
way of accomplishing this fix is to make attempts to redeclare certain
builtins an error. Unfortunately, doing this limitation for all builtins
is likely a breaking change, so this commit simply limits it to
types with custom type checking and those that take a reference.
Two tests needed to be updated to make this work.
Differential Revision: https://reviews.llvm.org/D45383
llvm-svn: 330160
Summary:
Clean carriage returns from lib/ and include/. NFC.
(I have to make this change locally in order for `git diff` to show sane output after I edit a file, so I might as well ask for it to be committed. I don't have commit privs myself.)
(Without this patch, `git rebase`ing any change involving SemaDeclCXX.cpp is a real nightmare. :( So while I have no right to ask for this to be committed, geez would it make my workflow easier if it were.)
Here's the command I used to reformat things. (Requires bash and OSX/FreeBSD sed.)
git grep -l $'\r' lib include | xargs sed -i -e $'s/\r//'
find lib include -name '*-e' -delete
Reviewers: malcolm.parsons
Reviewed By: malcolm.parsons
Subscribers: emaste, krytarowski, cfe-commits
Differential Revision: https://reviews.llvm.org/D45591
Patch by Arthur O'Dwyer.
llvm-svn: 330112
Summary:
This patch adds two new diagnostics, which are off by default:
**-Wreturn-std-move**
This diagnostic is enabled by `-Wreturn-std-move`, `-Wmove`, or `-Wall`.
Diagnose cases of `return x` or `throw x`, where `x` is the name of a local variable or parameter, in which a copy operation is performed when a move operation would have been available. The user probably expected a move, but they're not getting a move, perhaps because the type of "x" is different from the return type of the function.
A place where this comes up in the wild is `stdext::inplace_function<Sig, N>` which implements conversion via a conversion operator rather than a converting constructor; see https://github.com/WG21-SG14/SG14/issues/125#issue-297201412
Another place where this has come up in the wild, but where the fix ended up being different, was
try { ... } catch (ExceptionType ex) {
throw ex;
}
where the appropriate fix in that case was to replace `throw ex;` with `throw;`, and incidentally to catch by reference instead of by value. (But one could contrive a scenario where the slicing was intentional, in which case throw-by-move would have been the appropriate fix after all.)
Another example (intentional slicing to a base class) is dissected in https://github.com/accuBayArea/Slides/blob/master/slides/2018-03-07.pdf
**-Wreturn-std-move-in-c++11**
This diagnostic is enabled only by the exact spelling `-Wreturn-std-move-in-c++11`.
Diagnose cases of "return x;" or "throw x;" which in this version of Clang *do* produce moves, but which prior to Clang 3.9 / GCC 5.1 produced copies instead. This is useful in codebases which care about portability to those older compilers.
The name "-in-c++11" is not technically correct; what caused the version-to-version change in behavior here was actually CWG 1579, not C++14. I think it's likely that codebases that need portability to GCC 4.9-and-earlier may understand "C++11" as a colloquialism for "older compilers." The wording of this diagnostic is based on feedback from @rsmith.
**Discussion**
Notice that this patch is kind of a negative-space version of Richard Trieu's `-Wpessimizing-move`. That diagnostic warns about cases of `return std::move(x)` that should be `return x` for speed. These diagnostics warn about cases of `return x` that should be `return std::move(x)` for speed. (The two diagnostics' bailiwicks do not overlap: we don't have to worry about a `return` statement flipping between the two states indefinitely.)
I propose to write a paper for San Diego that would relax the implicit-move rules so that in C++2a the user //would// see the moves they expect, and the diagnostic could be re-worded in a later version of Clang to suggest explicit `std::move` only "in C++17 and earlier." But in the meantime (and/or forever if that proposal is not well received), this diagnostic will be useful to detect accidental copy operations.
Reviewers: rtrieu, rsmith
Reviewed By: rsmith
Subscribers: lebedev.ri, Rakete1111, rsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D43322
Patch by Arthur O'Dwyer.
llvm-svn: 329914
type.
Copy the code in ActOnStartOfFunctionDef that checks a function's return
type to ActOnStartOfObjCMethodDef. This fixes an assertion failure in
IRGen caused by an uninstantiated return type.
rdar://problem/38691818
llvm-svn: 329879
C++ [over.built] p4:
"For every pair (T, VQ), where T is an arithmetic type other than bool, and VQ is either volatile or empty, there exist candidate operator functions of the form
VQ T& operator--(VQ T&);
T operator--(VQ T&, int);
"
The bool type is in position LastPromotedIntegralType in BuiltinOperatorOverloadBuilder::getArithmeticType::ArithmeticTypes, but addPlusPlusMinusMinusArithmeticOverloads() was expecting it at position 0.
Differential Revision: https://reviews.llvm.org/D44988
rdar://problem/34255516
llvm-svn: 329804
The current support of the feature produces only 2 lines in report:
-Some general Code Generation Time;
-Total time of Backend Consumer actions.
This patch extends Clang time report with new lines related to Preprocessor, Include Filea Search, Parsing, etc.
Differential Revision: https://reviews.llvm.org/D43578
llvm-svn: 329684
registers.
This patch fixes a bug in r328731 that caused structs transitively
containing __weak fields to be passed in registers. The patch replaces
the flag RecordDecl::CanPassInRegisters with a 2-bit enum that indicates
whether the struct or structs containing the struct are forced to be
passed indirectly.
This reapplies r329617. r329617 didn't specify the underlying type for
enum ArgPassingKind, which caused regression tests to fail on a windows
bot.
rdar://problem/39194693
Differential Revision: https://reviews.llvm.org/D45384
llvm-svn: 329635
registers.
This patch fixes a bug in r328731 that caused structs transitively
containing __weak fields to be passed in registers. The patch replaces
the flag RecordDecl::CanPassInRegisters with a 2-bit enum that indicates
whether the struct or structs containing the struct are forced to be
passed indirectly.
rdar://problem/39194693
llvm-svn: 329617
Summary:
Currently clang doesn't do qualified lookup when building indirect field decl references. This causes ambiguity when the field is in a base class to which there are multiple valid paths even though a qualified name is used.
For example:
```
class B {
protected:
int i;
union { int j; };
};
class X : public B { };
class Y : public B { };
class Z : public X, public Y {
int a() { return X::i; } // works
int b() { return X::j; } // fails
};
```
Reviewers: rsmith, aaron.ballman, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45411
llvm-svn: 329521
Summary:
Currently clang doesn't do qualified lookup when building indirect field decl references. This causes ambiguity when the field is in a base class to which there are multiple valid paths even though a qualified name is used.
For example:
```
class B {
protected:
int i;
union { int j; };
};
class X : public B { };
class Y : public B { };
class Z : public X, public Y {
int a() { return X::i; } // works
int b() { return X::j; } // fails
};
```
Reviewers: rsmith, aaron.ballman, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45411
llvm-svn: 329519
Summary:
This patch cleans up a bunch of dead or unused code in BuildAnonymousStructUnionMemberReference.
The dead code was a branch that built a new CXXThisExpr when we weren't given a base object expression or base variable.
However, BuildAnonymousFoo has only two callers. One of which always builds a base object expression first, the second only calls when the IndirectFieldDecl is not a C++ class member. Even within C this branch seems entirely unused.
I tried diligently to write a test which hit it with no success.
This patch removes the branch and replaces it with an assertion that we were given either a base object expression or a base variable.
Reviewers: rsmith, aaron.ballman, majnemer, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45410
llvm-svn: 329518
Summary:
Currently Clang fails to propagate qualifiers from the `CXXThisExpr` to the rebuilt `FieldDecl` for IndirectFieldDecls. For example:
```
template <class T> struct Foo {
struct { int x; };
int y;
void foo() const {
static_assert(__is_same(int const&, decltype((y))));
static_assert(__is_same(int const&, decltype((x)))); // assertion fails
}
};
template struct Foo<int>;
```
The fix is to delegate rebuilding of the MemberExpr to `BuildFieldReferenceExpr` which correctly propagates the qualifiers.
Reviewers: rsmith, lebedev.ri, aaron.ballman, bkramer, rjmccall
Reviewed By: rjmccall
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D45412
llvm-svn: 329517
Summary:
This has just bit me, so i though it would be nice to avoid that next time :)
Motivational case:
https://godbolt.org/g/cq9UNk
Basically, it's likely to happen if you don't like shadowing issues,
and use `-Wshadow` and friends. And it won't be diagnosed by clang.
The reason is, these self-assign diagnostics only work for builtin assignment
operators. Which makes sense, one could have a very special operator=,
that does something unusual in case of self-assignment,
so it may make sense to not warn on that.
But while it may be intentional in some cases, it may be a bug in other cases,
so it would be really great to have some diagnostic about it...
Reviewers: aaron.ballman, rsmith, rtrieu, nikola, rjmccall, dblaikie
Reviewed By: rjmccall
Subscribers: EricWF, lebedev.ri, thakis, Quuxplusone, cfe-commits
Differential Revision: https://reviews.llvm.org/D44883
llvm-svn: 329493
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
structs.
r326307 and r327870 made changes that allowed using non-trivial C
structs with fields qualified with __strong or __weak. This commit makes
the following C++ triviality type traits available to non-trivial C
structs:
__has_trivial_assign
__has_trivial_move_assign
__has_trivial_copy
__has_trivial_move_constructor
__has_trivial_constructor
__has_trivial_destructor
This reapplies r328680. This commit fixes a bug where the copy/move
__has_trivial_* traits would return false when a volatile type was being
passed. Thanks to Richard Smith for pointing out the mistake.
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44913
llvm-svn: 329289
It unintentionally caused the values of the __has_* type traits to change in
C++ for trivially-copyable classes with volatile members.
llvm-svn: 329247
We were already performing checks on non-template variables,
but the checks on templated ones were missing.
Differential Revision: https://reviews.llvm.org/D45231
llvm-svn: 329127
This reverts r328795 which introduced an issue with referencing __global__
function templates. More details in the original review D44747.
llvm-svn: 329099
Summary:
https://reviews.llvm.org/rL325291 implemented Coroutines TS N4723
section [dcl.fct.def.coroutine]/7, but it performed lookup of allocator
functions within both the global and class scope, whereas the specified
behavior is to perform lookup for custom allocators within just the
class scope.
To fix, add parameters to the `Sema::FindAllocationFunctions` function
such that it can be used to lookup allocators in global scope,
class scope, or both (instead of just being able to look up in just global
scope or in both global and class scope). Then, use those parameters
from within the coroutine Sema.
This incorrect behavior had the unfortunate side-effect of causing the
bug https://bugs.llvm.org/show_bug.cgi?id=36578 (or at least the reports
of that bug in C++ programs). That bug would occur for any C++ user with
a coroutine frame that took a single pointer argument, since it would
then find the global placement form `operator new`, described in the
C++ standard 18.6.1.3.1. This patch prevents Clang from generating code
that triggers the LLVM assert described in that bug report.
Test Plan: `check-clang`
Reviewers: GorNishanov, eric_niebler, lewissbaker
Reviewed By: GorNishanov
Subscribers: EricWF, cfe-commits
Differential Revision: https://reviews.llvm.org/D44552
llvm-svn: 328949
This commit generalizes NRVO to cover C structs (both trivial and
non-trivial structs).
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44968
llvm-svn: 328809
Deprecation replacement can be any text but if it looks like a name of
ObjC method and has the same number of arguments as original method,
replace all slot names so after applying a fix-it you have valid code.
rdar://problem/36660853
Reviewers: aaron.ballman, erik.pilkington, rsmith
Reviewed By: erik.pilkington
Subscribers: cfe-commits, jkorous-apple
Differential Revision: https://reviews.llvm.org/D44589
llvm-svn: 328807
This patch sets target specific calling convention for CUDA kernels in IR.
Patch by Greg Rodgers.
Revised and lit test added by Yaxun Liu.
Differential Revision: https://reviews.llvm.org/D44747
llvm-svn: 328795
Use range-based for-loops instead of iterators to walk over vectors.
Switch the key of the DenseMap so a custom key handler is no longer needed.
Remove unncessary adds to the DenseMap.
Use unique_ptr instead of manual memory management.
llvm-svn: 328763
The AST for the fragment
```
@interface I
@end
template <typename>
void decode(I *p) {
for (I *k in p) {}
}
void decode(I *p) {
decode<int>(p);
}
```
differs heavily when templatized and non-templatized:
```
|-FunctionTemplateDecl 0x7fbfe0863940 <line:4:1, line:7:1> line:5:6 decode
| |-TemplateTypeParmDecl 0x7fbfe0863690 <line:4:11> col:11 typename depth 0 index 0
| |-FunctionDecl 0x7fbfe08638a0 <line:5:1, line:7:1> line:5:6 decode 'void (I *__strong)'
| | |-ParmVarDecl 0x7fbfe08637a0 <col:13, col:16> col:16 referenced p 'I *__strong'
| | `-CompoundStmt 0x7fbfe0863b88 <col:19, line:7:1>
| | `-ObjCForCollectionStmt 0x7fbfe0863b50 <line:6:3, col:20>
| | |-DeclStmt 0x7fbfe0863a50 <col:8, col:13>
| | | `-VarDecl 0x7fbfe08639f0 <col:8, col:11> col:11 k 'I *const __strong'
| | |-ImplicitCastExpr 0x7fbfe0863a90 <col:16> 'I *' <LValueToRValue>
| | | `-DeclRefExpr 0x7fbfe0863a68 <col:16> 'I *__strong' lvalue ParmVar 0x7fbfe08637a0 'p' 'I *__strong'
| | `-CompoundStmt 0x7fbfe0863b78 <col:19, col:20>
| `-FunctionDecl 0x7fbfe0863f80 <line:5:1, line:7:1> line:5:6 used decode 'void (I *__strong)'
| |-TemplateArgument type 'int'
| |-ParmVarDecl 0x7fbfe0863ef8 <col:13, col:16> col:16 used p 'I *__strong'
| `-CompoundStmt 0x7fbfe0890cf0 <col:19, line:7:1>
| `-ObjCForCollectionStmt 0x7fbfe0890cc8 <line:6:3, col:20>
| |-DeclStmt 0x7fbfe0890c70 <col:8, col:13>
| | `-VarDecl 0x7fbfe0890c00 <col:8, col:11> col:11 k 'I *__strong' callinit
| | `-ImplicitValueInitExpr 0x7fbfe0890c60 <<invalid sloc>> 'I *__strong'
| |-ImplicitCastExpr 0x7fbfe0890cb0 <col:16> 'I *' <LValueToRValue>
| | `-DeclRefExpr 0x7fbfe0890c88 <col:16> 'I *__strong' lvalue ParmVar 0x7fbfe0863ef8 'p' 'I *__strong'
| `-CompoundStmt 0x7fbfe0863b78 <col:19, col:20>
```
Note how in the instantiated version ImplicitValueInitExpr unexpectedly appears.
While objects are auto-initialized under ARC, it does not make sense to
have an initializer for a for-loop variable, and it makes even less
sense to have such a different AST for instantiated and non-instantiated
version.
Digging deeper, I have found that there are two separate Sema* files for
dealing with templates and for dealing with non-templatized code.
In a non-templatized version, an initialization was performed only for
variables which are not loop variables for an Objective-C loop and not
variables for a C++ for-in loop:
```
if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
bool IsForRangeLoop = false;
if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
IsForRangeLoop = true;
if (Tok.is(tok::l_brace))
FRI->RangeExpr = ParseBraceInitializer();
else
FRI->RangeExpr = ParseExpression();
}
Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
if (IsForRangeLoop)
Actions.ActOnCXXForRangeDecl(ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
D.complete(ThisDecl);
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
}
SmallVector<Decl *, 8> DeclsInGroup;
Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
D, ParsedTemplateInfo(), FRI);
```
However the code in SemaTemplateInstantiateDecl was inconsistent,
guarding only against C++ for-in loops.
rdar://38391075
Differential Revision: https://reviews.llvm.org/D44989
llvm-svn: 328749
ObjC and ObjC++ pass non-trivial structs in a way that is incompatible
with each other. For example:
typedef struct {
id f0;
__weak id f1;
} S;
// this code is compiled in c++.
extern "C" {
void foo(S s);
}
void caller() {
// the caller passes the parameter indirectly and destructs it.
foo(S());
}
// this function is compiled in c.
// 'a' is passed directly and is destructed in the callee.
void foo(S a) {
}
This patch fixes the incompatibility by passing and returning structs
with __strong or weak fields using the C ABI in C++ mode. __strong and
__weak fields in a struct do not cause the struct to be destructed in
the caller and __strong fields do not cause the struct to be passed
indirectly.
Also, this patch fixes the microsoft ABI bug mentioned here:
https://reviews.llvm.org/D41039?id=128767#inline-364710
rdar://problem/38887866
Differential Revision: https://reviews.llvm.org/D44908
llvm-svn: 328731
Summary:
The "previous definition is here" note is not helpful if there is no location information. The note will reference nothing in such a case. This patch first checks to see if there is location data, and if so the note diagnostic is emitted.
This fixes PR15409. The issue in the first comment seems to already be resolved. This patch addresses the second example.
Reviewers: bruno, rsmith
Reviewed By: bruno
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D44901
llvm-svn: 328712
The diagnostic system for Clang can already handle many AST nodes. Instead
of converting them to strings first, just hand the AST node directly to
the diagnostic system and let it handle the output. Minor changes in some
diagnostic output.
llvm-svn: 328688
structs.
r326307 and r327870 made changes that allowed using non-trivial C
structs with fields qualified with __strong or __weak. This commit makes
the following C++ triviality type traits available to non-trivial C
structs:
__has_trivial_assign
__has_trivial_move_assign
__has_trivial_copy
__has_trivial_move_constructor
__has_trivial_constructor
__has_trivial_destructor
rdar://problem/33599681
Differential Revision: https://reviews.llvm.org/D44913
llvm-svn: 328680
When SemaCoroutine looks for await_resume, it means it. No need for helpful: "Did you mean await_ready?" messages.
Fixes PR33477 and a couple of FIXMEs in test/SemaCXX/coroutines.cpp
llvm-svn: 328663
When we have a category implementation without a corresponding interface
(which is an error by itself), semantic checks for property accesses
will attempt to access a null interface declaration and then segfault.
Error out in such cases instead.
Differential Revision: https://reviews.llvm.org/D44916
llvm-svn: 328654
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
llvm-svn: 328636
Summary:
Currently an invalid source range is generated for the member call expressions of `co_await`. The end location of the call expression is the `co_await` token loc, while the start is the location of the operand. This causes crashes when the source range is used to produce diagnostics.
This patch fixes the issues by using the expression location instead of the token location when building the member calls.
Reviewers: GorNishanov, rsmith, vsk, aaron.ballman
Reviewed By: vsk
Subscribers: cfe-commits, modocache
Differential Revision: https://reviews.llvm.org/D44915
llvm-svn: 328606
Summary:
This fixes PR33561 and PR34185.
Don't store pending template instantiations for late-parsed templates in
the normal PendingInstantiations queue. Instead, use a separate list
that will only be parsed and instantiated at end of TU when late
template parsing actually works and doesn't infinite loop.
Reviewers: rsmith, thakis, hans
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D44846
llvm-svn: 328567
Summary:
r318093 sets fma, fmaf, fmal as const for Gnu and MSVC. Android also
does not set errno for these functions. So mark these const for
Android.
Reviewers: spatel, efriedma, srhines, chh, enh
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D44852
llvm-svn: 328552