This fixes the following warning when compiling with gcc version 8.0.1 20180319 (experimental) (GCC):
/home/umb/LLVM/llvm/tools/lld/ELF/SyntheticSections.cpp:1951:46: warning: enumeral and non-enumeral type in conditional expression [-Wextra]
return OS->SectionIndex >= SHN_LORESERVE ? SHN_XINDEX : OS->SectionIndex;
llvm-svn: 340164
Summary: This makes it conform to what the comment says. Otherwise when getErrPlace() is called afterwards, cast<InputSection>(D) will cause incompatible cast as MergeInputSection is not a subclass of InputSection.
Reviewers: ruiu, grimar, espindola, pcc
Reviewed By: grimar
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D50742
llvm-svn: 339904
It turns out that postThunkContents() is only used for
sorting symbols in .symtab.
Though we can instead move the logic to SymbolTableBaseSection::finalizeContents(),
postpone calling it and then get rid of postThunkContents completely.
Differential revision: https://reviews.llvm.org/D49547
llvm-svn: 339413
If we fail to merge a secondary GOT with the primary GOT but so far only
one merged GOT has been created (the primary one), the final element in
MergedGots is the primary GOT. Thus we should not try to merge with this
final element passing IsPrimary=false, since this will ignore the fact
that the destination GOT does in fact need a header, and those extra two
entries can be enough to allow the merge to incorrectly occur. Instead
we should check for this case before attempting the second merge.
Patch by James Clarke.
Differential revision: https://reviews.llvm.org/D49422
llvm-svn: 337810
Signed values for the FDE PC addr were not correctly handled in
readFdeAddr(). If the value is negative and the type of the value is
smaller than 64 bits, the FDE PC addr overflow error would be
incorrectly triggered.
Fixed readFdeAddr() to properly handle signed values by sign extending
where appropriate.
Differential Revision: https://reviews.llvm.org/D49557
llvm-svn: 337683
Currently, getFdePC() returns uint64_t. Its because the following
encodings might use 8 bytes: DW_EH_PE_absptr and DW_EH_PE_udata8.
But caller assigns returned value to uint32_t field:
https://github.com/llvm-mirror/lld/blob/master/ELF/SyntheticSections.cpp#L508
Value is used for building .eh_frame_hdr section.
We use DW_EH_PE_sdata4 encoding for building it at this moment:
https://github.com/llvm-mirror/lld/blob/master/ELF/SyntheticSections.cpp#L2545
And that means that an overflow issue might happen if
DW_EH_PE_absptr/DW_EH_PE_udata8 address encodings are present
in .eh_frame. In that case, before this patch, we silently would
truncate the address and produced broken .eh_frame_hdr section.
It would be not hard to support real 64-bit values for
DW_EH_PE_absptr/DW_EH_PE_udata8 encodings, but it is
unclear if it is usefull and if we should do it.
Since nobody faced/reported it, int this patch I only implement
a check to stop producing broken output silently for now.
llvm-svn: 337382
Code was dead because at the moment of BssSection creation
it can never have a parent. Also, code simply does not
make sence as alignment adjastment happens when
BssSection is added to its parent later.
llvm-svn: 337276
Since .gdb_index sections contain all known symbols, they can be very large.
One of my executables has a .gdb_index section of 1350 GiB. Uniquifying
symbols by name takes 3.77 seconds on my machine. This patch parallelize it.
Time to call createSymbols() with 8.4 million unique symbols:
Without this patch: 3773 ms
Parallelism = 1: 4374 ms
Parallelism = 2: 2628 ms
Parallelism = 16: 837 ms
As you can see above, this algorithm is a bit more inefficient
than the non-parallelized version, but even with dual-core, it is
faster than that, so I think it is overall a win.
Differential Revision: https://reviews.llvm.org/D49164
llvm-svn: 336790
This workaround is for GCC 5.4.1. Without this workaround, lld will
produce larger .gdb_index sections for object files compiled with the
buggy version of the compiler.
Since it is not for correctness, and it affects only debug builds (since
you are generating .gdb_index sections), perhaps the hack shouldn't have been
added in the first place. At least, I think it is time to remove this hack.
Differential Revision: https://reviews.llvm.org/D49149
llvm-svn: 336788
This patch merges createGdbIndex function and GdbIndexSection's
constructor into a single static member function of the class.
This patch also change how we keep CU vectors. Previously, CuVector
and GdbSymbols were parallel arrays, but there's no reason to choose that
design. Now, CuVector is a member of GdbSymbol class.
A lot of members are removed from GdbIndexSection. Previously, it has
members that need to be kept in sync over several phases. I belive the new
design is less error-prone, and the new code is much easier to read
than before.
llvm-svn: 336743
.gdb_index sections can be very large. When you are compiling
multi-gibibyte executables, they can be larger than 1 GiB. The previous
implementation of .gdb_index seems to consume too much memory.
This patch reduces memory consumption by eliminating temporary objects.
In one experiment, memory consumption of GdbIndexSection class is
reduced from 962 MiB to 228 MiB when creating a .gdb_index of 1350 GiB.
Differential Revision: https://reviews.llvm.org/D49094
llvm-svn: 336672
I believe the only way to test this functionality is to create extremely
large object files and attempt to create a .gdb_index that is greater
than 4 GiB. But I think that's too much for most environments and buildbots,
so I'm commiting this without a test that actually triggers the new
error condition.
llvm-svn: 336631
Previously, we didn't create multiple consecutive bitmaps.
Added a test to catch this bug too.
Differential Revision: https://reviews.llvm.org/D49107
llvm-svn: 336620
This patch also speeds it up by making some constants compile-time
constants. Other than that, NFC.
Differential Revision: https://reviews.llvm.org/D49101
llvm-svn: 336614
Patch by Rahul Chaudhry!
This change adds experimental support for SHT_RELR sections, proposed
here: https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
Pass '--pack-dyn-relocs=relr' to enable generation of SHT_RELR section
and DT_RELR, DT_RELRSZ, and DT_RELRENT dynamic tags.
Definitions for the new ELF section type and dynamic array tags, as well
as the encoding used in the new section are all under discussion and are
subject to change. Use with caution!
Pass '--use-android-relr-tags' with '--pack-dyn-relocs=relr' to use
SHT_ANDROID_RELR section type instead of SHT_RELR, as well as
DT_ANDROID_RELR* dynamic tags instead of DT_RELR*. The generated
section contents are identical.
'--pack-dyn-relocs=android+relr --use-android-relr-tags' enables both
'--pack-dyn-relocs=android' and '--pack-dyn-relocs=relr': lld will
encode the relative relocations in a SHT_ANDROID_RELR section, and pack
the rest of the dynamic relocations in a SHT_ANDROID_REL(A) section.
Differential Revision: https://reviews.llvm.org/D48247
llvm-svn: 336594
The local dynamic TLS access on PPC64 ELF v2 ABI uses R_PPC64_GOT_DTPREL16*
relocations when a TLS variables falls outside 2 GB of the thread storage
block. This patch adds support for these relocations by adding a new RelExpr
called R_TLSLD_GOT_OFF which emits a got entry for the TLS variable relative
to the dynamic thread pointer using the relocation R_PPC64_DTPREL64. It then
evaluates the R_PPC64_GOT_DTPREL16* relocations as the got offset for the
R_PPC64_DTPREL64 got entries.
Differential Revision: https://reviews.llvm.org/D48484
llvm-svn: 335732
rLLD329787 added the stable sorting to SymbolTableBaseSection::postThunkContents.
I profiled the Mozilla (response-O0.txt) from lld-speed-test package and found
std::stable_sort is showing up in profile results and consuming the 3.1% of the total
CPU time in the RelWithDebug build. Total time of postThunkContents is 3.54%, 238ms.
This change reduces postTimeContents time to 50ms, making it to take 0.73% of Total CPU time.
So, instead of sorting the local part I suggest to just rebuild it.
That is what this patch does.
Differential revision: https://reviews.llvm.org/D45519
llvm-svn: 335583
While building a Global Offset Table try to fill the primary GOT as much
as possible because the primary GOT can be accessed in the most
effective way. If it is not possible, try to fill the last GOT in the
multi-GOT list, and finally create a new GOT if both attempts failed.
llvm-svn: 335140
Summary:
Previously LLD would not add any dynamic relocations and write a module
index of 1 which is not correct for the shared library case.
This can happen when a thread-local global variable is marked as local with
a version script. With this change I am now able to link all of the FreeBSD
base system for MIPS64 with LLD.
Differential Revision: https://reviews.llvm.org/D48002
llvm-svn: 334483
Almost all entries inside MIPS GOT are referenced by signed 16-bit
index. Zero entry lies approximately in the middle of the GOT. So the
total number of GOT entries cannot exceed ~16384 for 32-bit architecture
and ~8192 for 64-bit architecture. This limitation makes impossible to
link rather large application like for example LLVM+Clang. There are two
workaround for this problem. The first one is using the -mxgot
compiler's flag. It enables using a 32-bit index to access GOT entries.
But each access requires two assembly instructions two load GOT entry
index to a register. Another workaround is multi-GOT. This patch
implements it.
Here is a brief description of multi-GOT for detailed one see the
following link https://dmz-portal.mips.com/wiki/MIPS_Multi_GOT.
If the sum of local, global and tls entries is less than 64K only single
got is enough. Otherwise, multi-got is created. Series of primary and
multiple secondary GOTs have the following layout:
```
- Primary GOT
Header
Local entries
Global entries
Relocation only entries
TLS entries
- Secondary GOT
Local entries
Global entries
TLS entries
...
```
All GOT entries required by relocations from a single input file
entirely belong to either primary or one of secondary GOTs. To reference
GOT entries each GOT has its own _gp value points to the "middle" of the
GOT. In the code this value loaded to the register which is used for GOT
access.
MIPS 32 function's prologue:
```
lui v0,0x0
0: R_MIPS_HI16 _gp_disp
addiu v0,v0,0
4: R_MIPS_LO16 _gp_disp
```
MIPS 64 function's prologue:
```
lui at,0x0
14: R_MIPS_GPREL16 main
```
Dynamic linker does not know anything about secondary GOTs and cannot
use a regular MIPS mechanism for GOT entries initialization. So we have
to use an approach accepted by other architectures and create dynamic
relocations R_MIPS_REL32 to initialize global entries (and local in case
of PIC code) in secondary GOTs. But ironically MIPS dynamic linker
requires GOT entries and correspondingly ordered dynamic symbol table
entries to deal with dynamic relocations. To handle this problem
relocation-only section in the primary GOT contains entries for all
symbols referenced in global parts of secondary GOTs. Although the sum
of local and normal global entries of the primary got should be less
than 64K, the size of the primary got (including relocation-only entries
can be greater than 64K, because parts of the primary got that overflow
the 64K limit are used only by the dynamic linker at dynamic link-time
and not by 16-bit gp-relative addressing at run-time.
The patch affects common LLD code in the following places:
- Added new hidden -mips-got-size flag. This flag required to set low
maximum size of a single GOT to be able to test the implementation using
small test cases.
- Added InputFile argument to the getRelocTargetVA function. The same
symbol referenced by GOT relocation from different input file might be
allocated in different GOT. So result of relocation depends on the file.
- Added new ctor to the DynamicReloc class. This constructor records
settings of dynamic relocation which used to adjust address of 64kb page
lies inside a specific output section.
With the patch LLD is able to link all LLVM+Clang+LLD applications and
libraries for MIPS 32/64 targets.
Differential revision: https://reviews.llvm.org/D31528
llvm-svn: 334390
Adds support for .glink resolver stubs from the example implementation in the V2
ABI (Section 4.2.5.3. Procedure Linkage Table). The stubs are written to the
PltSection, and the sections are renamed to match the PPC64 ABI:
.got.plt --> .plt Type = SHT_NOBITS
.plt --> .glink
And adds the DT_PPC64_GLINK dynamic tag to the dynamic section when the plt is
not empty.
Differential Revision: https://reviews.llvm.org/D45642
llvm-svn: 331840
Some MIPS relocations depend on "gp" value. By default, this value has
0x7ff0 offset from a .got section. But relocatable files produced by a
compiler or a linker might redefine this default value and we have to
use it for a calculation of the relocation result. When we generate EXE
or DSO it's trivial. Generating a relocatable output is more difficult
case because the linker does calculate relocations in this case and
cannot store individual "gp" values used by each input object file.
As a workaround we add the "gp" value to the relocation addend.
This fixes https://llvm.org/pr31149
Differential revision: https://reviews.llvm.org/D45972
llvm-svn: 331772
Summary: This is not technically required, but glibc unwind-dw2-fde.c classify_object_over_fdes expects there is a CIE record length 0 as a terminator.
Reviewers: ruiu, espindola
Subscribers: emaste, arichardson, llvm-commits
Differential Revision: https://reviews.llvm.org/D46566
llvm-svn: 331708
These maps are small, but we are creating an destroying one for each
input .eh_frame.
This patch reduces the total memory allocation from 765.54MB to
749.19MB. The peak is still the same: 563.7MB.
llvm-svn: 331075
Now that getSectionPiece is fast (uses a hash) it is probably OK to
split merge sections early.
The reason I want to do this is to split eh_frame sections in the same
place.
This does mean that we have to decompress early. Given that the only
compressed sections are debug info, I don't think we are missing much.
It is a small improvement: 0.5% on the geometric mean.
llvm-svn: 331058
This is slightly simpler to read IMHO. Now if a symbol has a position
in the file, it is Defined.
The main motivation is that with this a SharedSymbol doesn't need a
section, which reduces the size of SymbolUnion.
With this the peak allocation when linking chromium goes from 568.1 to
564.2 MB.
llvm-svn: 330966
It was always an offset of PltIndex.
This doesn't reduce the size of the structures, but makes it easier to
do so in a followup patch.
llvm-svn: 330953
It turns out we should not use the std::sort anymore.
r327219 added a new wrapper llvm::sort (D39245).
When EXPENSIVE_CHECKS is defined, it shuffles the
input container and that helps to find non-deterministic
ordering.
Patch changes code to use llvm::sort and std::stable_sort
instead of std::sort
Differential revision: https://reviews.llvm.org/D45969
llvm-svn: 330702
MIPS ABI requires creation of the MIPS_RLD_MAP dynamic tag for non-PIE
executables only and MIPS_RLD_MAP_REL tag for both PIE and non-PIE
executables. The patch skips definition of the MIPS_RLD_MAP for PIE
files and defines MIPS_RLD_MAP_REL.
The MIPS_RLD_MAP_REL tag stores the offset to the .rld_map section
relative to the address of the tag itself.
Differential Revision: https://reviews.llvm.org/D43347
llvm-svn: 329996
This is similar to r329219, but for the entire section. Like r329219 I
don't expect this to have any real impact, it is just more consistent
and simpler.
llvm-svn: 329367