This fixes a bug where we'd crash given code like the test-case from
https://bugs.llvm.org/show_bug.cgi?id=30792 . Instead, we let the
offending clobber silently slide through.
This doesn't fully fix said bug, since the assembler will still complain
the moment it sees a crypto/fp/vector op, and we still don't diagnose
calls that require vector regs.
Differential Revision: https://reviews.llvm.org/D39030
llvm-svn: 316374
combineShuffleOfScalars is very conservative about shuffled BUILD_VECTORs that can be combined together.
This patch adds one additional case - if both BUILD_VECTORs represent splats of the same scalar value but with different UNDEF elements, then we should create a single splat BUILD_VECTOR, sharing only the UNDEF elements defined by the shuffle mask.
Differential Revision: https://reviews.llvm.org/D38696
llvm-svn: 316331
We don't need to do any additional recursion, we just need to analyze the APInt stored in the node. This matches what the ValueTracking versions do for IR.
llvm-svn: 316256
Summary:
We shouldn't recurse any further but it doesn't mean we shouldn't be able to give the known bits for a constant. The caller would probably like that we always return the right answer for a constant RHS. This matches what InstCombine does in this case.
I don't have a test case because this showed up while trying to revive D31724.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D38967
llvm-svn: 316255
Minor addition and follow up of r314773 and r311533: this adds more
debug messages to the type legalizer. For each node, it dumps
legalization info for results and operands nodes, rather than just the
final legalized node.
Differential Revision: https://reviews.llvm.org/D38726
llvm-svn: 315904
This is only currently used for mad/fma transforms.
This is the only case where it should be used for AMDGPU,
so add an opcode to be sure.
llvm-svn: 315740
I don't know if we ever hit this case or not. Turning it into an assert only fired on expanding some atomic operation in a SystemZ lit test.
llvm-svn: 315648
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
Eg:
insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
This is a generalization of the IR fold in D38316 to handle insertion into a non-undef vector.
We may want to abandon that one if we can't find value in squashing the more specific pattern sooner.
We're using the existing legal shuffle target hook to avoid AVX512 horror with vXi1 shuffles.
There may be room for improvement in the shuffle lowering here, but that would be follow-up work.
Differential Revision: https://reviews.llvm.org/D38388
llvm-svn: 315460
The NumFixedArgs field of CallLoweringInfo is used by
TargetLowering::LowerCallTo to determine whether a given argument is passed
using the vararg calling convention or not (specifically, to set IsFixed for
each ISD::OutputArg).
Firstly, CallLoweringInfo::setLibCallee and CallLoweringInfo::setCallee both
incorrectly set NumFixedArgs based on the _previous_ args list. Secondly,
TargetLowering::LowerCallTo failed to increment NumFixedArgs when modifying
the argument list so a pointer is passed for the return value.
If your backend uses the IsFixed property or directly accesses NumFixedArgs,
it is _possible_ this change could result in codegen changes (although the
previous behaviour would have been incorrect). No such cases have been
identified during code review for any in-tree architecture.
Differential Revision: https://reviews.llvm.org/D37898
llvm-svn: 315457
Summary:
See https://llvm.org/PR33743 for more details
It seems that for non-power of 2 vector sizes, the algorithm can produce
non-matching sizes for input and result causing an assert.
This usually isn't a problem as the isAnyExtend check will weed these out, but
in some cases (most often with lots of undefined values for the mask indices) it
can pass this check for non power of 2 vectors.
Adding in an extra check that ensures that bit size will match for the result
and input (as required)
Subscribers: nhaehnle
Differential Revision: https://reviews.llvm.org/D35241
llvm-svn: 315307
Summary:
FastISel::hasTrivialKill() was the only user of the "IntPtrTy" version of
Cast::isNoopCast(). According to review comments in D37894 we could instead
use the "DataLayout" version of the method, and thus get rid of the
"IntPtrTy" versions of isNoopCast() completely.
With the above done, the remaining isNoopCast() could then be simplified
a bit more.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D38497
llvm-svn: 314969
It broke the Chromium / SQLite build; see PR34830.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy
>
> Reviewed By: lsaba
>
> Subscribers: jmolloy, spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 314919
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy
Reviewed By: lsaba
Subscribers: jmolloy, spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 314886
Summary:
Take the target's endianness into account when splitting the
debug information in DAGTypeLegalizer::SetExpandedInteger.
This patch fixes so that, for big-endian targets, the fragment
expression corresponding to the high part of a split integer
value is placed at offset 0, in order to correctly represent
the memory address order.
I have attached a PPC32 reproducer where the resulting DWARF
pieces for a 64-bit integer were incorrectly reversed.
Original patch was reverted due to using -stop-after=isel in
the test case (but that is only working when AMDGPU target
is included in the llc build). The test case has now been
updated to use -stop-before=expand-isel-pseudos instead.
Patch by: dstenb
Reviewers: JDevlieghere, aprantl, dblaikie
Reviewed By: JDevlieghere, aprantl, dblaikie
Subscribers: nemanjai
Differential Revision: https://reviews.llvm.org/D38172
llvm-svn: 314781
This adds some more debug messages to the type legalizer and functions
like PromoteNode, ExpandNode, ExpandLibCall in an attempt to make
the debug messages a little bit more informative and useful.
Differential Revision: https://reviews.llvm.org/D38450
llvm-svn: 314773
Summary:
Take the target's endianness into account when splitting the
debug information in DAGTypeLegalizer::SetExpandedInteger.
This patch fixes so that, for big-endian targets, the fragment
expression corresponding to the high part of a split integer
value is placed at offset 0, in order to correctly represent
the memory address order.
I have attached a PPC32 reproducer where the resulting DWARF
pieces for a 64-bit integer were incorrectly reversed.
Patch by: dstenb
Reviewers: JDevlieghere, aprantl, dblaikie
Reviewed By: JDevlieghere, aprantl, dblaikie
Subscribers: nemanjai
Differential Revision: https://reviews.llvm.org/D38172
llvm-svn: 314666
Currently expandUnalignedLoad/Store uses place holder pointer info for temporary memory operand
in stack, which does not have correct address space. This causes unaligned private double16 load/store to be
lowered to flat_load instead of buffer_load for amdgcn target.
This fixes failures of OpenCL conformance test basic/vload_private/vstore_private on target amdgcn---amdgizcl.
Differential Revision: https://reviews.llvm.org/D35361
llvm-svn: 314566
Without this, we could end up trying to get the Nth (0-indexed) element
from a subvector of size N.
Differential Revision: https://reviews.llvm.org/D37880
llvm-svn: 314380
This teach simplifyDemandedBits to handle constant splat vector shifts.
This required changing some uses of getZExtValue to getLimitedValue since we can't rely on legalization using getShiftAmountTy for the shift amount.
I believe there may have been a bug in the ((X << C1) >>u ShAmt) handling where we didn't check if the inner shift was too large. I've fixed that here.
I had to add new patterns to ARM because the zext/sext the patterns were trying to look for got turned into an any_extend with this patch. Happy to split that out too, but not sure how to test without this change.
Differential Revision: https://reviews.llvm.org/D37665
llvm-svn: 314139
Summary:
This code iterates the 'Orders' vector in parallel with the DbgValue
list, emitting all DBG_VALUEs that occurred between the last IR order
insertion point and the next insertion point. This assumes the
SDDbgValue list is sorted in IR order, which it usually is. However, it
is not sorted when a node with a debug value is replaced with another
one. When this happens, TransferDbgValues is called, and the new value
is added to the end of the list.
The problem can be solved by stably sorting the list by IR order.
Reviewers: aprantl, Ka-Ka
Reviewed By: aprantl
Subscribers: MatzeB, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D38197
llvm-svn: 314114
At least for the 64-bit and less case, we should be able to determine if we even have a mask without counting any bits. This also removes the need to explicitly check for 0 active bits, isMask will return false for 0.
llvm-svn: 313908
The fix is to avoid invalidating our insertion point in
replaceDbgDeclare:
Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
+ if (DII == InsertBefore)
+ InsertBefore = &*std::next(InsertBefore->getIterator());
DII->eraseFromParent();
I had to write a unit tests for this instead of a lit test because the
use list order matters in order to trigger the bug.
The reduced C test case for this was:
void useit(int*);
static inline void inlineme() {
int x[2];
useit(x);
}
void f() {
inlineme();
inlineme();
}
llvm-svn: 313905
Summary:
SelectionDAGISel::LowerArguments is associating arguments
with frame indices (FuncInfo->setArgumentFrameIndex). That
information is later on used by EmitFuncArgumentDbgValue to
create DBG_VALUE instructions that denotes that a variable
can be found on the stack.
I discovered that for our (big endian) out-of-tree target
the association created by SelectionDAGISel::LowerArguments
sometimes is wrong. I've seen this happen when a 64-bit value
is passed on the stack. The argument will occupy two stack
slots (frame index X, and frame index X+1). The fault is
that a call to setArgumentFrameIndex is associating the
64-bit argument with frame index X+1. The effect is that the
debug information (DBG_VALUE) will point at the least significant
part of the arguement on the stack. When printing the
argument in a debugger I will get the wrong value.
I managed to create a test case for PowerPC that seems to
show the same kind of problem.
The bugfix will look at the datalayout, taking endianness into
account when examining a BUILD_PAIR node, assuming that the
least significant part is in the first operand of the BUILD_PAIR.
For big endian targets we should use the frame index from
the second operand, as the most significant part will be stored
at the lower address (using the highest frame index).
Reviewers: bogner, rnk, hfinkel, sdardis, aprantl
Reviewed By: aprantl
Subscribers: nemanjai, aprantl, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D37740
llvm-svn: 313901
.. as well as the two subsequent changes r313826 and r313875.
This leads to segfaults in combination with ASAN. Will forward repro
instructions to the original author (rnk).
llvm-svn: 313876
Summary:
This implements the design discussed on llvm-dev for better tracking of
variables that live in memory through optimizations:
http://lists.llvm.org/pipermail/llvm-dev/2017-September/117222.html
This is tracked as PR34136
llvm.dbg.addr is intended to be produced and used in almost precisely
the same way as llvm.dbg.declare is today, with the exception that it is
control-dependent. That means that dbg.addr should always have a
position in the instruction stream, and it will allow passes that
optimize memory operations on local variables to insert llvm.dbg.value
calls to reflect deleted stores. See SourceLevelDebugging.rst for more
details.
The main drawback to generating DBG_VALUE machine instrs is that they
usually cause LLVM to emit a location list for DW_AT_location. The next
step will be to teach DwarfDebug.cpp how to recognize more DBG_VALUE
ranges as not needing a location list, and possibly start setting
DW_AT_start_offset for variables whose lifetimes begin mid-scope.
Reviewers: aprantl, dblaikie, probinson
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D37768
llvm-svn: 313825
Add support for passing SwiftError through a register on the Windows x64
calling convention. This allows the use of swifterror attributes on
parameters which is used by the swift front end for the `Error`
parameter. This partially enables building the swift standard library
for Windows x86_64.
llvm-svn: 313791
If we have an AssertZext of a truncated value that has already been AssertZext'ed,
we can assert on the wider source op to improve the zext-y knowledge:
assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
This moves a fold from being Mips-specific to general combining, and x86 shows
improvements.
Differential Revision: https://reviews.llvm.org/D37017
llvm-svn: 313577
rL310710 allowed store merging to occur after legalization to catch stores that are created late,
but this exposes a logic hole seen in PR34217:
https://bugs.llvm.org/show_bug.cgi?id=34217
We will miss merging stores if the target lowers vector extracts into target-specific operations.
This patch allows store merging to occur both before and after legalization if the target chooses
to get maximum merging.
I don't think the potential regressions in the other tests are relevant. The tests are for
correctness of weird IR constructs rather than perf tests, and I think those are still correct.
Differential Revision: https://reviews.llvm.org/D37987
llvm-svn: 313564
For cases where we are BITCASTing to vectors of smaller elements, then if the entire source was a splatted sign (src's NumSignBits == SrcBitWidth) we can say that the dst's NumSignBit == DstBitWidth, as we're just splitting those sign bits across multiple elements.
We could generalize this but at the moment the only use case I have is to peek through bitcasts to vector comparison results.
Differential Revision: https://reviews.llvm.org/D37849
llvm-svn: 313543
This caused PR34629: asserts firing when building Chromium. It also broke some
buildbots building test-suite as reported on the commit thread.
> Summary:
> 1/ Operand folding during complex pattern matching for LEAs has been
> extended, such that it promotes Scale to accommodate similar operand
> appearing in the DAG.
> e.g.
> T1 = A + B
> T2 = T1 + 10
> T3 = T2 + A
> For above DAG rooted at T3, X86AddressMode will no look like
> Base = B , Index = A , Scale = 2 , Disp = 10
>
> 2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
> so that if there is an opportunity then complex LEAs (having 3 operands)
> could be factored out.
> e.g.
> leal 1(%rax,%rcx,1), %rdx
> leal 1(%rax,%rcx,2), %rcx
> will be factored as following
> leal 1(%rax,%rcx,1), %rdx
> leal (%rdx,%rcx) , %edx
>
> 3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
> thus avoiding creation of any complex LEAs within a loop.
>
> Reviewers: lsaba, RKSimon, craig.topper, qcolombet
>
> Reviewed By: lsaba
>
> Subscribers: spatel, igorb, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313376
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet
Reviewed By: lsaba
Subscribers: spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313343
These are removed in C++17. We still have some users of
unary_function::argument_type, so just spell that typedef out. No
functionality change intended.
Note that many of the argument types are actually wrong :)
llvm-svn: 313287
We already have a combine for this pattern when the input to shl is add, so we just need to enable the transformation when the input is or.
Original patch by @tstellar
Differential Revision: https://reviews.llvm.org/D19325
llvm-svn: 313251
Use RotAmt.urem(VTBits) instead of AND(RotAmt, VTBits - 1)
TBH I don't expect non-power-of-2 types to be created, but it makes the logic clearer and matches what we do in other rotation combines.
llvm-svn: 313245
After the split of the Scatter operation, the order of the new instructions is well defined - Lo goes before Hi. Otherwise the semantic of Scatter (from LSB to MSB) is broken.
I'm chaining 2 nodes to prevent reordering.
Differential Revision https://reviews.llvm.org/D37670
llvm-svn: 312894
Fixes some combine issues for AMDGPU where we weren't
getting the many extract_vector_elt combines expected
in a future patch.
This should really be checking isOperationLegalOrCustom on
the extract. That improves a number of x86 lit tests, but
a few get stuck in an infinite loop from one place
where a similar looking extract is created. I have a
different workaround in the backend for that which
keeps many of those improvements, but also adds a few
regressions.
llvm-svn: 312730
Summary:
This intrinsic represents a label with a list of associated metadata
strings. It is modelled as reading and writing inaccessible memory so
that it won't be removed as dead code. I think the intention is that the
annotation strings should appear at most once in the debug info, so I
marked it noduplicate. We are allowed to inline code with annotations as
long as we strip the annotation, but that can be done later.
Reviewers: majnemer
Subscribers: eraman, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D36904
llvm-svn: 312569
The function combineShuffleToVectorExtend in DAGCombine might generate an illegal typed node after "legalize types" phase, causing assertion on non-simple type to fail afterwards.
Adding a type check in case the combine is running after the type legalize pass.
Differential Revision: https://reviews.llvm.org/D37330
llvm-svn: 312438
Previously we would just describe the first register and then call it
quits. This patch emits fragment expressions for each register.
<rdar://problem/34075307>
llvm-svn: 312169
The loop dependence check looks for dependencies between store merge
candidates not captured by the chain sub-DAG doing a check of
predecessors which may be very large. Conservatively bound number of
nodes checked for compilation time. (Resolves PR34326).
Landing on behalf of Nirav Dave to unblock the 5.0.0 release.
Differential Revision: https://reviews.llvm.org/D37220
llvm-svn: 312022
Only do this before operations are legalized of BUILD_VECTOR is Legal for the target.
Differential Revision: https://reviews.llvm.org/D37186
llvm-svn: 311892
Summary:
If all the operands of a BUILD_VECTOR extract elements from same vector then split the
vector efficiently based on the maximum vector access index.
This will also fix PR 33784
Reviewers: zvi, delena, RKSimon, thakis
Reviewed By: RKSimon
Subscribers: chandlerc, eladcohen, llvm-commits
Differential Revision: https://reviews.llvm.org/D35788
llvm-svn: 311833
This goes back to a discussion about IR canonicalization. We'd like to preserve and convert
more IR to 'select' than we currently do because that's likely the best choice in IR:
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105335.html
...but that's often not true for codegen, so we need to account for this pattern coming in
to the backend and transform it to better DAG ops.
Steps in this patch:
1. Add an EVT param to the existing convertSelectOfConstantsToMath() TLI hook to more finely
enable this transform. Other targets will probably want that anyway to distinguish scalars
from vectors. We're using that here to exclude AVX512 targets, but it may not be necessary.
2. Convert a vselect to ext+add. This eliminates a constant load/materialization, and the
vector ext is often free.
Implementing a more general fold using xor+and can be a follow-up for targets that don't have
a legal vselect. It's also possible that we can remove the TLI hook for the special case fold
implemented here because we're eliminating a constant, but it needs to be tested on other
targets.
Differential Revision: https://reviews.llvm.org/D36840
llvm-svn: 311731
When one operand is a user of another in a promoted binary operation
we may replace and delete the returned value before returning
triggering an assertion. Reorder node replacements to prevent this.
Fixes PR34137.
Landing on behalf of Nirav.
Differential Revision: https://reviews.llvm.org/D36581
llvm-svn: 311623
This partially reverts r311429 in favor of making ISD::isConstantSplatVector do something not confusing. Turns out the only other user of it was also having to deal with the weird property of it returning a smaller size.
So rather than continue to deal with this quirk everywhere, just make the interface do something sane.
Differential Revision: https://reviews.llvm.org/D37039
llvm-svn: 311510
I was contacted by Jesper Antonsson from Ericsson who ran into problems
with r311181 in their test suites with for an out-of-tree target.
Because of the latter I don't have a reproducer, but we definitely don't
want to modify the data structure on which we are iterating inside the
loop.
llvm-svn: 311466
When expanding a BRCOND into a BR_CC, do not create an AND 1
if one already exists.
Review: D36705
Patch by Joel Galenson <jgalenson@google.com>
llvm-svn: 311447
This adds debug messages to various functions that create new SDValue nodes.
This is e.g. useful to have during legalization, as otherwise it can prints
legalization info of nodes that did not appear in the dumps before.
Differential Revision: https://reviews.llvm.org/D36984
llvm-svn: 311444
ISD::isConstantSplatVector can shrink to the smallest splat width. But we don't check the size of the resulting APInt at all. This can cause us to misinterpret the results.
This patch just adds a flag to prevent the APInt from changing width.
Fixes PR34271.
Differential Revision: https://reviews.llvm.org/D36996
llvm-svn: 311429
Summary:
If all the operands of a BUILD_VECTOR extract elements from same vector then split the
vector efficiently based on the maximum vector access index.
Reviewers: zvi, delena, RKSimon, thakis
Reviewed By: RKSimon
Subscribers: chandlerc, eladcohen, llvm-commits
Differential Revision: https://reviews.llvm.org/D35788
llvm-svn: 311255
This patch teaches the SDag type legalizer how to split up debug info for
integer values that are split into a hi and lo part.
(re-commit)
Differential Revision: https://reviews.llvm.org/D36805
llvm-svn: 311181
This patch teaches the SDag type legalizer how to split up debug info for
integer values that are split into a hi and lo part.
Differential Revision: https://reviews.llvm.org/D36805
llvm-svn: 311102
The SelectionDAGBuilder translates various conditional branches into
CaseBlocks which are then translated into SDNodes. If a conditional
branch results in multiple CaseBlocks only the first CaseBlock is
translated into SDNodes immediately, the rest of the CaseBlocks are
put in a queue and processed when all LLVM IR instructions in the
basic block have been processed.
When a CaseBlock is transformed into SDNodes the SelectionDAGBuilder
is queried for the current LLVM IR instruction and the resulting
SDNodes are annotated with the debug info of the current
instruction (if it exists and has debug metadata).
When the deferred CaseBlocks are processed, the SelectionDAGBuilder
does not have a current LLVM IR instruction, and the resulting SDNodes
will not have any debuginfo. As DwarfDebug::beginInstruction() outputs
a .loc directive for the first instruction in a labeled
block (typically the case for something coming from a CaseBlock) this
tends to produce a line-0 directive.
This patch changes the handling of CaseBlocks to store the current
instruction's debug info into the CaseBlock when it is created (and the
SelectionDAGBuilder knows the current instruction) and to always use
the stored debug info when translating a CaseBlock to SDNodes.
Patch by Frej Drejhammar!
Differential Revision: https://reviews.llvm.org/D36671
llvm-svn: 311097
When v1i1 is legal (e.g. AVX512) the legalizer can reach
a case where a v1i1 SETCC with an illgeal vector type operand
wasn't scalarized (since v1i1 is legal) but its operands does
have to be scalarized. This used to assert because SETCC was
missing from the vector operand scalarizer.
This patch attemps to teach the legalizer to handle these cases
by scalazring the operands, converting the node into a scalar
SETCC node.
Differential revision: https://reviews.llvm.org/D36651
llvm-svn: 311071
Summary: It is creating useless work as the commuted nodes is the same as the node we are working on in that case.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33840
llvm-svn: 310832
into vextract(vNiX,Idx) when creating vextract with getNode().
This case appeared in AVX512 after fixing pr33349 in r310552.
Differential revision: https://reviews.llvm.org/D36571
llvm-svn: 310828
Summary:
Without the SrcVT its hard to know what is really being asked for. For example if your target has 128, 256, and 512 bit vectors. Maybe extracting 128 from 256 is cheap, but maybe extracting 128 from 512 is not.
For x86 we do support extracting a quarter of a 512-bit register. But for i1 vectors we don't have isel patterns for extracting arbitrary pieces. So we need this to have a correct implementation of isExtractSubvectorCheap for mask vectors.
Reviewers: RKSimon, zvi, efriedma
Reviewed By: RKSimon
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D36649
llvm-svn: 310793
If all the operands of a BUILD_VECTOR extract elements from same vector then split the vector efficiently based on the maximum vector access index.
Reapplied with fix to only work with simple value types.
Committed on behalf of @jbhateja (Jatin Bhateja)
Differential Revision: https://reviews.llvm.org/D35788
llvm-svn: 310782
The previous rev (r310208) failed to account for overflow when subtracting the
constants to see if they're suitable for shift/lea. This version add a check
for that and more test were added in r310490.
We can convert any select-of-constants to math ops:
http://rise4fun.com/Alive/d7d
For this patch, I'm enhancing an existing x86 transform that uses fake multiplies
(they always become shl/lea) to avoid cmov or branching. The current code misses
cases where we have a negative constant and a positive constant, so this is just
trying to plug that hole.
The DAGCombiner diff prevents us from hitting a terrible inefficiency: we can start
with a select in IR, create a select DAG node, convert it into a sext, convert it
back into a select, and then lower it to sext machine code.
Some notes about the test diffs:
1. 2010-08-04-MaskedSignedCompare.ll - We were creating control flow that didn't exist in the IR.
2. memcmp.ll - Choose -1 or 1 is the case that got me looking at this again. We could avoid the
push/pop in some cases if we used 'movzbl %al' instead of an xor on a different reg? That's a
post-DAG problem though.
3. mul-constant-result.ll - The trade-off between sbb+not vs. setne+neg could be addressed if
that's a regression, but those would always be nearly equivalent.
4. pr22338.ll and sext-i1.ll - These tests have undef operands, so we don't actually care about these diffs.
5. sbb.ll - This shows a win for what is likely a common case: choose -1 or 0.
6. select.ll - There's another borderline case here: cmp+sbb+or vs. test+set+lea? Also, sbb+not vs. setae+neg shows up again.
7. select_const.ll - These are motivating cases for the enhancement; replace cmov with cheaper ops.
Assembly differences between movzbl and xor to avoid a partial reg stall are caused later by the X86 Fixup SetCC pass.
Differential Revision: https://reviews.llvm.org/D35340
llvm-svn: 310717
Move store merge to happen after intrinsic lowering to allow lowered
stores to be merged.
Some regressions due in MergeConsecutiveStores to missing
insert_subvector that are addressed in follow up patch.
Reviewers: craig.topper, efriedma, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34559
llvm-svn: 310710
rL310372 enabled simplifyShuffleMask to support undef shuffle mask inputs, but its causing hangs.
Removing support until I can triage the problem
llvm-svn: 310699
Summary:
Preserve chain dependecies between old and new loads constructed to
prevent loads from reordering below later stores.
Fixes PR34088.
Reviewers: craig.topper, spatel, RKSimon, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36528
llvm-svn: 310604
In FoldConstantArithmetic, handle BUILD_VECTOR nodes that do implicit truncation on the elements.
This is similar to what is done in FoldConstantVectorArithmetic.
Differential Revision:
https://reviews.llvm.org/D36506
llvm-svn: 310593
a legal cond operand.
When scalarizing the result of a vselect, the legalizer currently expects
to already have scalarized the operands. While this is true for the true/false
operands (which have the same type as the result), it is not case for the
condition operand. On X86 AVX512, v1i1 is legal - this leads to operations such
as '< N x type> vselect < N x i1> < N x type> < N x type>' where < N x type > is
illegal to hit an assertion during the scalarization.
The handling is similar to r205625.
This also exposes the fact that (v1i1 extract_subvector) should be legal
and selectable on AVX512 - We do this by custom lowering to vector_extract_elt.
This still leaves us in some cases with redundant dag nodes which will be
combined in a separate soon to come patch.
This fixes pr33349.
Differential revision: https://reviews.llvm.org/D36511
llvm-svn: 310552
Relanding after case to insert explicit truncation as necessary.
Allow SCALAR_TO_VECTOR of EXTRACT_VECTOR_ELT to reduce to
EXTRACT_SUBVECTOR of vector shuffle when output is smaller. Marginally
improves vector shuffle computations.
Reviewers: efriedma, RKSimon, spatel
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35566
llvm-svn: 310256
The NewNodesMustHaveLegalTypes flag is set to false at the beginning of CodeGenAndEmitDAG, and set to true after legalizing types.
But before calling CodeGenAndEmitDAG we build the DAG for the basic block.
So for the first basic block NewNodesMustHaveLegalTypes would be 'false' during the SDAG building, and for all other basic blocks it would be 'true'.
This patch sets the flag to false before SDAG building each basic block.
Differential Revision:
https://reviews.llvm.org/D33435
llvm-svn: 310239
We can convert any select-of-constants to math ops:
http://rise4fun.com/Alive/d7d
For this patch, I'm enhancing an existing x86 transform that uses fake multiplies
(they always become shl/lea) to avoid cmov or branching. The current code misses
cases where we have a negative constant and a positive constant, so this is just
trying to plug that hole.
The DAGCombiner diff prevents us from hitting a terrible inefficiency: we can start
with a select in IR, create a select DAG node, convert it into a sext, convert it
back into a select, and then lower it to sext machine code.
Some notes about the test diffs:
1. 2010-08-04-MaskedSignedCompare.ll - We were creating control flow that didn't exist in the IR.
2. memcmp.ll - Choose -1 or 1 is the case that got me looking at this again. I
think we could avoid the push/pop in some cases if we used 'movzbl %al' instead of an xor on
a different reg? That's a post-DAG problem though.
3. mul-constant-result.ll - The trade-off between sbb+not vs. setne+neg could be addressed if
that's a regression, but I think those would always be nearly equivalent.
4. pr22338.ll and sext-i1.ll - These tests have undef operands, so I don't think we actually care about these diffs.
5. sbb.ll - This shows a win for what I think is a common case: choose -1 or 0.
6. select.ll - There's another borderline case here: cmp+sbb+or vs. test+set+lea? Also, sbb+not vs. setae+neg shows up again.
7. select_const.ll - These are motivating cases for the enhancement; replace cmov with cheaper ops.
Assembly differences between movzbl and xor to avoid a partial reg stall are caused later by the X86 Fixup SetCC pass.
Differential Revision: https://reviews.llvm.org/D35340
llvm-svn: 310208
If all the operands of a BUILD_VECTOR extract elements from same vector then split the vector efficiently based on the maximum vector access index.
Committed on behalf of @jbhateja (Jatin Bhateja)
Differential Revision: https://reviews.llvm.org/D35788
llvm-svn: 310058
During store merge we construct a sorted list of consecutive store
candidates and consider subsequences for merging into a single
store. For each subsequence we check if the stored value type is legal
the merged store would have valid and fast and if the constructed
value to be stored is valid. The only properties that affect this
check between subsequences is the size of the subsequence, the
alignment of the first store, the alignment of the stored load value
(when merging stores-of-loads), and whether the merged value is a
constant zero.
If we do not find a viable mergeable subsequence starting from the
first store of length N, we know that a subsequence starting at a
later store of length N will also fail unless the new store's
alignment, the new load's alignment (if we're merging store-of-loads),
or we've dropped stores of nonzero value and could construct a merged
stores of zero (for merging constants).
As a result if we fail to find a valid subsequence starting from the
first store we can safely skip considering subsequences that start
with subsequent stores unless one of the above properties is
true. This significantly (2x) improves compile time in some
pathological cases.
Reviewers: RKSimon, efriedma, zvi, spatel, waltl
Subscribers: grandinj, llvm-commits
Differential Revision: https://reviews.llvm.org/D35901
llvm-svn: 309830
This pattern shows up when lowering byval copies on AMDGPU.
The byval object access is split into 4-byte chunks, adding a
constant offset to the FixedStack base. When some of the offsets
turn into ors, this prevents combining the constant offsets.
This makes it not apparent that the object is there when matching
addressing modes, so it ends up using a scratch wave offset
relative access and the lengthy frame index expansion for that.
llvm-svn: 309775
Summary:
We already have information about static alloca stack locations in our
side table. Emitting instructions for them is inefficient, and it only
happens when the address of the alloca has been materialized within the
current block, which isn't often.
Reviewers: aprantl, probinson, dblaikie
Subscribers: jfb, dschuff, sbc100, jgravelle-google, hiraditya, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D36117
llvm-svn: 309729
https://reviews.llvm.org/D31536 didn't really solve the problem it was
trying to solve; it got rid of the assertion failure, but we were still
scheduling the DAG incorrectly (mixing together instructions from
different calls), leading to a MachineVerifier failure.
In order to schedule the DAG correctly, we have to make sure we don't
schedule a node which should be blocked by an interference. Fix
ScheduleDAGRRList::PickNodeToScheduleBottomUp so it doesn't pick a node
like that.
The added call to FindAvailableNode() is the key change here; this makes
sure we don't try to schedule a call while we're in the middle of
scheduling a different call. I'm not sure this is the right approach; in
particular, I'm not sure how to prove we don't end up with an infinite
loop of repeatedly backtracking.
This also reverts the code change from D31536. It doesn't do anything
useful: we should never schedule an ADJCALLSTACKDOWN unless we've
already scheduled the corresponding ADJCALLSTACKUP.
Differential Revision: https://reviews.llvm.org/D33818
llvm-svn: 309642
PR33883 shows that calls to intrinsic functions should not have their vector
arguments or returns subject to ABI changes required by the target.
This resolves PR33883.
Thanks to Alex Crichton for reporting the issue!
Reviewers: zoran.jovanovic, atanasyan
Differential Revision: https://reviews.llvm.org/D35765
llvm-svn: 309561
This patch is in 2 parts:
1 - replace combineBT's use of SimplifyDemandedBits (hasOneUse only) with SelectionDAG::GetDemandedBits to more aggressively determine the lower bits used by BT.
2 - update SelectionDAG::GetDemandedBits to support ANY_EXTEND - if the demanded bits are only in the non-extended portion, then peek through and demand from the source value and then ANY_EXTEND that if we found a match.
Differential Revision: https://reviews.llvm.org/D35896
llvm-svn: 309486
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Improve DAGTypeLegalizer::convertMask's isSETCCorConvertedSETCC assertion to properly check for any mixture of SETCC or BUILD_VECTOR of constants, or a logical mask op of them.
llvm-svn: 309302
This patch moves the DAGCombiner::GetDemandedBits function to SelectionDAG::GetDemandedBits as a first step towards making it easier for targets to get to the source of any demanded bits without the limitations of SimplifyDemandedBits.
Differential Revision: https://reviews.llvm.org/D35841
llvm-svn: 308983
Check the actual memory type stored and not the extended value size
when considering if truncated store merge is worthwhile.
Reviewers: efriedma, RKSimon, spatel, jyknight
Reviewed By: efriedma
Subscribers: llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D35623
llvm-svn: 308833
Summary:
When pushing an extension of a constant bitwise operator on a load
into the load, change other uses of the load value if they exist to
prevent the old load from persisting.
Reviewers: spatel, RKSimon, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D35030
llvm-svn: 308618
Most combines currently recognise scalar and splat-vector constants, but not non-uniform vector constants.
This patch introduces a matching mechanism that uses predicates to check against BUILD_VECTOR of ConstantSDNode, as well as scalar ConstantSDNode cases.
I've changed a couple of predicates to demonstrate - the combine-shl changes add currently unsupported cases, while the MatchRotate replaces an existing mechanism.
Differential Revision: https://reviews.llvm.org/D35492
llvm-svn: 308598
Re-recommiting after landing DAG extension-crash fix.
Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.
Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.
Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.
Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.
The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.
Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand
Reviewed By: rnk
Subscribers: sdardis, nemanjai, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33345
llvm-svn: 308350
Reorder replacements to be user first in preparation for multi-level
folding to premptively avoid inadvertantly deleting later nodes from
sharing found from replacement.
llvm-svn: 308348
When replacing a node and it's operand, replacing the operand node may
cause the deletion of the original node leading to an assertion
failure. Case around these replacements to avoid this without relying
on inspecting the DELETED_NODE opcode in various extend
dagcombiner cases.
Fixes PR32515.
Reviewers: dbabokin, RKSimon, davide, chandlerc
Subscribers: chandlerc, llvm-commits
Differential Revision: https://reviews.llvm.org/D34095
llvm-svn: 308330
Recommiting after adding check to avoid miscomputing alias information
on addresses of the same base but different subindices.
Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.
Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.
Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.
The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.
Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand
Reviewed By: rnk
Subscribers: sdardis, nemanjai, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33345
llvm-svn: 308025
For multiprecision arithmetic on MIPS, rather than using ISD::ADDE / ISD::ADDC,
get SelectionDAG to break down the operation into ISD::ADDs and ISD::SETCCs.
For MIPS, only the DSP ASE has a carry flag, so in the general case it is not
useful to directly support ISD::{ADDE, ADDC, SUBE, SUBC} nodes.
Also improve the generation code in such cases for targets with
TargetLoweringBase::ZeroOrOneBooleanContent by directly using the result of the
comparison node rather than using it in selects. Similarly for ISD::SUBE /
ISD::SUBC.
Address optimization breakage by moving the generation of MIPS specific integer
multiply-accumulate nodes to before legalization.
This revolves PR32713 and PR33424.
Thanks to Simonas Kazlauskas and Pirama Arumuga Nainar for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33494
The previous version of this patch was too aggressive in producing fused
integer multiple-addition instructions.
llvm-svn: 307906
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memset intrinsic. This intrinsic is essentially memset with the implementation requirement that all stores used for the assignment are done with unordered-atomic stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: jfb, dschuff, sbc100, jgravelle-google, aheejin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D34885
llvm-svn: 307854
Summary: Continuing the work from https://reviews.llvm.org/D33240, this change introduces an element unordered-atomic memmove intrinsic. This intrinsic is essentially memmove with the implementation requirement that all loads/stores used for the copy are done with unordered-atomic loads/stores of a given element size.
Reviewers: eli.friedman, reames, mkazantsev, skatkov
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34884
llvm-svn: 307796
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
Reverting as it breaks tramp3d-v4 in the llvm test-suite. I added some
comments to https://reviews.llvm.org/D33345 about it.
This reverts commit r307546.
llvm-svn: 307589
Memory accesses offset from frame indices may alias, e.g., we
may merge write from function arguments passed on the stack when they
are contiguous. As a result, when checking aliasing, we consider the
underlying frame index's offset from the stack pointer.
Static allocs are realized as stack objects in SelectionDAG, but its
offset is not set until post-DAG causing DAGCombiner's alias check to
consider access to static allocas to frequently alias. Modify isAlias
to consider access between static allocas and access from other frame
objects to be considered aliasing.
Many test changes are included here. Most are fixes for tests which
indirectly relied on our aliasing ability and needed to be modified to
preserve their original intent.
The remaining tests have minor improvements due to relaxed
ordering. The exception is CodeGen/X86/2011-10-19-widen_vselect.ll
which has a minor degradation dispite though the pre-legalized DAG is
improved.
Reviewers: rnk, mkuper, jonpa, hfinkel, uweigand
Reviewed By: rnk
Subscribers: sdardis, nemanjai, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33345
llvm-svn: 307546
WidenVSELECTAndMask can fold (and it folds in this case) so we
get a BUILD_VECTOR of constants as mask. convertMask() seems to
work fine when the input is a vector of constants, and we still
need to call it to extend/add elements at the end. but the current
code just asserts on anything but a SETCC or AND/OR/XOR of 2xSETCC.
This change was discussed briefly with Simon Pilgrim, who also
suggests we might consider dropping this assertion in the future.
Fixes PR33715.
llvm-svn: 307508
This change fixes a bug in SelectionDAGBuilder::visitInsertValue and SelectionDAGBuilder::visitExtractValue where constant expressions (InsertValueConstantExpr and ExtractValueConstantExpr) would be treated as non-constant instructions (InsertValueInst and ExtractValueInst). This bug resulted in an incorrect memory access, which manifested as an assertion failure in SDValue::SDValue.
Fixes PR#33094.
Submitted on behalf of @Praetonus (Benoit Vey)
Differential Revision: https://reviews.llvm.org/D34538
llvm-svn: 307502
If we are lowering a libcall after legalization, we'll split the return type into a pair of legal values.
Patch by Jatin Bhateja and Eli Friedman.
Differential Revision: https://reviews.llvm.org/D34240
llvm-svn: 307207
For two ROTR operations with shifts C1, C2; combined shift operand will be (C1 + C2) % bitsize.
Differential revision: https://reviews.llvm.org/D12833
llvm-svn: 307179
Relanding after rewriting undef.ll test to avoid host-dependant
endianness.
As discussed in D34087, rewrite areNonVolatileConsecutiveLoads using
generic checks. Also, propagate missing local handling from there to
BaseIndexOffset checks.
Tests of note:
* test/CodeGen/X86/build-vector* - Improved.
* test/CodeGen/BPF/undef.ll - Improved store alignment allows an
additional store merge
* test/CodeGen/X86/clear_upper_vector_element_bits.ll - This is a
case we already do not handle well. Here, the DAG is improved, but
scheduling causes a code size degradation.
Reviewers: RKSimon, craig.topper, spatel, andreadb, filcab
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D34472
llvm-svn: 307114
Summary:
We are crashing in LLC at O0 when gc intrinsics are present in the block.
The reason being FastISel performs basic block ISel by modifying GC.relocates
to be the first instruction in the block. This can cause us to visit the GC
relocate before it's corresponding GC.statepoint is visited, which is incorrect.
When we lower the statepoint, we record the base and derived pointers, along
with the gc.relocates. After this we can visit the gc.relocate.
This patch avoids fastISel from incorrectly creating the block with gc.relocate
as the first instruction.
Reviewers: qcolombet, skatkov, qikon, reames
Reviewed by: skatkov
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34421
llvm-svn: 307084
The patch makes SoftenFloatResult/Operand logic just the same as all other legalization routines have: SoftenFloatResult() now fills the SoftenFloats map and SoftenFloatOperand() perform all needed replacements. This prevents softening mashinery from leaving stale entries in SoftenFloats map (that resulted in errors during the legalize type checking) and clarifies softening. The patch replaces https://reviews.llvm.org/D29265.
Differential Revision: https://reviews.llvm.org/D31946
llvm-svn: 307053
Summary:
Add a combine for creating a truncate to replace a build_vector composed of extracts with
indices that form a stride-2^N series.
Example:
v8i32 V = ...
v4i32 build_vector((extract_elt V, 0), (extract_elt V, 2), (extract_elt V, 4), (extract_elt V, 6))
-->
v4i32 truncate (bitcast V to v4i64)
Related discussion in llvm-dev about canonicalizing shuffles to
truncates in LLVM IR:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/108936.html.
Reviewers: spatel, RKSimon, efriedma, igorb, craig.topper, wolfgangp, delena
Reviewed By: delena
Subscribers: guyblank, delena, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D34077
llvm-svn: 307036
As discussed in D34087, rewrite areNonVolatileConsecutiveLoads using
generic checks. Also, propagate missing local handling from there to
BaseIndexOffset checks.
Tests of note:
* test/CodeGen/X86/build-vector* - Improved.
* test/CodeGen/BPF/undef.ll - Improved store alignment allows an
additional store merge
* test/CodeGen/X86/clear_upper_vector_element_bits.ll - This is a
case we already do not handle well. Here, the DAG is improved, but
scheduling causes a code size degradation.
Reviewers: RKSimon, craig.topper, spatel, andreadb, filcab
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D34472
llvm-svn: 306819
Relanding after restricting equalBaseIndex to not erroneuosly consider
a FrameIndices stemming from alloca from being comparable as its
offset is set post-selectionDAG.
Pull FrameIndex comparision reasoning from DAGCombiner::isAlias to
general BaseIndexOffset.
llvm-svn: 306688
Given no NaNs and no signed zeroes it folds:
(fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
(fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
Differential Revision: https://reviews.llvm.org/D34579
llvm-svn: 306592
That is pretty common for clang to produce code like
(shl %x, (and %amt, 31)). In this situation we can still perform
trunc (shl) into shl (trunc) conversion given the known value
range of shift amount.
Differential Revision: https://reviews.llvm.org/D34723
llvm-svn: 306499
When SelectionDAG merges consecutive stores and loads in MergeConsecutiveStores, it does not set dereferenceable flag for a created load instruction. This results in an assertion failure if SelectionDAG commonizes this load instruction with other load instructions, as well as it may miss optimization opportunities.
This patch sat dereferenceable flag for the newly created load instruction if all the load instructions to be merged are dereferenceable.
Differential Revision: https://reviews.llvm.org/D34679
llvm-svn: 306404
The compiler fails with assertion during legalization of SETCC for <3 x i8> operands.
The result is extended to <4 x i8> and then truncated <4 x i1>. It does not happen on AVX2, because the final result of SETCC is <4 x i32>.
Differential Revision: https://reviews.llvm.org/D34503
llvm-svn: 306242
When SelectionDAG expands memcpy (or memmove) call into a sequence of load and store instructions, it disregards dereferenceable flag even the source pointer is known to be dereferenceable.
This results in an assertion failure if SelectionDAG commonizes a load instruction generated for memcpy with another load instruction for the source pointer.
This patch makes SelectionDAG to set the dereferenceable flag for the load instructions properly to avoid the assertion failure.
Differential Revision: https://reviews.llvm.org/D34467
llvm-svn: 306209
Move GlobalAddress Offset decomposition from initial match into
comparision check and removing the possibility of constructing a new
offseted global address when examining addresses.
llvm-svn: 305917
Add support for combining a build vector to a shuffle.
When the build vector is of extracted elements from 2 vectors (vec1, vec2) where vec2 is 2 times smaller than vec1.
llvm-svn: 305883
We were incorrectly sign extending into the high word (as you would for
SMULO) when legalizing UMULO in terms of a wider full multiplication.
Patch by James Duley.
llvm-svn: 305800
The recursive implementation of CalcNodeSethiUllmanNumber may
overflow stack on extremely long pred chains. This patch replaces it
with an equivalent iterative implementation.
Differential Revision: https://reviews.llvm.org/D33769
llvm-svn: 305775
As all store merges checks are based on the memory operation
performed, allow use of truncated stores and extended loads as valid
input candidates for merging.
Relanding after fixing selection between truncated and normal store.
llvm-svn: 305701
Summary:
Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html
This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.
Reviewers: reames, sanjoy, efriedma
Reviewed By: reames
Subscribers: mzolotukhin, anna, llvm-commits, skatkov
Differential Revision: https://reviews.llvm.org/D33240
llvm-svn: 305558
The code assumed that we process instructions in basic block order. FastISel
processes instructions in reverse basic block order. We need to pre-assign
virtual registers before selecting otherwise we get def-use relationships wrong.
This only affects code with swifterror registers.
rdar://32659327
llvm-svn: 305484
In preparation for doing storemerge post-legalization, reorder
visitSTORE passes to move pre/post-index combining after store
merge. Reordered passes other than store merge are unaffected.
llvm-svn: 305473
As all store merges checks are based on the memory operation
performed, allow use of truncated stores and extended loads as valid
input candidates for merging.
llvm-svn: 305468
For multiprecision arithmetic on MIPS, rather than using ISD::ADDE / ISD::ADDC,
get SelectionDAG to break down the operation into ISD::ADDs and ISD::SETCCs.
For MIPS, only the DSP ASE has a carry flag, so in the general case it is not
useful to directly support ISD::{ADDE, ADDC, SUBE, SUBC} nodes.
Also improve the generation code in such cases for targets with
TargetLoweringBase::ZeroOrOneBooleanContent by directly using the result of the
comparison node rather than using it in selects. Similarly for ISD::SUBE /
ISD::SUBC.
Address optimization breakage by moving the generation of MIPS specific integer
multiply-accumulate nodes to before legalization.
This revolves PR32713 and PR33424.
Thanks to Simonas Kazlauskas and Pirama Arumuga Nainar for reporting the issue!
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D33494
llvm-svn: 305389
Summary:
This change enables the sin(x) cos(x) -> sincos(x) optimization on GNU
target triples. This optimization was being inhibited when -ffast-math
wasn't set because sincos in GLibC does not set errno, while sin and cos
do. However, this optimization will only run if the attributes on the
sin/cos calls include readnone, which is how clang represents the fact
that it doesn't care about the errno values set by these functions (via
the -fno-math-errno flag).
Reviewers: hfinkel, bogner
Subscribers: mcrosier, javed.absar, llvm-commits, paul.redmond
Differential Revision: https://reviews.llvm.org/D32921
llvm-svn: 305204
This step is just intended to reduce code duplication rather than change any functionality.
A follow-up would be to replace PPCTargetLowering::spliceIntoChain() usage with this new helper.
Differential Revision: https://reviews.llvm.org/D33649
llvm-svn: 305192
Summary: UADDO has 2 result, and one must check the result no before doing any kind of combine. Without it, the transform is invalid.
Reviewers: joerg
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34088
llvm-svn: 305162
Summary:
During DAG legalization loop in SelectionDAG::Legalize(),
bookkeeping of the SDNodes that were already legalized is implemented
with SmallPtrSet (LegalizedNodes). This kind of set stores only pointers
to objects, not the objects themselves. Unfortunately, if SDNode is
deleted during legalization for some reason, LegalizedNodes set is not
informed about this fact. This wouldn’t be so bad, if SelectionDAG wouldn’t reuse
space deallocated after deletion of unused nodes, for creation of new
ones. Because of this, new nodes, created during legalization often can
have pointers identical to ones that have been previously legalized,
added to the LegalizedNodes set, and deleted afterwards. This in turn
causes, that newly created nodes, sharing the same pointer as deleted
old ones, are present in LegalizedNodes *already at the moment of
creation*, so we never call Legalize on them.
The fix facilitates the fact, that DAG notifies listeners about each
modification. I have registered DAGNodeDeletedListener inside
SelectionDAG::Legalize, with a callback function that removes any
pointer of any deleted SDNode from the LegalizedNodes set. With this
modification, LegalizeNodes set does not contain pointers to nodes that
were deleted, so newly created nodes can always be inserted to it, even
if they share pointers with old deleted nodes.
Patch by pawel.szczerbuk@intel.com
The issue this patch addresses causes failures in an out-of-tree target,
and i was not able to create a reproducer for an in-tree target, hence
there is no test-case.
Reviewers: delena, spatel, RKSimon, hfinkel, davide, qcolombet
Reviewed By: delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33891
llvm-svn: 305084
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
The previous version of this patch had a "conditional move or jump depends on
uninitialized value".
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
llvm-svn: 305083
This prevents against assertion errors like PR32659 which occur from a
replacement deleting a node after it's been added to the list argument
of RemoveDeadNodes. The specific failure from PR32659 does not
currently happen, but it is still potentially possible. The underlying
cause is that the callers of the change dfunction builds up a list of
nodes to delete after having moved their uses and it possible that a
move of a later node will cause a previously deleted nodes to be
deleted.
Reviewers: bkramer, spatel, davide
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33731
llvm-svn: 305070
When considering merging stores values are the results of loads only
consider stores whose values come from loads from the same base.
This fixes much of the longer compile times in PR33330.
llvm-svn: 304934
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Running `llc -verify-dom-info` on the attached testcase results in a
crash in the verifier, due to a stale dominator tree.
i.e.
DominatorTree is not up to date!
Computed:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,7}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,6}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
Actual:
=============================--------------------------------
Inorder Dominator Tree:
[1] %safe_mod_func_uint8_t_u_u.exit.i.i.i {0,9}
[2] %lor.lhs.false.i61.i.i.i {1,2}
[2] %safe_mod_func_int8_t_s_s.exit.i.i.i {3,8}
[3] %safe_div_func_int64_t_s_s.exit66.i.i.i {4,5}
[3] %safe_mod_func_int8_t_s_s.exit.i.i.i.lor.lhs.false.i61.i.i.i_crit_edge {6,7}
This is because in `SelectionDAGIsel` we split critical edges without
updating the corresponding dominator for the function (and we claim
in `MachineFunctionPass::getAnalysisUsage()` that the domtree is preserved).
We could either stop preserving the domtree in `getAnalysisUsage`
or tell `splitCriticalEdge()` to update it.
As the second option is easy to implement, that's the one I chose.
Differential Revision: https://reviews.llvm.org/D33800
llvm-svn: 304742
Other calls to DAGCombiner::*PromoteOperand check the result, but here it could cause an assertion in getNode.
Falling back to any extend in this case instead of failing outright seems correct to me.
No test case because:
The failure was triggered by an out of tree backend. In order to trigger it, a backend would need to overload
TargetLowering::IsDesirableToPromoteOp to return true for a type for which ISD::SIGN_EXTEND_INREG is marked
illegal. In tree, only X86 overloads and sometimes returns true for MVT::i16 yet it marks
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);.
Patch by Jacob Young!
Differential Revision: https://reviews.llvm.org/D33633
llvm-svn: 304723
We'd called this "vm state" in the early days, but have long since standardized on calling it "deopt" in line with the operand bundle tag. Fix a few cases we'd missed.
llvm-svn: 304607
The recursive implementation of findNonImmUse may overflow stack
on extremely long use chains. This patch replaces it with an equivalent
iterative implementation.
Reviewed By: bogner
Differential Revision: https://reviews.llvm.org/D33775
llvm-svn: 304522
Summary:
This is a problem uncovered by stage2 testing. ADDCARRY end up being generated on target that do not support it.
The patch that introduced the problem has other patches layed on top of it, so we want to fix the issue rather than revert it to avoid creating a lor of churn.
A regression test will be added shortly, but this is committed as this in order to get the build back to green promptly.
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33770
llvm-svn: 304409
Summary:
This is a continuation of the work started in D29872 . Passing the carry down as a value rather than as a glue allows for further optimizations. Introducing setcccarry makes the use of addc/subc unecessary and we can start the removal process.
This patch only introduce the optimization strictly required to get the same level of optimization as was available before nothing more.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33374
llvm-svn: 304404
Summary: This pattern is no very useful per se, but it exposes optimization for toehr patterns that wouldn't kick in otherwize. It's very common and worth optimizing for.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32756
llvm-svn: 304402
Summary:
If we attempt to unfold an SUnit in ScheduleDAG that results in
finding an already scheduled load, we must should abort the
unfold as it will not improve scheduling.
This fixes PR32610.
Reviewers: jmolloy, sunfish, bogner, spatel
Subscribers: llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D32911
llvm-svn: 304321
Correct references to alignment of store which may be deleted in a
previous iteration of merge. Instead use first store that would be
merged.
Corrects pr33172's use-after-poison caught by ASan.
Reviewers: spatel, hfinkel, RKSimon
Reviewed By: RKSimon
Subscribers: thegameg, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33686
llvm-svn: 304299
This code was compensating for FPOWI defaulting to Legal and many targets not changing it to Expand. This was fixed in r304215 to default to Expand so this special handling should no longer be necessary.
llvm-svn: 304221
Summary:
Currently FPOWI defaults to Legal and LegalizeDAG.cpp turns Legal into Expand for this opcode because Legal is a "lie".
This patch changes the default for this opcode to Expand and removes the hack from LegalizeDAG.cpp. It also removes all the code in the targets that set this opcode to Expand themselves since they can just rely on the default.
Reviewers: spatel, RKSimon, efriedma
Reviewed By: RKSimon
Subscribers: jfb, dschuff, sbc100, jgravelle-google, nemanjai, javed.absar, andrew.w.kaylor, llvm-commits
Differential Revision: https://reviews.llvm.org/D33530
llvm-svn: 304215
The extending load possibility was missed in:
https://reviews.llvm.org/rL304072
We might want to handle this cases as a follow-up, but bailing out for now
to avoid miscompiling.
llvm-svn: 304153
If we have (extract_subvector(load wide vector)) with no other users,
that can just be (load narrow vector). This is intentionally conservative.
Follow-ups may loosen the one-use constraint to account for the extract cost
or just remove the one-use check.
The memop chain updating is based on code that already exists multiple times
in x86 lowering, so that should be pulled into a helper function as a follow-up.
Background: this is a potential improvement noticed via regressions caused by
making x86's peekThroughBitcasts() not loop on consecutive bitcasts (see
comments in D33137).
Differential Revision: https://reviews.llvm.org/D33578
llvm-svn: 304072
In the best case:
extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
...we kill all of the extract/concat and just have narrow binops remaining.
If only one of the binop operands is amenable, this transform is still
worthwhile because we kill some of the extract/concat.
Optional bitcasting makes the code more complicated, but there doesn't
seem to be a way to avoid that.
The TODO about extending to more than bitwise logic is there because we really
will regress several x86 tests including madd, psad, and even a plain
integer-multiply-by-2 or shift-left-by-1. I don't think there's anything
fundamentally wrong with this patch that would cause those regressions; those
folds are just missing or brittle.
If we extend to more binops, I found that this patch will fire on at least one
non-x86 regression test. There's an ARM NEON test in
test/CodeGen/ARM/coalesce-subregs.ll with a pattern like:
t5: v2f32 = vector_shuffle<0,3> t2, t4
t6: v1i64 = bitcast t5
t8: v1i64 = BUILD_VECTOR Constant:i64<0>
t9: v2i64 = concat_vectors t6, t8
t10: v4f32 = bitcast t9
t12: v4f32 = fmul t11, t10
t13: v2i64 = bitcast t12
t16: v1i64 = extract_subvector t13, Constant:i32<0>
There was no functional change in the codegen from this transform from what I
could see though.
For the x86 test changes:
1. PR32790() is the closest call. We don't reduce the AVX1 instruction count in that case,
but we improve throughput. Also, on a core like Jaguar that double-pumps 256-bit ops,
there's an unseen win because two 128-bit ops have the same cost as the wider 256-bit op.
SSE/AVX2/AXV512 are not affected which is expected because only AVX1 has the extract/concat
ops to match the pattern.
2. do_not_use_256bit_op() is the best case. Everyone wins by avoiding the concat/extract.
Related bug for IR filed as: https://bugs.llvm.org/show_bug.cgi?id=33026
3. The SSE diffs in vector-trunc-math.ll are just scheduling/RA, so nothing real AFAICT.
4. The AVX1 diffs in vector-tzcnt-256.ll are all the same pattern: we reduced the instruction
count by one in each case by eliminating two insert/extract while adding one narrower logic op.
https://bugs.llvm.org/show_bug.cgi?id=32790
Differential Revision: https://reviews.llvm.org/D33137
llvm-svn: 303997
Currently getOptimalMemOpType returns i32 for large enough sizes without
checking for alignment, leading to poor code generation when misaligned accesses
aren't permitted as we generate a word store then later split it up into byte
stores. This means we inadvertantly go over the MaxStoresPerMemcpy limit and for
memset we splat the memset value into a word then immediately split it up
again.
Fix this by leaving it up to FindOptimalMemOpLowering to figure out which type
to use, but also fix a bug there where it wasn't correctly checking if
misaligned memory accesses are allowed.
Differential Revision: https://reviews.llvm.org/D33442
llvm-svn: 303990
This fixes an oversight in r300522, which changed alloca
dbg.values to no longer emit a DW_OP_deref.
The array.ll testcase was regenerated from source.
Fixes PR33166:
https://bugs.llvm.org/show_bug.cgi?id=33166
llvm-svn: 303897
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694
Refactor the strlen optimization code to work for both strlen and wcslen.
This especially helps with programs in the wild where people pass
L"string"s to const std::wstring& function parameters and the wstring
constructor gets inlined.
This also fixes a lingerind API problem/bug in getConstantStringInfo()
where zeroinitializers would always give you an empty string (without a
length) back regardless of the actual length of the initializer which
did not work well in the TrimAtNul==false causing the PR mentioned
below.
Note that the fixed getConstantStringInfo() needed fixes to SelectionDAG
memcpy lowering and may lead to some cases for out-of-bounds
zeroinitializer accesses not getting optimized anymore. So some code
with UB may produce out of bound memory reads now instead of just
producing zeros.
The refactoring "accidentally" fixes http://llvm.org/PR32124
Differential Revision: https://reviews.llvm.org/D32839
llvm-svn: 303461
Summary:
While this makes some case better and some case worse - so it's unclear if it is a worthy combine just by itself - this is a useful canonicalisation.
As per discussion in D32756 .
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32916
llvm-svn: 303441
Summary:
There are several places in the codebase that try to calculate a maximum value in a Statistic object. We currently do this in one of two ways:
MaxNumFoo = std::max(MaxNumFoo, NumFoo);
or
MaxNumFoo = (MaxNumFoo > NumFoo) ? MaxNumFoo : NumFoo;
The first version reads from MaxNumFoo one time and uncontionally rwrites to it. The second version possibly reads it twice depending on the result of the first compare. But we have no way of knowing if the value was changed by another thread between the reads and the writes.
This patch adds a method to the Statistic object that can ensure that we only store if our value is the max and the previous max didn't change after we read it. If it changed we'll recheck if our value should still be the max or not and try again.
This spawned from an audit I'm trying to do of all places we uses the implicit conversion to unsigned on the Statistics objects. See my previous thread on llvm-dev https://groups.google.com/forum/#!topic/llvm-dev/yfvxiorKrDQ
Reviewers: dberlin, chandlerc, hfinkel, dblaikie
Reviewed By: chandlerc
Subscribers: llvm-commits, sanjoy
Differential Revision: https://reviews.llvm.org/D33301
llvm-svn: 303318
Summary:
In SelectionDAG, when a store is immediately chained to another store
to the same address, elide the first store as it has no observable
effects. This is causes small improvements dealing with intrinsics
lowered to stores.
Test notes:
* Many testcases overwrite store addresses multiple times and needed
minor changes, mainly making stores volatile to prevent the
optimization from optimizing the test away.
* Many X86 test cases optimized out instructions associated with
associated with va_start.
* Note that test_splat in CodeGen/AArch64/misched-stp.ll no longer has
dependencies to check and can probably be removed and potentially
replaced with another test.
Reviewers: rnk, john.brawn
Subscribers: aemerson, rengolin, qcolombet, jyknight, nemanjai, nhaehnle, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33206
llvm-svn: 303198
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
Summary:
Eli pointed out that it's unsafe to combine the shifts to ISD::SHL etc.,
because those are not defined for b > sizeof(a) * 8, even after some of
the combiners run.
However, PPCISD::SHL defines that behavior (as the instructions themselves).
Move the combination to the backend.
The tests in shift_mask.ll still pass.
Reviewers: echristo, hfinkel, efriedma, iteratee
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D33076
llvm-svn: 302937
This patch adds min/max population count, leading/trailing zero/one bit counting methods.
The min methods return answers based on bits that are known without considering unknown bits. The max methods give answers taking into account the largest count that unknown bits could give.
Differential Revision: https://reviews.llvm.org/D32931
llvm-svn: 302925
Updates the MSP430 target to generate EABI-compatible libcall names.
As a byproduct, adjusts the hardware multiplier options available in
the MSP430 target, adds support for promotion of the ISD::MUL operation
for 8-bit integers, and correctly marks R11 as used by call instructions.
Patch by Andrew Wygle.
Differential Revision: https://reviews.llvm.org/D32676
llvm-svn: 302820
This reverts r302712.
The change fails with ASAN enabled:
ERROR: AddressSanitizer: use-after-poison on address ... at ...
READ of size 2 at ... thread T0
#0 ... in llvm::SDNode::getNumValues() const <snip>/include/llvm/CodeGen/SelectionDAGNodes.h:855:42
#1 ... in llvm::SDNode::hasAnyUseOfValue(unsigned int) const <snip>/lib/CodeGen/SelectionDAG/SelectionDAG.cpp:7270:3
#2 ... in llvm::SDValue::use_empty() const <snip> include/llvm/CodeGen/SelectionDAGNodes.h:1042:17
#3 ... in (anonymous namespace)::DAGCombiner::MergeConsecutiveStores(llvm::StoreSDNode*) <snip>/lib/CodeGen/SelectionDAG/DAGCombiner.cpp:12944:7
Reviewers: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33081
llvm-svn: 302746
Summary:
Allow consecutive stores whose values come from consecutive loads to
merged in the presense of other uses of the loads. Previously this was
disallowed as in general the merged load cannot be shared with the
other uses. Merging N stores into 1 may cause as many as N redundant
loads. However in the context of caching this should have neglible
affect on memory pressure and reduce instruction count making it
almost always a win.
Fixes PR32086.
Reviewers: spatel, jyknight, andreadb, hfinkel, efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30471
llvm-svn: 302712
Before r247167, the pass manager builder controlled which AA
implementations were used, exporting them all in the AliasAnalysis
analysis group.
Now, AAResultsWrapperPass always uses BasicAA, but still uses other AA
implementations if made available in the pass pipeline.
But regardless, SDAGISel is required at O0, and really doesn't need to
be doing fancy optimizations based on useful AA results.
Don't require AA at CodeGenOpt::None, and only use it otherwise.
This does have a functional impact (and one testcase is pessimized
because we can't reuse a load). But I think that's desirable no matter
what.
Note that this alone doesn't result in less DT computations: TwoAddress
was previously able to reuse the DT we computed for SDAG. That will be
fixed separately.
Differential Revision: https://reviews.llvm.org/D32766
llvm-svn: 302611
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
- This change allows targets to opt-in to using them instead of the log2
shufflevector algorithm.
- The SLP and Loop vectorizers have the common code to do shuffle reductions
factored out into LoopUtils, and now have a unified interface for generating
reductions regardless of the preference of the target. LoopUtils now uses TTI
to determine what kind of reductions the target wants to handle.
- For CodeGen, basic legalization support is added.
Differential Revision: https://reviews.llvm.org/D30086
llvm-svn: 302514
This reverts commit r302461.
It appears to be causing failures compiling gtest with debug info on the
Linux sanitizer bot. I was unable to reproduce the failure locally,
however.
llvm-svn: 302504
Summary:
For inalloca functions, this is a very common code pattern:
%argpack = type <{ i32, i32, i32 }>
define void @f(%argpack* inalloca %args) {
entry:
%a = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 0
%b = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 1
%c = getelementptr inbounds %argpack, %argpack* %args, i32 0, i32 2
tail call void @llvm.dbg.declare(metadata i32* %a, ... "a")
tail call void @llvm.dbg.declare(metadata i32* %c, ... "b")
tail call void @llvm.dbg.declare(metadata i32* %b, ... "c")
Even though these GEPs can be simplified to a constant offset from EBP
or RSP, we don't do that at -O0, and each GEP is computed into a
register. Registers used to compute argument addresses are typically
spilled and clobbered very quickly after the initial computation, so
live debug variable tracking loses information very quickly if we use
DBG_VALUE instructions.
This change moves processing of dbg.declare between argument lowering
and basic block isel, so that we can ask if an argument has a frame
index or not. If the argument lives in a register as is the case for
byval arguments on some targets, then we don't put it in the side table
and during ISel we emit DBG_VALUE instructions.
Reviewers: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32980
llvm-svn: 302483
Summary:
An llvm.dbg.declare of a static alloca is always added to the
MachineFunction dbg variable map, so these values are entirely
redundant. They survive all the way through codegen to be ignored by
DWARF emission.
Effectively revert r113967
Two bugpoint-reduced test cases from 2012 broke as a result of this
change. Despite my best efforts, I haven't been able to rewrite the test
case using dbg.value. I'm not too concerned about the lost coverage
because these were reduced from the test-suite, which we still run.
Reviewers: aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32920
llvm-svn: 302461
This patch introduces an LLVM intrinsic and a target opcode for custom event
logging in XRay. Initially, its use case will be to allow users of XRay to log
some type of string ("poor man's printf"). The target opcode compiles to a noop
sled large enough to enable calling through to a runtime-determined relative
function call. At runtime, when X-Ray is enabled, the sled is replaced by
compiler-rt with a trampoline to the logic for creating the custom log entries.
Future patches will implement the compiler-rt parts and clang-side support for
emitting the IR corresponding to this intrinsic.
Reviewers: timshen, dberris
Subscribers: igorb, pelikan, rSerge, timshen, echristo, dberris, llvm-commits
Differential Revision: https://reviews.llvm.org/D27503
llvm-svn: 302405
Remove an extra canonicalization step if ISD::ABS is going to be used anyway.
Updated x86 abs combine to check that we are lowering from both canonicalizations.
llvm-svn: 302337
No functional change other than improving dbgs logging accuracy on
constant dbg values. Previously we would add things like "i32 42" as
debug values, and then log that we were dropping the debug info, which
is silly.
Delete some dead code that was checking for static allocas. This
remained after r207165, but served no purpose. Currently, static alloca
dbg.values are always sent through the DanglingDebugInfoMap, and are
usually made valid the first time the alloca is used.
llvm-svn: 302267
This adds routines for reseting KnownBits to unknown, making the value all zeros or all ones. It also adds methods for querying if the value is zero, all ones or unknown.
Differential Revision: https://reviews.llvm.org/D32637
llvm-svn: 302262
This patch adds zext, sext, and trunc methods to KnownBits and uses them where possible.
Differential Revision: https://reviews.llvm.org/D32784
llvm-svn: 302088
This is the DAG equivalent of https://reviews.llvm.org/D32255 ,
which will hopefully be committed again. The functionality
(preferring a 'not' op) is already here in the DAG, so this is
just intended to be a clean-up and performance improvement.
llvm-svn: 302087
Summary: Do the transform when the carry isn't used. It's a pattern exposed when legalizing large integers.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32755
llvm-svn: 302047
Summary:
This is the corresponding llvm change to D28037 to ensure no performance
regression.
Reviewers: bogner, kbarton, hfinkel, iteratee, echristo
Subscribers: nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28329
llvm-svn: 301990
Summary: This is a common pattern that arise when legalizing large integers operations. Only do it when Y + 1 cannot overflow as this would change the carry behavior of uaddo .
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32687
llvm-svn: 301922
Summary: Common pattern when legalizing large integers operations. Similar to D32687, when the carry isn't used.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Differential Revision: https://reviews.llvm.org/D32738
llvm-svn: 301919
PR31088 demonstrated that we were assuming that only integers require promotion from <1 x iX> types, when in fact float types may require it as well - in this case half floats.
This patch adds support for extension/truncation for both integer and float types.
Differential Revision: https://reviews.llvm.org/D32391
llvm-svn: 301910
The existing code only looks at half of the tree when matching bswap + rol patterns ending in an OR tree (as opposed to a cascade).
Patch originally introduced by Jim Lewis.
Submitted on the behalf of Dinar Temirbulatov.
Differential Revision: https://reviews.llvm.org/D32039
llvm-svn: 301907
This is the SelectionDAG version of D32521. If know where at least one 1 is located in the input to these intrinsics we can place an upper bound on the number of bits needed to represent the count and thus increase the number of known zeros in the output.
I think we can also refine this further for CTTZ_UNDEF/CTLZ_UNDEF by assuming that the answer will never be BitWidth. I've left this out for now because it caused other test failures across multiple targets. Usually because of turning ADD into OR based on this new information.
I'll fix CTPOP in a future patch.
Differential Revision: https://reviews.llvm.org/D32692
llvm-svn: 301806
We discussed shrinking/widening of selects in IR in D26556, and I'll try to get back to that
patch eventually. But I'm hoping that this transform is less iffy in the DAG where we can check
legality of the select that we want to produce.
A few things to note:
1. We can't wait until after legalization and do this generically because (at least in the x86
tests from PR14657), we'll have PACKSS and bitcasts in the pattern.
2. This might benefit more of the SSE codegen if we lifted the legal-or-custom requirement, but
that requires a closer look to make sure we don't end up worse.
3. There's a 'vblendv' opportunity that we're missing that results in andn/and/or in some cases.
That should be fixed next.
4. I'm assuming that AVX1 offers the worst of all worlds wrt uneven ISA support with multiple
legal vector sizes, but if there are other targets like that, we should add more tests.
5. There's a codegen miracle in the multi-BB tests from PR14657 (the gcc auto-vectorization tests):
despite IR that is terrible for the target, this patch allows us to generate the optimal loop
code because something post-ISEL is hoisting the splat extends above the vector loops.
Differential Revision: https://reviews.llvm.org/D32620
llvm-svn: 301781
Summary: As per discution on how to get better codegen an large int legalization, it became clear that using a glue for the carry was preventing several desirable optimizations. Passing the carry down as a value allow for more flexibility.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29872
llvm-svn: 301775
Summary: This patch adds isNegative, isNonNegative for querying whether the sign bit is known. It also adds makeNegative and makeNonNegative for controlling the sign bit.
Reviewers: RKSimon, spatel, davide
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32651
llvm-svn: 301747
The method is called "get *Param* Alignment", and is only used for
return values exactly once, so it should take argument indices, not
attribute indices.
Avoids confusing code like:
IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
Alignment = CS->getParamAlignment(ArgIdx + 1);
Add getRetAlignment to handle the one case in Value.cpp that wants the
return value alignment.
This is a potentially breaking change for out-of-tree backends that do
their own call lowering.
llvm-svn: 301682
Adds a new method finalizeLowering to TargetLoweringBase. This is in
preparation for an upcoming commit.
This function is meant for target specific adjustments to
MachineFrameInfo or register reservations.
Move the freezeRegisters() and the hasCopyImplyingStackAdjustment()
handling into the new function to prove the concept. As an added bonus
GlobalISel no longer missed the hasCopyImplyingStackAdjustment()
handling with this.
Differential Revision: https://reviews.llvm.org/D32621
llvm-svn: 301679
This eliminates many extra 'Idx' induction variables in loops over
arguments in CodeGen/ and Target/. It also reduces the number of places
where we assume that ReturnIndex is 0 and that we should add one to
argument numbers to get the corresponding attribute list index.
NFC
llvm-svn: 301666
Summary:
The motivation example is like below which has 13 cases but only 2 distinct targets
```
lor.lhs.false2: ; preds = %if.then
switch i32 %Status, label %if.then27 [
i32 -7012, label %if.end35
i32 -10008, label %if.end35
i32 -10016, label %if.end35
i32 15000, label %if.end35
i32 14013, label %if.end35
i32 10114, label %if.end35
i32 10107, label %if.end35
i32 10105, label %if.end35
i32 10013, label %if.end35
i32 10011, label %if.end35
i32 7008, label %if.end35
i32 7007, label %if.end35
i32 5002, label %if.end35
]
```
which is compiled into a balanced binary tree like this on AArch64 (similar on X86)
```
.LBB853_9: // %lor.lhs.false2
mov w8, #10012
cmp w19, w8
b.gt .LBB853_14
// BB#10: // %lor.lhs.false2
mov w8, #5001
cmp w19, w8
b.gt .LBB853_18
// BB#11: // %lor.lhs.false2
mov w8, #-10016
cmp w19, w8
b.eq .LBB853_23
// BB#12: // %lor.lhs.false2
mov w8, #-10008
cmp w19, w8
b.eq .LBB853_23
// BB#13: // %lor.lhs.false2
mov w8, #-7012
cmp w19, w8
b.eq .LBB853_23
b .LBB853_3
.LBB853_14: // %lor.lhs.false2
mov w8, #14012
cmp w19, w8
b.gt .LBB853_21
// BB#15: // %lor.lhs.false2
mov w8, #-10105
add w8, w19, w8
cmp w8, #9 // =9
b.hi .LBB853_17
// BB#16: // %lor.lhs.false2
orr w9, wzr, #0x1
lsl w8, w9, w8
mov w9, #517
and w8, w8, w9
cbnz w8, .LBB853_23
.LBB853_17: // %lor.lhs.false2
mov w8, #10013
cmp w19, w8
b.eq .LBB853_23
b .LBB853_3
.LBB853_18: // %lor.lhs.false2
mov w8, #-7007
add w8, w19, w8
cmp w8, #2 // =2
b.lo .LBB853_23
// BB#19: // %lor.lhs.false2
mov w8, #5002
cmp w19, w8
b.eq .LBB853_23
// BB#20: // %lor.lhs.false2
mov w8, #10011
cmp w19, w8
b.eq .LBB853_23
b .LBB853_3
.LBB853_21: // %lor.lhs.false2
mov w8, #14013
cmp w19, w8
b.eq .LBB853_23
// BB#22: // %lor.lhs.false2
mov w8, #15000
cmp w19, w8
b.ne .LBB853_3
```
However, the inline cost model estimates the cost to be linear with the number
of distinct targets and the cost of the above switch is just 2 InstrCosts.
The function containing this switch is then inlined about 900 times.
This change use the general way of switch lowering for the inline heuristic. It
etimate the number of case clusters with the suitability check for a jump table
or bit test. Considering the binary search tree built for the clusters, this
change modifies the model to be linear with the size of the balanced binary
tree. The model is off by default for now :
-inline-generic-switch-cost=false
This change was originally proposed by Haicheng in D29870.
Reviewers: hans, bmakam, chandlerc, eraman, haicheng, mcrosier
Reviewed By: hans
Subscribers: joerg, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D31085
llvm-svn: 301649
Reapplied r299221 after fix for nondeterminism in ThinLTO builder (rL301599), with extra check for implicit truncation of inserted element.
llvm-svn: 301644
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
This patch uses various APInt methods to reduce the number of temporary APInts. These were all found while working through converting SelectionDAG's computeKnownBits to also use the KnownBits struct recently added to the ValueTracking version.
llvm-svn: 301618
Summary:
The type of the target frame index is intptr, not the type of the value we're
going to store into it. Without this change we crash in the attached test case
when trying to type-legalize a TargetFrameIndex.
Patchpoint lowering types the target frame index as intptr as well.
Reviewers: reames, bogner, arsenm
Subscribers: arsenm, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D32256
llvm-svn: 301566
Besides better codegen, the motivation is to be able to canonicalize this pattern
in IR (currently we don't) knowing that the backend is prepared for that.
This may also allow removing code for special constant cases in
DAGCombiner::foldSelectOfConstants() that was added in D30180.
Differential Revision: https://reviews.llvm.org/D31944
llvm-svn: 301457
This patch introduces a new KnownBits struct that wraps the two APInt used by computeKnownBits. This allows us to treat them as more of a unit.
Initially I've just altered the signatures of computeKnownBits and InstCombine's simplifyDemandedBits to pass a KnownBits reference instead of two separate APInt references. I'll do similar to the SelectionDAG version of computeKnownBits/simplifyDemandedBits as a separate patch.
I've added a constructor that allows initializing both APInts to the same bit width with a starting value of 0. This reduces the repeated pattern of initializing both APInts. Once place default constructed the APInts so I added a default constructor for those cases.
Going forward I would like to add more methods that will work on the pairs. For example trunc, zext, and sext occur on both APInts together in several places. We should probably add a clear method that can be used to clear both pieces. Maybe a method to check for conflicting information. A method to return (Zero|One) so we don't write it out everywhere. Maybe a method for (Zero|One).isAllOnesValue() to determine if all bits are known. I'm sure there are many other methods we can come up with.
Differential Revision: https://reviews.llvm.org/D32376
llvm-svn: 301432
Build vectors have magical truncation powers, so we have things like this:
v4i1 = BUILD_VECTOR Constant:i32<1>, Constant:i32<1>, Constant:i32<1>, Constant:i32<1>
v4i16 = BUILD_VECTOR Constant:i32<1>, Constant:i32<1>, Constant:i32<1>, Constant:i32<1>
If we don't truncate the splat node returned by getConstantSplatNode(), then we won't find
truth when ZeroOrNegativeOneBooleanContent is the rule.
Differential Revision: https://reviews.llvm.org/D32505
llvm-svn: 301408
For targets that don't have ISD::MULHS or ISD::SMUL_LOHI for the type
and the double width type is illegal, then the two operands are
sign extended to twice their size then multiplied to check for overflow.
The extended upper halves were mismatched causing an incorrect result.
This fixes the mismatch.
A test was added for ARM V6-M where the bug was detected.
Patch by James Duley.
Differential Revision: https://reviews.llvm.org/D31807
llvm-svn: 301404
Currently the operand type for ATOMIC_FENCE assumes value type of a pointer in address space 0.
This is fine for most targets. However for amdgcn target, the size of pointer in address space 0
depends on triple environment. For amdgiz environment, it is 64 bit but for other environment it is
32 bit. On the other hand, amdgcn target expects 32 bit fence operands independent of the target
triple environment. Therefore a hook is need in target lowering for getting the fence operand type.
This patch has no effect on targets other than amdgcn.
Differential Revision: https://reviews.llvm.org/D32186
llvm-svn: 301215
While we use BaseIndexOffset in FindBetterNeighborChains to
appropriately realize they're almost the same address and should be
improved concurrently we do not use it in isAlias using the non-index
understanding FindBaseOffset instead. Adding a BaseIndexOffset check
in isAlias like should allow indexed stores to be merged.
FindBaseOffset to be excised in subsequent patch.
Reviewers: jyknight, aditya_nandakumar, bogner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31987
llvm-svn: 301187
This reverts commit r301105, 4, 3 and 1, as a follow up of the previous
revert, which broke even more bots.
For reference:
Revert "[APInt] Use operator<<= where possible. NFC"
Revert "[APInt] Use operator<<= instead of shl where possible. NFC"
Revert "[APInt] Use ashInPlace where possible."
PR32754.
llvm-svn: 301111
Summary:
D30400 has enabled tADC and tSBC instructions to be unglued, thereby allowing CPSR to remain live between Thumb1 scheduling units.
Most Thumb1 instructions have an OptionalDef for CPSR; but the scheduler ignored the OptionalDefs, and could unwittingly insert a flag-setting instruction in between an ADDS and the corresponding ADC.
Reviewers: javed.absar, atrick, MatzeB, t.p.northover, jmolloy, rengolin
Reviewed By: javed.absar
Subscribers: rogfer01, efriedma, aemerson, rengolin, llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D31081
llvm-svn: 301106
getRawData exposes the internal type of the APInt class directly to its users. Ideally we wouldn't expose such an implementation detail.
This patch fixes a few of the easy cases by using truncate, extract, or a rotate.
llvm-svn: 301105
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300932 and r300930, which was causing dag-combine to
loop forever. The problem was that optimizeLogicalImm was returning
true even when there was no change to the immediate node (which happened
when the immediate was all zeros or ones), which caused dag-combine to
push and pop the same node to the work list over and over again without
making any progress.
This commit fixes the bug by returning false early in optimizeLogicalImm
if the immediate is all zeros or ones. Also, it changes the code to
compare the immediate with 0 or Mask rather than calling
countPopulation.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 301019
It seems that r300930 was creating an infinite loop in dag-combine when
compling the following file:
MultiSource/Benchmarks/MiBench/consumer-typeset/z21.c
llvm-svn: 300940
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300913, which broke bots because I didn't fix a call to
ShrinkDemandedConstant in SIISelLowering.cpp after changing the APIs of
TargetLoweringOpt and TargetLowering.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300930
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300913
This enables use after free and uninit memory checking for memory
returned by a recycler. SelectionDAG currently relies on the opcode of a
free'd node being ISD::DELETED_NODE, so poke a hole in the asan poison
for SDNode opcodes. This means that we won't find some issues, but only
in SDag.
llvm-svn: 300868
Recently alloca address space has been added to data layout. Due to this
change, pointer returned by alloca may have different size as pointer in
address space 0.
However, currently the value type of frame index is assumed to be of the
same size as pointer in address space 0.
This patch fixes that.
Most targets assume alloca returning pointer in address space 0, which
is the default alloca address space. Therefore it is NFC for them.
AMDGCN target with amdgiz environment requires this change since it
assumes alloca returning pointer to addr space 5 and its size is 32,
which is different from the size of pointer in addr space 0 which is 64.
Differential Revision: https://reviews.llvm.org/D32021
llvm-svn: 300864
getSignBit is a static function that creates an APInt with only the sign bit set. getSignMask seems like a better name to convey its functionality. In fact several places use it and then store in an APInt named SignMask.
Differential Revision: https://reviews.llvm.org/D32108
llvm-svn: 300856
Adds MVT::ElementCount to represent the length of a
vector which may be scalable, then adds helper functions
that work with it.
Patch by Graham Hunter.
Differential Revision: https://reviews.llvm.org/D32019
llvm-svn: 300842
This patch adds a few helper functions to obtain new vector
value types based on existing ones without needing to care
about whether they are scalable or not.
I've confined their use to a few common locations right now,
and targets that don't have scalable vectors should never
need to care about these.
Patch by Graham Hunter.
Differential Revision: https://reviews.llvm.org/D32017
llvm-svn: 300838
I've changed one of the tests to not fold away, but we didn't and still don't do the transform
that the comment claims we do (and I don't know why we'd want to do that).
Follow-up to:
https://reviews.llvm.org/rL300725https://reviews.llvm.org/rL300763
llvm-svn: 300772
This allows forming more 'not' ops, so we get improvements for ISAs that have and-not.
Follow-up to:
https://reviews.llvm.org/rL300725
llvm-svn: 300763
This is preparation for a clang change to improve the [[nodiscard]] warning to not be ignored on methods that return a class marked [[nodiscard]] that are defined in the class itself. See D32207.
We should consider adding wrapper methods to APInt that return the overflow flag directly and discard the APInt result. This would eliminate the void casts and the need to create a bool before the call to pass to the out param.
llvm-svn: 300758
The patch itself is simple: stop discriminating against vectors in visitAnd() and again in
SimplifyDemandedBits().
Some notes for reference:
1. We're not consistent about calls to SimplifyDemandedBits in the various visitXXX functions.
Sometimes, we check if the RHS is a constant first. Other times (like here), we just dive in.
2. I'd like to break the vector shackles in steps for the sake of risk minimization, but we could
make similar simultaneous changes in other places if we think that would be better.
3. I don't know what the intent of the changed tests in this patch was supposed to be, but since
they wiggled in a positive way, I'm just going with that. :)
4. In the rotate tests, note that we can see through non-splat constants. This is a result of D24253.
5. My motivation for being here now is to make D31944 look better, so this is step 1 of N towards
improving the vector codegen in that patch without writing any actual new code.
Differential Revision: https://reviews.llvm.org/D32230
llvm-svn: 300725
Android x86_64 target uses f128 type and stores f128 values in %xmm* registers.
SoftenFloatRes_EXTRACT_VECTOR_ELT should not convert result value
from f128 to i128.
Differential Revision: http://reviews.llvm.org/D32102
llvm-svn: 300583
This patch uses lshrInPlace to replace code where the object that lshr is called on is being overwritten with the result.
This adds an lshrInPlace(const APInt &) version as well.
Differential Revision: https://reviews.llvm.org/D32155
llvm-svn: 300566
Remove non-consecutive stores from store merge candidate search as
they cannot be merged and will prevent us from finding subsequent
mergeable store cases.
Reviewers: jyknight, bogner, javed.absar, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32086
llvm-svn: 300561
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
This avoids the confusing 'CS.paramHasAttr(ArgNo + 1, Foo)' pattern.
Previously we were testing return value attributes with index 0, so I
introduced hasReturnAttr() for that use case.
llvm-svn: 300367
A fix for the bug reported in PR30911.
The issue arises when multiple CALLSEQ_BEGIN nodes are unscheduled as
the last node to be unscheduled will gain access to the CallResource
register. But when a node is being picked, only CALLSEQ_END nodes are
checked against the CallResource and have their chains evaluated.
This then means that other CALLSEQ_BEGIN nodes can be scheduled
before the existing call sequence has been finalised. This patch adds
a check against the FrameSetup nodes in DelayForLiveRegs to prevent
this from happening.
Differential Revision: https://reviews.llvm.org/D31536
llvm-svn: 299926
Summary:
For SETCC we aren't calculating the KnownZero bits at all. I've copied the code from computeKnownZero over for this.
For AssertZExt we were only setting KnownZero for bits that were demanded. But the upper bits are zero whether they were demanded or not.
I'm interested in fixing this because my belief is the first part of the ISD::AND handling code in SimplifyDemandedBits largely exists because of these two bugs. In that code we go to computeKnownBits for the LHS and optimize a RHS constant. Because computeKnownBits handles SETCC and AssertZExt correctly we get better information sometimes than when we call SimplifyDemandedBits on the LHS later. With these two issues fixed in SimplifyDemandedBits I was able to remove that computeKnownBits call and still pass all X86 tests. I'll submit that change in a separate patch.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31715
llvm-svn: 299839
This reverts commit r299766. This change appears to have broken the MIPS
buildbots. Reverting while I investigate.
Revert "[mips] Remove usage of debug only variable (NFC)"
This reverts commit r299769. Follow up commit.
llvm-svn: 299788
By target hookifying getRegisterType, getNumRegisters, getVectorBreakdown,
backends can request that LLVM to scalarize vector types for calls
and returns.
The MIPS vector ABI requires that vector arguments and returns are passed in
integer registers. With SelectionDAG's new hooks, the MIPS backend can now
handle LLVM-IR with vector types in calls and returns. E.g.
'call @foo(<4 x i32> %4)'.
Previously these cases would be scalarized for the MIPS O32/N32/N64 ABI for
calls and returns if vector types were not legal. If vector types were legal,
a single 128bit vector argument would be assigned to a single 32 bit / 64 bit
integer register.
By teaching the MIPS backend to inspect the original types, it can now
implement the MIPS vector ABI which requires a particular method of
scalarizing vectors.
Previously, the MIPS backend relied on clang to scalarize types such as "call
@foo(<4 x float> %a) into "call @foo(i32 inreg %1, i32 inreg %2, i32 inreg %3,
i32 inreg %4)".
This patch enables the MIPS backend to take either form for vector types.
Reviewers: zoran.jovanovic, jaydeep, vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D27845
llvm-svn: 299766
Since the BUILD_VECTOR has already been checked by
isBuildVectorOfConstantSDNodes() in SelectionDAG::getNode() for a
SIGN_EXTEND_INREG, it can be assumed that Op is always either undef or a
ConstantSDNode, and Ops.size() will always equal VT.getVectorNumElements().
llvm-svn: 299647
This is a follow-on to r299096 which added support for fmadd.
Subtract does not have the case where with two multiply operands we commute in
order to fuse with the multiply with the fewer uses.
llvm-svn: 299572
This is a generic combine enabled via target hook to reduce icmp logic as discussed in:
https://bugs.llvm.org/show_bug.cgi?id=32401
It's likely that other targets will want to enable this hook for scalar transforms,
and there are probably other patterns that can use bitwise logic to reduce comparisons.
Note that we are missing an IR canonicalization for these patterns, and we will probably
prefer the pair-of-compares form in IR (shorter, more likely to fold).
Differential Revision: https://reviews.llvm.org/D31483
llvm-svn: 299542
When DAGCombiner visits a SIGN_EXTEND_INREG of a BUILD_VECTOR with
constant operands, a new BUILD_VECTOR node will be created transformed
constants.
Llvm-stress found a case where the new BUILD_VECTOR had constant operands
of an illegal type, because the (legal) element type is in fact not a legal
scalar type.
This patch changes this so that the new BUILD_VECTOR has the same operand
type as the old one.
Review: Eli Friedman, Nirav Dave
https://bugs.llvm.org//show_bug.cgi?id=32422
llvm-svn: 299540
This reverts commit r299047 which is incorrect because the
simplification may result in incorrect propogation of undefs to users of
the folded shuffle.
Thanks to Andrea Di Biagio for pointing this out.
llvm-svn: 299368
This moves the isMask and isShiftedMask functions to be class methods. They now use the MathExtras.h function for single word size and leading/trailing zeros/ones or countPopulation for the multiword size. The previous implementation made multiple temorary memory allocations to do the bitwise arithmetic operations to match the MathExtras.h implementation.
Differential Revision: https://reviews.llvm.org/D31565
llvm-svn: 299362
The code already allowed vector types in via "isInteger" (which might want
a more specific name), so use splat-friendly constant predicates to match
those types.
llvm-svn: 299304
This can only happen when we have a mix of zero and undef elements and the two vectors have a different arrangement of zeros/undefs. The shuffle should eventually be constant folded to all zeros.
Fixes PR32484.
llvm-svn: 299291
(and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
We have 7 similar folds, but this one got away. The fact that the
x86 test with a branch didn't change is probably a separate bug. We
may also be missing this and the related folds in instcombine.
llvm-svn: 299252
Currently ComputeNumSignBits returns the minimum number of sign bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original ComputeNumSignBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
I've only added support for BUILD_VECTOR and EXTRACT_VECTOR_ELT so far, all others will default to demanding all elements but can be updated in due course.
Followup to D25691.
Differential Revision: https://reviews.llvm.org/D31311
llvm-svn: 299219
Follow up to D25691, this sets up the plumbing necessary to support vector demanded elements support in known bits calculations in target nodes.
Differential Revision: https://reviews.llvm.org/D31249
llvm-svn: 299201
Now alternatively to the TargetOption.AllowFPOpFusion global flag, FMUL->FADD
can also use the per operation FMF to allow fusion.
The idea here is not to port everything to the new scheme (e.g. fused
multiply-and-sub will be ported later) but that this work all the way from
clang.
The transformation is conditionalized on *both* the FADD and the FMUL having
the FMF contract flag.
Differential Revision: https://reviews.llvm.org/D31169
llvm-svn: 299096
In the long-term, we want to replace statistics with something
finer-grained that lets us gather per-function data.
Remarks are that replacement.
Create an ORE instance in SelectionDAGISel, and pass it to
SelectionDAG.
SelectionDAG was used so that we can emit remarks from all
SelectionDAG-related code, including TargetLowering and DAGCombiner.
This isn't used in the current patch but Adam tells me he's interested
for the fp-contract combines.
Use the ORE instance to emit FastISel failures as remarks (instead of
the mix of dbgs() dumps and statistics that we currently have).
Eventually, we want to have an API that tells us whether remarks are
enabled (http://llvm.org/PR32352) so that we don't emit expensive
remarks (in this case, dumping IR) when it's not needed. For now, use
'isEnabled' as a crude replacement.
This does mean that the replacement for '-fast-isel-verbose' is now
'-pass-remarks-missed=isel'. Additionally, clang users also need to
enable remark diagnostics, using '-Rpass-missed=isel'.
This also removes '-fast-isel-verbose2': there are no static statistics
that we want to only enable in asserts builds, so we can always use
the remarks regardless of the build type.
Differential Revision: https://reviews.llvm.org/D31405
llvm-svn: 299093
Turns out integerPartWidth only explicitly defines the width of the tc functions in the APInt class. Functions that aren't used by APInt implementation itself. Many places in the code base already assume APInt is made up of 64-bit pieces. Explicitly assuming 64-bit here doesn't make that situation much worse. A full audit would need to be done if it ever changes.
llvm-svn: 299059
Properly propagate the FMF from the LLVM IR to this flag.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
Differential Revision: https://reviews.llvm.org/D31165
llvm-svn: 298961
Deal with case that initial node is deleted during dag-combine leading
to an assertional failure in promoteIntShiftOp.
Fixes PR32420.
Reviewers: spatel, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31403
llvm-svn: 298931
Reorder work in PromoteIntBinOp to prevent stale (deleted) nodes from
being used.
Fixes PR32340 and PR32345.
Reviewers: hfinkel, dbabokin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31148
llvm-svn: 298923
This is the payoff for D31156 - if a target has efficient comparison instructions for vector-sized equality,
we can replace memcmp calls with inline code that is both smaller and faster.
Differential Revision: https://reviews.llvm.org/D31290
llvm-svn: 298775
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Previously, PromoteIntRes_TRUNCATE() did not handle the case where
the operand needs widening, which resulted in llvm_unreachable().
This patch adds the needed handling, along with a test case.
Review: Eli Friedman, Simon Pilgrim.
https://reviews.llvm.org/D31077
llvm-svn: 298357
We make the assumption in most of our constant folding code that a fp2int will target an integer of 128-bits or less, calling the APFloat::convertToInteger with only uint64_t[2] of raw bits for the result.
Fuzz testing (PR24662) showed that we don't handle other cases at all, resulting in stack overflows and all sorts of crashes.
This patch uses the APSInt version of APFloat::convertToInteger instead to better handle such cases.
Differential Revision: https://reviews.llvm.org/D31074
llvm-svn: 298226
Handle TokenFactors more aggressively in
SDValue::reachesChainWithoutSideEffects. This isn't really a
very effective change anymore because of other changes to
chain handling, but it's a cheap check, and the expanded
comments are still useful.
It might be possible to loosen the hasOneUse() requirement with a
deeper analysis, but a naive implementation of that check would be
expensive.
Differential Revision: https://reviews.llvm.org/D29845
llvm-svn: 298156
Users often call getArgumentList().size(), which is a linear way to get
the number of function arguments. arg_size(), on the other hand, is
constant time.
In general, the fact that arguments are stored in an iplist is an
implementation detail, so I've removed it from the Function interface
and moved all other users to the argument container APIs (arg_begin(),
arg_end(), args(), arg_size()).
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D31052
llvm-svn: 298010
Don't scalarize VSELECT->SETCC when operands/results needs to be widened,
or when the type of the SETCC operands are different from those of the VSELECT.
(VSELECT SETCC) and (VSELECT (AND/OR/XOR (SETCC,SETCC))) are handled.
The previous splitting of VSELECT->SETCC in DAGCombiner::visitVSELECT() is
no longer needed and has been removed.
Updated tests:
test/CodeGen/ARM/vuzp.ll
test/CodeGen/NVPTX/f16x2-instructions.ll
test/CodeGen/X86/2011-10-19-widen_vselect.ll
test/CodeGen/X86/2011-10-21-widen-cmp.ll
test/CodeGen/X86/psubus.ll
test/CodeGen/X86/vselect-pcmp.ll
Review: Eli Friedman, Simon Pilgrim
https://reviews.llvm.org/D29489
llvm-svn: 297930
This patch replaces ORs with getHighBits/getLowBits etc. with setLowBits/setHighBits/setBitsFrom.
In a few of the places we weren't ORing, but the KnownZero/KnownOne vectors were already initialized to zero. We exploit this in most places already there were just some that were inconsistent.
Differential Revision: https://reviews.llvm.org/D30965
llvm-svn: 297860
Reduced version of D26357 - based on the discussion on llvm-dev about canonicalization of UMIN/UMAX/SMIN/SMAX as well as ABS I've reduced that patch to just the ABS ISD node (with x86/sse support) to improve basic combines and lowering.
ARM/AArch64, Hexagon, PowerPC and NVPTX all have similar instructions allowing us to make this a generic opcode and move away from the hard coded tablegen patterns which makes it tricky to match more complex patterns.
At the moment this patch doesn't attempt legalization as we only create an ABS node if its legal/custom.
Differential Revision: https://reviews.llvm.org/D29639
llvm-svn: 297780
Create nodes for smulwb and smulwt and move their selection from
DAGToDAG to DAG combine. smlawb and smlawt can then be selected
using tablegen. Added some helper functions to detect shift patterns
as well as a wrapper around SimplifyDemandBits. Added a couple of
extra tests.
Differential Revision: https://reviews.llvm.org/D30708
llvm-svn: 297716
When checking if chain node is foldable, make sure the intermediate nodes have a single use across all results not just the result that was used to reach the chain node.
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 297698
Recommiting with compiler time improvements
Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 297695
Summary:
Depends on D30379
This improves the state of things for the sub class of operation.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30436
llvm-svn: 297482
Summary: As per title. This is extracted from D29872 and I threw SADDO in.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30379
llvm-svn: 297479
We currently have to insert bits via a temporary variable of the same size as the target with various shift/mask stages, resulting in further temporary variables, all of which require the allocation of memory for large APInts (MaskSizeInBits > 64).
This is another of the compile time issues identified in PR32037 (see also D30265).
This patch adds the APInt::insertBits() helper method which avoids the temporary memory allocation and masks/inserts the raw bits directly into the target.
Differential Revision: https://reviews.llvm.org/D30780
llvm-svn: 297458
Summary: This essentially does the same transform as for ADC.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30417
llvm-svn: 297416
Summary: This essentially does the same transform as for SUBC.
Reviewers: jyknight, nemanjai, mkuper, spatel, RKSimon, zvi, bkramer
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30437
llvm-svn: 297404
As discussed in the review thread for rL297026, this is actually 2 changes that
would independently fix all of the test cases in the patch:
1. Return undef in FoldConstantArithmetic for div/rem by 0.
2. Move basic undef simplifications for div/rem (simplifyDivRem()) before
foldBinopIntoSelect() as a matter of efficiency.
I will handle the case of vectors with any zero element as a follow-up. That change
is the DAG sibling for D30665 + adding a check of vector elements to FoldConstantVectorArithmetic().
I'm deleting the test for PR30693 because it does not test for the actual bug any more
(dangers of using bugpoint).
Differential Revision:
https://reviews.llvm.org/D30741
llvm-svn: 297384
This helps in cases involving bitfields where an AND is exposed by
legalization.
Differential Revision: https://reviews.llvm.org/D30472
llvm-svn: 297249
This is known incomplete and not called in the right order relative to
other folds, but that's the current behavior. I'm just trying to clean
this up before making actual functional changes to make the patch smaller.
The logic here should mimic the IR equivalents that are in InstSimplify's
simplifyDivRem().
llvm-svn: 297086
Refactoring of duplicated code and more fixes to follow.
This is motivated by the post-commit comments for r296699:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20170306/435182.html
Ie, we can crash if we're missing obvious simplifications like this that
exist in the IR simplifier or if these occur later than expected.
The x86 change for non-splat division shows a potential opportunity to improve
vector codegen: we assumed that since only one lane had meaningful results, we
should do the math in scalar. But that means moving back and forth from vector
registers.
llvm-svn: 297026
As described on PR31712, we miss a variety of legalization combines because we lower these to X86ISD::VSEXT/VZEXT despite them having the same functionality. This patch makes 128-bit (SSE41) SIGN/ZERO_EXTEND_VECTOR_IN_REG ops legal, adds the necessary tablegen plumbing and uses a helper 'getExtendInVec' to decide when to use SIGN/ZERO_EXTEND_VECTOR_IN_REG or VSEXT/VZEXT.
We're missing a couple of shuffle combines that will be added in a future patch for review.
Later patches can then support the AVX2 cases as a mixture of SIGN/ZERO_EXTEND and SIGN/ZERO_EXTEND_VECTOR_IN_REG, and then finally deal with the AVX512 cases.
Differential Revision: https://reviews.llvm.org/D30549
llvm-svn: 296985
This is more efficient by itself. But this is prep for a future patch that may remove APInt::Or while making operator| support rvalue references similar to add/sub.
llvm-svn: 296981
select Cond, C +/- 1, C --> add(ext Cond), C -- with a target hook.
This is part of the ongoing process to obsolete D24480. The motivation is to
canonicalize to select IR in InstCombine whenever possible, so we need to have a way to
undo that easily in codegen.
PowerPC is an obvious winner for this kind of transform because it has fast and complete
bit-twiddling abilities but generally lousy conditional execution perf (although this might
have changed in recent implementations).
x86 also sees some wins, but the effect is limited because these transforms already mostly
exist in its target-specific combineSelectOfTwoConstants(). The fact that we see any x86
changes just shows that that code is a mess of special-case holes. We may be able to remove
some of that logic now.
My guess is that other targets will want to enable this hook for most cases. The likely
follow-ups would be to add value type and/or the constants themselves as parameters for the
hook. As the tests in select_const.ll show, we can transform any select-of-constants to
math/logic, but the general transform for any 2 constants needs one more instruction
(multiply or 'and').
ARM is one target that I think may not want this for most cases. I see infinite loops there
because it wants to use selects to enable conditionally executed instructions.
Differential Revision: https://reviews.llvm.org/D30537
llvm-svn: 296977
Summary:
When replacing a SDValue, we should remove the replaced value from
SoftenedFloats (and possibly the other maps as well?).
When we revisit a Node because it needs analyzing again, we have to
remove all result values from SoftenedFloats (and possibly other maps?).
This fixes the fp128 test failures with expensive checks for X86.
I think we probably should also remove the values from the other maps
(PromotedIntegers and so on), let me know what you think.
Reviewers: baldrick, bogner, davidxl, ab, arsenm, pirama, chh, RKSimon
Reviewed By: chh
Subscribers: danalbert, wdng, srhines, hfinkel, sepavloff, llvm-commits
Differential Revision: https://reviews.llvm.org/D29265
llvm-svn: 296964
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.
llvm-svn: 296862
Summary:
Currently, when 't1: i1 = setcc t2, t3, cc' followed by 't4: i1 = xor t1, Constant:i1<-1>' is folded into 't5: i1 = setcc t2, t3 !cc', SDLoc of newly created SDValue 't5' follows SDLoc of 't4', not 't1'. However, as the opcode of newly created SDValue is 'setcc', it make more sense to take DebugLoc from 't1' than 't4'. For the code below
```
extern int bar();
extern int baz();
int foo(int x, int y) {
if (x != y)
return bar();
else
return baz();
}
```
, following is the bitcode representation of 'foo' at the end of llvm-ir level optimization:
```
define i32 @foo(i32 %x, i32 %y) !dbg !4 {
entry:
tail call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !9, metadata !11), !dbg !12
tail call void @llvm.dbg.value(metadata i32 %y, i64 0, metadata !10, metadata !11), !dbg !13
%cmp = icmp ne i32 %x, %y, !dbg !14
br i1 %cmp, label %if.then, label %if.else, !dbg !16
if.then: ; preds = %entry
%call = tail call i32 (...) @bar() #3, !dbg !17
br label %return, !dbg !18
if.else: ; preds = %entry
%call1 = tail call i32 (...) @baz() #3, !dbg !19
br label %return, !dbg !20
return: ; preds = %if.else, %if.then
%retval.0 = phi i32 [ %call, %if.then ], [ %call1, %if.else ]
ret i32 %retval.0, !dbg !21
}
!14 = !DILocation(line: 5, column: 9, scope: !15)
!16 = !DILocation(line: 5, column: 7, scope: !4)
```
As you can see, in 'entry' block, 'icmp' instruction and 'br' instruction have different debug locations. However, with current implementation, there's no distinction between debug locations of these two when they are lowered to asm instructions. This is because 'icmp' and 'br' become 'setcc' 'xor' and 'brcond' in SelectionDAG, where SDLoc of 'setcc' follows the debug location of 'icmp' but SDLOC of 'xor' and 'brcond' follows the debug location of 'br' instruction, and SDLoc of 'xor' overwrites SDLoc of 'setcc' when they are folded. This patch addresses this issue.
Reviewers: atrick, bogner, andreadb, craig.topper, aprantl
Reviewed By: andreadb
Subscribers: jlebar, mkuper, jholewinski, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29813
llvm-svn: 296825
This bug was introduced with:
https://reviews.llvm.org/rL296699
There may be a way to loosen the restriction, but for now just bail out
on any opaque constant.
The tests show that opacity is target-specific. This goes back to cost
calculations in ConstantHoisting based on TTI->getIntImmCost().
llvm-svn: 296768
Summary:
This can be used to optimize large multiplications after legalization.
Depends on D29565
Reviewers: mkuper, spatel, RKSimon, zvi, bkramer, aaboud, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29587
llvm-svn: 296711
This is part of the ongoing attempt to improve select codegen for all targets and select
canonicalization in IR (see D24480 for more background). The transform is a subset of what
is done in InstCombine's FoldOpIntoSelect().
I first noticed a regression in the x86 avx512-insert-extract.ll tests with a patch that
hopes to convert more selects to basic math ops. This appears to be a general missing DAG
transform though, so I added tests for all standard binops in rL296621
(PowerPC was chosen semi-randomly; it has scripted FileCheck support, but so do ARM and x86).
The poor output for "sel_constants_shl_constant" is tracked with:
https://bugs.llvm.org/show_bug.cgi?id=32105
Differential Revision: https://reviews.llvm.org/D30502
llvm-svn: 296699
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
Add check that deleted nodes do not get added to worklist. This can
occur when a node's operand is simplified to an existing node.
This fixes PR32108.
Reviewers: jyknight, hfinkel, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30506
llvm-svn: 296668
Resubmit r295336 after the bug with non-zero offset patterns on BE targets is fixed (r296336).
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 296651
When SDAGISel (top-down) selects a tail-call, it skips the remainder
of the block.
If, before that, FastISel (bottom-up) selected some of the (no-op) next
few instructions, we can end up with dead instructions following the
terminator (selected by SDAGISel).
We need to erase them, as we know they aren't necessary (in addition to
being incorrect).
We already do this when FastISel falls back on the tail-call itself.
Also remove the FastISel-emitted code if we fallback on the
instructions between the tail-call and the return.
llvm-svn: 296552
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 296486
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296476
DAGCombiner already supports peeking thorough shuffles to improve vector element extraction, but legalization often leaves us in situations where we need to extract vector elements after shuffles have already been lowered.
This patch adds support for VECTOR_EXTRACT_ELEMENT/PEXTRW/PEXTRB instructions to attempt to handle target shuffles as well. I've covered some basic scenarios including handling shuffle mask scaling and the implicit zero-extension of PEXTRW/PEXTRB, there is more that could be done here (that I've mentioned in TODOs) but I haven't found many cases where its worth it.
Differential Revision: https://reviews.llvm.org/D30176
llvm-svn: 296381
This pattern is essentially a i16 load from p+1 address:
%p1.i16 = bitcast i8* %p to i16*
%p2.i8 = getelementptr i8, i8* %p, i64 2
%v1 = load i16, i16* %p1.i16
%v2.i8 = load i8, i8* %p2.i8
%v2 = zext i8 %v2.i8 to i16
%v1.shl = shl i16 %v1, 8
%res = or i16 %v1.shl, %v2
Current implementation would identify %v1 load as the first byte load and would mistakenly emit a i16 load from %p1.i16 address. This patch adds a check that the first byte is loaded from a non-zero offset of the first load address. This way this address can be used as the base address for the combined value. Otherwise just give up combining.
llvm-svn: 296336
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296252
The motivation for filling out these select-of-constants cases goes back to D24480,
where we discussed removing an IR fold from add(zext) --> select. And that goes back to:
https://reviews.llvm.org/rL75531https://reviews.llvm.org/rL159230
The idea is that we should always canonicalize patterns like this to a select-of-constants
in IR because that's the smallest IR and the best for value tracking. Note that we currently
do the opposite in some cases (like the cases in *this* patch). Ie, the proposed folds in
this patch already exist in InstCombine today:
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/InstCombine/InstCombineSelect.cpp#L1151
As this patch shows, most targets generate better machine code for simple ext/add/not ops
rather than a select of constants. So the follow-up steps to make this less of a patchwork
of special-case folds and missing IR canonicalization:
1. Have DAGCombiner convert any select of constants into ext/add/not ops.
2 Have InstCombine canonicalize in the other direction (create more selects).
Differential Revision: https://reviews.llvm.org/D30180
llvm-svn: 296137
During legalization we are often creating shuffles (via a build_vector scalarization stage) that are "any_extend_vector_inreg" style masks, and also other masks that are the equivalent of "truncate_vector_inreg" (if we had such a thing).
This patch is an attempt to match these cases to help undo the effects of just leaving shuffle lowering to handle it - which typically means we lose track of the undefined elements of the shuffles resulting in an unnecessary extension+truncation stage for widened illegal types.
The 2011-10-21-widen-cmp.ll regression will be fixed by making SIGN_EXTEND_VECTOR_IN_REG legal in SSE instead of lowering them to X86ISD::VSEXT (PR31712).
Differential Revision: https://reviews.llvm.org/D29454
llvm-svn: 295451
Resubmit -r295314 with PowerPC and AMDGPU tests updated.
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 295336
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 295314
We currently can't legalize those, but we should really not be creating
them in the first place, since legalization would probably look similar to the
way we legalize CONCAT_VECTORS - basically replace the INSERT with a BUILD.
This fixes PR311956.
Differential Revision: https://reviews.llvm.org/D29961
llvm-svn: 295213
Summary:
The current code loops over all elements to calculate a used range. Then a second short loop looks at the ranges and determines if they can be used in a extract and creates a properly aligned start index for the extract.
This range finding is unnecessary, we can just calculate a properly aligned start index for an extract for each input during the first loop. If we don't find the same start index for each indice we can't use an extract.
Reviewers: zvi, RKSimon
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29926
llvm-svn: 295152
To help assist in debugging ISEL or to prioritize GlobalISel backend
work, this patch adds two more tables to <Target>GenISelDAGISel.inc -
one which contains the patterns that are used during selection and the
other containing include source location of the patterns
Enabled through CMake varialbe LLVM_ENABLE_DAGISEL_COV
llvm-svn: 295081
Backends don't support this yet. They would have to move to the swifterror
register before the tail call to make sure it is live-in to the call.
rdar://30495920
llvm-svn: 294982
This is consistent with what we do for GlobalISel. That way, it is easy
to see whether or not FastISel is able to fully select a function.
At some point we may want to switch that to an optimization remark.
llvm-svn: 294970
The bug was introduced with:
https://reviews.llvm.org/rL294863
...and manifests as a selection failure in x86, but that's actually
another bug. This fix prevents wrong codegen with -0.0, but in the
more common case when we have NSZ and NNAN (-ffast-math), we should
still be able to fold this setcc/compare.
llvm-svn: 294924
I don't know if anything other than x86 vectors is affected by this change, but this may allow
us to remove target-specific intrinsics for blendv* (vector selects). The simplification arises
from the fact that blendv* instructions only use the sign-bit when deciding which vector element
to choose for the destination vector. The mechanism to fold VSELECT into SHRUNKBLEND nodes already
exists in x86 lowering; this demanded bits change just enables the transform to fire more often.
The original motivation starts with a bug for DSE of masked stores that seems completely unrelated,
but I've explained the likely steps in this series here:
https://llvm.org/bugs/show_bug.cgi?id=11210
Differential Revision: https://reviews.llvm.org/D29687
llvm-svn: 294863
The patch comes in 2 parts:
1 - it makes use of the SelectionDAG::NewNodesMustHaveLegalTypes flag to tell when it can safely constant fold illegal types.
2 - it correctly resets SelectionDAG::NewNodesMustHaveLegalTypes at the start of each call to SelectionDAGISel::CodeGenAndEmitDAG so all the pre-legalization stages can make use of it - not just the first basic block that gets handled.
Fix for PR30760
Differential Revision: https://reviews.llvm.org/D29568
llvm-svn: 294749
Summary:
With -debug, we aren't dumping the DAG after legalizing vector ops. In particular, on X86 with AVX1 only, we don't dump the DAG after we split 256-bit integer ops into pairs of 128-bit ADDs since this occurs during vector legalization.
I'm only dumping if the legalize vector ops changes something since we don't print anything during legalize vector ops. So this dump shows up right after the first type-legalization dump happens. So if nothing changed this second dump is unnecessary.
Having said that though, I think we should probably fix legalize vector ops to log what its doing.
Reviewers: RKSimon, eli.friedman, spatel, arsenm, chandlerc
Reviewed By: RKSimon
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D29554
llvm-svn: 294711
Summary:
Fix two bugs in SelectionDAGBuilder::FindMergedConditions reported by
Mikael Holmen. Handle non-canonicalized xor not operation
correctly (was assuming operand 0 was always the non-constant operand)
and check that the negated condition is also in the same block as the
original and/or instruction (as is done for and/or operands already)
before proceeding with optimization.
Reviewers: bogner, MatzeB, qcolombet
Subscribers: mcrosier, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D29680
llvm-svn: 294605
Hoist entry block code for arguments and swift error values out of the
basic block instruction selection loop. Lowering arguments once up front
seems much more readable than doing it conditionally inside the loop. It
also makes it clear that argument lowering can update StaticAllocaMap
because no instructions have been selected yet.
Also use range-based for loops where possible.
llvm-svn: 294329
This reverts commit r294186.
On an internal test, this triggers an out-of-memory error on PPC,
presumably because there is another dagcombine that does the exact
opposite triggering and endless loop consuming more and more memory.
Chandler has started at creating a reduced test case and we'll attach it
as soon as possible.
llvm-svn: 294288
Currently we only combine shuffle nodes if they have a single user to prevent us from causing code bloat by splitting the shuffles into several different combines.
We don't take into account that in some cases we will already have combined all the users during recursively calling up the shuffle tree.
This patch keeps a list of all the shuffle nodes that have been combined so far and permits combining of further shuffle nodes if all its users are in that list.
Differential Revision: https://reviews.llvm.org/D29399
llvm-svn: 294183
Summary:
Without this change, the getVR() call would hit an assert since it was
being passed a physical register.
Update the AArch64/ldst-opt.ll test with a case that triggers this
behavior by adding a run with strict-align, which causes an unaligned
STR XZR instruction to be split into byte stores, creating an
EXTRACT_SUBREG of XZR that triggers the original problem.
Reviewers: bogner, qcolombet, MatzeB, atrick
Subscribers: aemerson, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D29495
llvm-svn: 294129
Summary: This avoid the need to duplicate all pattern and actually end up exposing some opportunity to optimize existing pattern that did not exists in both directions on an existing test case.
Reviewers: mkuper, spatel, bkramer, RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29541
llvm-svn: 294125
This re-applies commit r292189, reverted in r292191.
SelectionDAGBuilder recognizes libfuncs using some homegrown
parameter type-checking.
Use TLI instead, removing another heap of redundant code.
This isn't strictly NFC, as the SDAG code was too lax.
Concretely, this means changes are required to a few tests:
- calling a non-variadic function via a variadic prototype isn't OK;
it just happens to work on x86_64 (but not on, e.g., aarch64).
- mempcpy has a size_t parameter; the SDAG code accepts any integer
type, which meant using i32 on x86_64 worked.
- a handful of SystemZ tests check the SDAG support for lax prototype
checking: Ulrich agrees on removing them.
I don't think it's worth supporting any of these (IMO) invalid
testcases. Instead, fix them to be more meaningful.
llvm-svn: 294028
ISD::DELETED_NODE && "NodeToMatch was removed partway through
selection"' failed.
NodeToMatch can be modified during matching, but code does not handle
this situation.
Differential Revision: https://reviews.llvm.org/D29292
llvm-svn: 294003
Recommiting after fixing X86 inc/dec chain bug.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293893
Summary:
This way, the type legalization machinery will take care of registering
the result of this node properly.
This patches fixes all failing fp16 test cases with expensive checks.
(CodeGen/ARM/fp16-promote.ll, CodeGen/ARM/fp16.ll, CodeGen/X86/cvt16.ll
CodeGen/X86/soft-fp.ll)
Reviewers: t.p.northover, baldrick, olista01, bogner, jmolloy, davidxl, ab, echristo, hfinkel
Reviewed By: hfinkel
Subscribers: mehdi_amini, hfinkel, davide, RKSimon, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28195
llvm-svn: 293765
Summary:
The affected transforms all implicitly use associativity of addition,
for which we usually require unsafe math to be enabled.
The "Aggressive" flag is only meant to convey information about the
performance of the fused ops relative to a fmul+fadd sequence.
Fixes Bug 31626.
Reviewers: spatel, hfinkel, mehdi_amini, arsenm, tstellarAMD
Subscribers: jholewinski, nemanjai, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D28675
llvm-svn: 293635
Previously, we would hit UB (or the ISD::DELETED_NODE assert) if we
happened to replace a node during UpdateChains, because it would be
left in the list we were iterating over. This nulls out the pointer
when that happens so that we can avoid the issue.
Fixes llvm.org/PR31710
llvm-svn: 293522
The type system already requires that the number of vector elements must fit in 32-bits so an index should as well. Even if the type of the index were larger all we care about is that the constant index can fit in 64-bits so that we can call getZExtValue.
llvm-svn: 293413
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
In case of a SIGN/ZERO_EXTEND of an incomplete vector type (using only a
partial number of available vector elements), WidenVecRes_Convert() used to
resort to scalarization.
This patch adds a handling of the (common) case where an input vector can be
found of same width as the widened result vector, by converting the node to
SIGN/ZERO_EXTEND_VECTOR_INREG.
Review: Eli Friedman
llvm-svn: 293268
This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
llvm-svn: 293226
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293184
Later code expects the vector loads produced to be directly
concatenable, which means we shouldn't pad anything except the last load
produced with UNDEF.
llvm-svn: 293088
The previous patch (https://reviews.llvm.org/rL289538) got reverted because of a bug. Chandler also requested some changes to the algorithm.
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161212/413479.html
This is an updated patch. The key difference is that collectBitProviders (renamed to calculateByteProvider) now collects the origin of one byte, not the whole value. It simplifies the implementation and allows to stop the traversal earlier if we know that the result won't be used.
From the original commit:
Match a pattern where a wide type scalar value is loaded by several narrow loads and combined by shifts and ors. Fold it into a single load or a load and a bswap if the targets supports it.
Assuming little endian target:
i8 *a = ...
i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
=>
i32 val = *((i32)a)
i8 *a = ...
i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
=>
i32 val = BSWAP(*((i32)a))
This optimization was discussed on llvm-dev some time ago in "Load combine pass" thread. We came to the conclusion that we want to do this transformation late in the pipeline because in presence of atomic loads load widening is irreversible transformation and it might hinder other optimizations.
Eventually we'd like to support folding patterns like this where the offset has a variable and a constant part:
i32 val = a[i] | (a[i + 1] << 8) | (a[i + 2] << 16) | (a[i + 3] << 24)
Matching the pattern above is easier at SelectionDAG level since address reassociation has already happened and the fact that the loads are adjacent is clear. Understanding that these loads are adjacent at IR level would have involved looking through geps/zexts/adds while looking at the addresses.
The general scheme is to match OR expressions by recursively calculating the origin of individual bytes which constitute the resulting OR value. If all the OR bytes come from memory verify that they are adjacent and match with little or big endian encoding of a wider value. If so and the load of the wider type (and bswap if needed) is allowed by the target generate a load and a bswap if needed.
Reviewed By: RKSimon, filcab, chandlerc
Differential Revision: https://reviews.llvm.org/D27861
llvm-svn: 293036
clang already emits this with -cl-no-signed-zeros, but codegen
doesn't do anything with it. Treat it like the other fast math
attributes, and change one place to use it.
llvm-svn: 293024
Summary:
When conditional branches with complex conditions are split into
multiple branches in SelectionDAGBuilder::FindMergedConditions, also
handle inverted conditions. These may sometimes appear without having
been optimized by InstCombine when CodeGenPrepare decides to sink and
duplicate cmp instructions, causing them to have only one use. This
problem can be increased by e.g. GVNHoist hiding more cmps from
InstCombine by combining equivalent cmps from different blocks.
For example codegen X & !(Y | Z) as:
jmp_if_X TmpBB
jmp FBB
TmpBB:
jmp_if_notY Tmp2BB
jmp FBB
Tmp2BB:
jmp_if_notZ TBB
jmp FBB
Reviewers: bogner, MatzeB, qcolombet
Subscribers: llvm-commits, hiraditya, mcrosier, sebpop
Differential Revision: https://reviews.llvm.org/D28380
llvm-svn: 292944
Summary:
This teaches getNode to simplify extracting from Undef. This is similar to what is done for EXTRACT_VECTOR_ELT. It also adds support for extracting from CONCAT_VECTOR when we can reuse one of the inputs to the concat. These seem like simple non-target specific optimizations.
For X86 we currently handle undef in extractSubvector, but not all EXTRACT_SUBVECTOR creations go through there.
Ultimately, my motivation here is to simplify extractSubvector and remove custom lowering for EXTRACT_SUBVECTOR since we don't do anything but handle undef and BUILD_VECTOR optimizations, but those should be DAG combines.
Reviewers: RKSimon, delena
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29000
llvm-svn: 292876
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
This patch improves the knownbits logic for unsigned integer min/max opcodes.
For UMIN we know that the result will have the maximum of the inputs' known leading zero bits in the result, similarly for UMAX the maximum of the inputs' leading one bits.
This is particularly useful for simplifying clamping patterns,. e.g. as SSE doesn't have a uitofp instruction we want to use sitofp instead where possible and for that we need to confirm that the top bit is not set.
Differential Revision: https://reviews.llvm.org/D28853
llvm-svn: 292528
Summary:
The SDNodeOrder is saved in the IROrder field in the SDNode, and this
field may affects scheduling. Thus, letting dbg.value/declare increase
the order numbers may in turn affect scheduling.
Because of this change we also need to update the code deciding when
dbg values should be output, in ScheduleDAGSDNodes.cpp/ProcessSDDbgValues.
Dbg values now have the same order as the SDNode they are connected to,
not the following orders.
Test cases provided by Florian Hahn.
Reviewers: bogner, aprantl, sunfish, atrick
Reviewed By: atrick
Subscribers: fhahn, probinson, andreadb, llvm-commits, MatzeB
Differential Revision: https://reviews.llvm.org/D25318
llvm-svn: 292485
SelectionDAGBuilder recognizes libfuncs using some homegrown
parameter type-checking.
Use TLI instead, removing another heap of redundant code.
This isn't strictly NFC, as the SDAG code was too lax.
Concretely, this means changes are required to two tests:
- calling a non-variadic function via a variadic prototype isn't OK;
it just happens to work on x86_64 (but not on, e.g., aarch64).
- mempcpy has a size_t parameter; the SDAG code accepts any integer
type, which meant using i32 on x86_64 worked.
I don't think it's worth supporting either of these (IMO) broken
testcases. Instead, fix them to be more correct.
llvm-svn: 292189
Rename from addOperand to just add, to match the other method that has been
added to MachineInstrBuilder for adding more than just 1 operand.
See https://reviews.llvm.org/D28057 for the whole discussion.
Differential Revision: https://reviews.llvm.org/D28556
llvm-svn: 291891
Even with aggressive fusion enabled, this requires duplicating
the fmul, or increases an fadd to another fma which is not an
improvement.
llvm-svn: 291642
If a vector index is out of bounds, the result is supposed to be
undefined but is not undefined behavior. Change the legalization
for indexing the vector on the stack so that an out of bounds
index does not create an out of bounds memory access.
llvm-svn: 291604
The usage of some MIPS MSA instrinsics that took immediates could crash LLVM
during lowering. This patch addresses that behaviour. Crucially this patch
also makes the use of intrinsics with out of range immediates as producing an
internal error.
The ld,st instrinsics would trigger an assertion failure for MIPS64 as their
lowering would attempt to add an i32 offset to a i64 pointer.
Reviewers: vkalintiris, slthakur
Differential Revision: https://reviews.llvm.org/D25438
llvm-svn: 291571
Summary:
Originally
i64 = umax t8, Constant:i64<4>
was expanded into
i32,i32 = umax Constant:i32<0>, Constant:i32<0>
i32,i32 = umax t7, Constant:i32<4>
Now instead the two produced umax:es return i32 instead of i32, i32.
Thanks to Jan Vesely for help with the test case.
Patch by mikael.holmen at ericsson.com
Reviewers: bogner, jvesely, tstellarAMD, arsenm
Subscribers: test, wdng, RKSimon, arsenm, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D28135
llvm-svn: 291441
We used the logBase2 of the high instead of the ceilLogBase2 resulting
in the wrong result for certain values. For example, it resulted in an
i1 AssertZExt when the exclusive portion of the range was 3.
llvm-svn: 291196
Summary:
When promoting fp-to-uint16 to fp-to-sint32, the result is actually zero
extended. For example, given double 65534.0, without legalization:
fp-to-uint16: 65534.0 -> 0xfffe
With the legalization:
fp-to-sint32: 65534.0 -> 0x0000fffe
Without this patch, legalization wrongly emits a signed extend assertion,
which is consumed by later icmp instruction, and cause miscompile.
Note that the floating point value must be in [0, 65535), otherwise the
behavior is undefined.
This patch reverts r279223 behavior and adds more tests and
documentations.
In PR29041's context, James Molloy mentioned that:
We don't need to mask because conversion from float->uint8_t is
undefined if the integer part of the float value is not representable in
uint8_t. Therefore we can assume this doesn't happen!
which is totally true and good, because fptoui is documented clearly to
have undefined behavior when overflow/underflow happens. We should take
the advantage of this behavior so that we can save unnecessary mask
instructions.
Reviewers: jmolloy, nadav, echristo, kbarton
Subscribers: mehdi_amini, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28284
llvm-svn: 291015
Summary:
Instead of matching:
(a + i) + 1 -> (a + i, undef, 1)
Now it matches:
(a + i) + 1 -> (a, i, 1)
Reviewers: rengolin
Differential Revision: http://reviews.llvm.org/D26367
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 291012
Summary:
`PromotedFloats` needs to be checked in
`DAGTypeLegalizer::PerformExpensiveChecks`. This patch fixes a few type
legalization failures with expansive checks for ARM fp16 tests.
Reviewers: baldrick, bogner, arsenm
Subscribers: arsenm, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28187
llvm-svn: 290796
This change adds a new intrinsic which is intended to provide memcpy functionality
with additional atomicity guarantees. Please refer to the review thread
or language reference for further details.
Differential Revision: https://reviews.llvm.org/D27133
llvm-svn: 290708
1.Fix pessimized case in FIXME.
2.Add tests for it.
3.The canonicalisation on shifts results in different sequence for
tests of machine-licm.Correct some check lines.
Differential Revision: https://reviews.llvm.org/D27916
llvm-svn: 290410
This is for splitMergedValStore in DAG Combine to share the target query interface
with similar logic in CodeGenPrepare.
Differential Revision: https://reviews.llvm.org/D24707
llvm-svn: 290363
There are helpers for testing for constant or constant build_vector,
and for splat ConstantFP vectors, but not for a constantfp or
non-splat ConstantFP vector.
llvm-svn: 290317
The vectorcall calling convention specifies that arguments to functions are to be passed in registers, when possible.
vectorcall uses more registers for arguments than fastcall or the default x64 calling convention use.
The vectorcall calling convention is only supported in native code on x86 and x64 processors that include Streaming SIMD Extensions 2 (SSE2) and above.
The current implementation does not handle Homogeneous Vector Aggregates (HVAs) correctly and this review attempts to fix it.
This aubmit also includes additional lit tests to cover better HVAs corner cases.
Differential Revision: https://reviews.llvm.org/D27392
llvm-svn: 290240