This adds a new method to ELFObjectFileBase that returns the symbols and addresses of PLT entries.
This design was suggested by pcc and eugenis in https://reviews.llvm.org/D49383.
Differential Revision: https://reviews.llvm.org/D50203
llvm-svn: 340610
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
Summary: When run under llvm-mc-disassemble-fuzzer, there is no symbol lookup callback so tryAddingSymbolicOperand() must fail gracefully instead of crashing
Reviewers: aemerson, javed.absar
Reviewed By: aemerson
Subscribers: lhames, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D51005
llvm-svn: 340287
This patch adds system registers for controlling aspects of SVE:
- ZCR_EL1 (r/w) visible at EL1 and EL0.
- ZCR_EL2 (r/w) visible at EL2 and Non-secure EL1 and EL0.
- ZCR_EL3 (r/w) visible at all exception levels.
and a system register identifying SVE:
- ID_AA64ZFR0_EL1 (r) SVE Feature identifier.
Reviewers: SjoerdMeijer, samparker, pbarrio, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D50885
llvm-svn: 340158
- Generate pointer authentication instructions
- The functions instrumented depend on function attribtues:
all (all functions instrumentent)
non-leaf (only those that spill LR)
none
- Function epilogues sign the LR before spilling to the stack and authenticate
the LR once restored
- If the target is v8.3a or greater than can use the combined authenticate and
return instruction
Differential revision: https://reviews.llvm.org/D49793
llvm-svn: 340018
Add +fp16fml feature for new FP16 instructions, which are a
mandatory part of FP16 from v8.4-A and an optional part of FP16
from v8.2-A. It doesn't seem to be possible to model this in
LLVM, but the relationship between the options is handled by
the related clang patch.
In keeping with what I think is the usual practice, the fp16fml
extension is accepted regardless of base architecture version.
Builds on/replaces Sjoerd Meijer's patch to add these instructions at
https://reviews.llvm.org/D49839.
Differential Revision: https://reviews.llvm.org/D50228
llvm-svn: 340013
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
Intentionally excluding nodes from the DAGCombine worklist is likely to
lead to weird optimizations and infinite loops, so it's generally a bad
idea.
To avoid the infinite loops, fix DAGCombine to use the
isDesirableToCommuteWithShift target hook before performing the
transforms in question, and implement the target hook in the ARM backend
disable the transforms in question.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38530 . (I don't have a
reduced testcase for that bug. But we should have sufficient test
coverage for PerformSHLSimplify given that we're not playing weird
tricks with the worklist. I can try to bugpoint it if necessary,
though.)
Differential Revision: https://reviews.llvm.org/D50667
llvm-svn: 339734
Summary:
Ensure that NormalizedBuildVector returns a BUILD_VECTOR with operands of the
same type. This fixes an assertion failure in VerifySDNode.
Reviewers: SjoerdMeijer, t.p.northover, javed.absar
Reviewed By: SjoerdMeijer
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D50202
llvm-svn: 339013
As a part of adding the tiny codemodel, we need to support ldr's with :got:
relocations on them. This seems to be mostly already done, just needs the
relocation type support.
Differential Revision: https://reviews.llvm.org/D50137
llvm-svn: 338673
AArch64 ELF ABI does not define a static relocation type for TLS offset within
a module, which makes it impossible for compiler to generate a valid
DW_AT_location content for thread local variables. Currently LLVM generates an
invalid R_AARCH64_ABS64 relocation at the DW_AT_location field for a TLS
variable. That causes trouble for linker because thread local variable does
not have an absolute address at link time. AArch64 GCC solves the problem by
not generating DW_AT_location for thread local variables. We should do the
same in LLVM.
Differential Revision: https://reviews.llvm.org/D43860
llvm-svn: 338655
Contrary to ELF, we don't add any markers that distinguish data generated
with .long from normal instructions, so the .inst directive only adds
compatibility with assembly that uses it.
Differential Revision: https://reviews.llvm.org/D49935
llvm-svn: 338355
Also refactors some existing code to materialize addresses for the large code
model so it can be shared between G_GLOBAL_VALUE and G_BLOCK_ADDR.
This implements PR36390.
Differential Revision: https://reviews.llvm.org/D49903
llvm-svn: 338337
The vector contains the SDNodes that these functions create. The number of nodes is always a small number so we should use SmallVector to avoid a heap allocation.
llvm-svn: 338329
This teaches the outliner to save LR to a register rather than the stack when
possible. This allows us to avoid bumping the stack in outlined functions in
some cases. By doing this, in a later patch, we can teach the outliner to do
something like this:
f1:
...
bl OUTLINED_FUNCTION
...
f2:
...
move LR's contents to a register
bl OUTLINED_FUNCTION
move the register's contents back
instead of falling back to saving LR in both cases.
llvm-svn: 338278
This patch enables instructions that are destructive on their
destination- and first source operand, to be prefixed with a
MOVPRFX instruction.
This patch also adds a variety of tests:
- positive tests for all instructions and forms that accept a
movprfx for either or both predicated and unpredicated forms.
- negative tests for all instructions and forms that do not accept
an unpredicated or predicated movprfx.
- negative tests for the diagnostics that get emitted when a MOVPRFX
instruction is used incorrectly.
This is patch [2/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49593
llvm-svn: 338261
This patch adds predicated and unpredicated MOVPRFX instructions, which
can be prepended to SVE instructions that are destructive on their first
source operand, to make them a constructive operation, e.g.
add z1.s, p0/m, z1.s, z2.s <=> z1 = z1 + z2
can be made constructive:
movprfx z0, z1
add z0.s, p0/m, z0.s, z2.s <=> z0 = z1 + z2
The predicated MOVPRFX instruction can additionally be used to zero
inactive elements, e.g.
movprfx z0.s, p0/z, z1.s
add z0.s, p0/m, z0.s, z2.s
Not all instructions can be prefixed with the MOVPRFX instruction
which is why this patch also adds a mechanism to validate prefixed
instructions. The exact rules when a MOVPRFX applies is detailed in
the SVE supplement of the Architectural Reference Manual.
This is patch [1/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49592
llvm-svn: 338258
The WHILE instructions generate a predicate that is true while the
comparison of the first scalar operand (incremented for each predicate
element) with the second scalar operand is true and false thereafter.
WHILELE While incrementing signed scalar less than or equal to scalar
WHILELO While incrementing unsigned scalar lower than scalar
WHILELS While incrementing unsigned scalar lower than or same as scalar
WHILELT While incrementing signed scalar less than scalar
e.g.
whilele p0.s, x0, x1
generates predicate p0 (for 32bit elements) by incrementing
(signed) x0 and comparing that vector to splat(x1).
llvm-svn: 338211
The instructions added in this patch permit active elements within
a vector to be processed sequentially without unpacking the vector.
PFIRST Set the first active element to true.
PNEXT Find next active element in predicate.
CTERMEQ Compare and terminate loop when equal.
CTERMNE Compare and terminate loop when not equal.
llvm-svn: 338210
This patch adds PFALSE (unconditionally sets all elements of
the predicate to false) and PTEST (set the status flags for the
predicate).
llvm-svn: 338198
This patch adds support for instructions that partition a predicate
based on data-dependent termination conditions in a loop.
BRKA Break after the first true condition
BRKAS Break after the first true condition, setting condition flags
BRKB Break before the first true condition
BRKBS Break before the first true condition, setting condition flags
BRKPA Break after the first true condition, propagating from the
previous partition
BRKPAS Break after the first true condition, propagating from the
previous partition, setting condition flags
BRKPB Break before the first true condition, propagating from the
previous partition
BRKPBS Break before the first true condition, propagating from the
previous partition, setting condition flags
BRKN Propagate break to next partition
BKRNS Propagate break to next partition, setting condition flags
llvm-svn: 338196
Fixed the ASAN failure from before in r338148, so recommiting.
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338160
There was a missing check for if a candidate list was entirely deleted. This
adds that check.
This fixes an asan failure caused by running test/CodeGen/AArch64/addsub_ext.ll
with the MachineOutliner enabled.
llvm-svn: 338148
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338133
This patch adds support for various integer reduction operations:
SADDV signed add reduction to scalar
UADDV unsigned add reduction to scalar
SMAXV signed maximum reduction to scalar
SMINV signed minimum reduction to scalar
UMAXV unsigned maximum reduction to scalar
UMINV unsigned minimum reduction to scalar
ANDV logical AND reduction to scalar
ORV logical OR reduction to scalar
EORV logical EOR reduction to scalar
The reduction is predicated, e.g.
smaxv s0, p0, z1.s
performs a signed maximum reduction on active elements in z1,
and stores the (signed max value) result in s0.
llvm-svn: 338126
This patch adds support for various floating-point
reduction operations:
FADDA strictly-ordered add reduction, accumulating in scalar
FADDV recursive add reduction to scalar
FMAXV recursive max reduction to scalar
FMINV recursive min reduction to scalar
FMAXNMV recursive max number reduction to scalar
FMINNMV recursive min number reduction to scalar
The reduction is predicated, e.g.
fadda d0, p0, d0, z1.d
performs the add-reduction in strict order on active elements
in z1, accumulating into d0.
faddv d0, p0, z1.d
performs the add-reduction (not in strict order)
on active elements in z1, storing the result in d0.
llvm-svn: 338123
This patch adds support for transcendental acceleration
instructions 'FEXPA' (exponential accelerator) and 'FTSSEL'
(trigonometric select coefficient).
llvm-svn: 338121
- Some of the v8.3 pointer authentication instruction inhabit the Hint space
- These instructions can be assembled to hint instructions which act as NOP instructions prior to v8.3
- This patch permits using the hint instructions for all v8a targets
- Also, correct the RETA{A,B} instructions to match the instruction attributes of RET (set isTerminator and isBarrier)
Differential Revision: https://reviews.llvm.org/D49786
llvm-svn: 338029
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010
In SVN r334523, the first half of comdat constant pool handling was
hoisted from X86WindowsTargetObjectFile (which despite the name only
was used for msvc targets) into the arch independent
TargetLoweringObjectFileCOFF, but the other half of the handling was
left behind in X86AsmPrinter::GetCPISymbol.
With only half of the handling in place, inconsistent comdat
sections/symbols are created, causing issues with both GNU binutils
(avoided for X86 in SVN r335918) and with the MS linker, which
would complain like this:
fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0x4
Differential Revision: https://reviews.llvm.org/D49644
llvm-svn: 337950
Just some gardening here.
Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.
Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.
llvm-svn: 337848
Before this, TCI contained all the call information for each Candidate.
This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.
A follow-up patch for the AArch64 outliner will demonstrate this.
llvm-svn: 337840
This matches the structure used on X86 and ARM. This requires
a little bit of duplication of the parts that are equal in both
AArch64 COFF variants though.
Before SVN r335286, these classes didn't add anything that MCAsmInfoCOFF
didn't, but now they do.
This makes AArch64 match X86 in how comdat is used for float constants
for MinGW.
Differential Revision: https://reviews.llvm.org/D49637
llvm-svn: 337755
This patch adds the following instructions:
RBIT reverse bits within each active elemnt (predicated), e.g.
rbit z0.d, p0/m, z1.d
for 8, 16, 32 and 64 bit elements.
REV reverse order of elements in data/predicate vector
(unpredicated), e.g.
rev z0.d, z1.d
rev p0.d, p1.d
for 8, 16, 32 and 64 bit elements.
REVB reverse order of bytes within each active element, e.g.
revb z0.d, p0/m, z1.d
for 16, 32 and 64 bit elements.
REVH reverse order of 16-bit half-words within each active
element, e.g.
revh z0.d, p0/m, z1.d
for 32 and 64 bit elements.
REVW reverse order of 32-bit words within each active element,
e.g.
revw z0.d, p0/m, z1.d
for 64 bit elements.
llvm-svn: 337534
This patch adds support for the following unpredicated
floating-point instructions:
FADD Floating point add
FSUB Floating point subtract
FMUL Floating point multiplication
FTSMUL Floating point trigonometric starting value
FRECPS Floating point reciprocal step
FRSQRTS Floating point reciprocal square root step
The instructions have the following assembly format:
fadd z0.h, z1.h, z2.h
and have variants for 16, 32 and 64-bit FP elements.
llvm-svn: 337383
The signed/unsigned DOT instructions perform a dot-product on
quadtuplets from two source vectors and accumulate the result in
the destination register. The instructions come in two forms:
Vector form, e.g.
sdot z0.s, z1.b, z2.b - signed dot product on four 8-bit quad-tuplets,
accumulating results in 32-bit elements.
udot z0.d, z1.h, z2.h - unsigned dot product on four 16-bit quad-tuplets,
accumulating results in 64-bit elements.
Indexed form, e.g.
sdot z0.s, z1.b, z2.b[3] - signed dot product on four 8-bit quad-tuplets
with specified quadtuplet from second
source vector, accumulating results in 32-bit
elements.
udot z0.d, z1.h, z2.h[1] - dot product on four 16-bit quad-tuplets
with specified quadtuplet from second
source vector, accumulating results in 64-bit
elements.
llvm-svn: 337372
This patch adds the following predicated instructions:
UDIV Unsigned divide active elements
UDIVR Unsigned divide active elements, reverse form.
SDIV Signed divide active elements
SDIVR Signed divide active elements, reverse form.
e.g.
udiv z0.s, p0/m, z0.s, z1.s
(unsigned divide active elements in z0 by z1, store result in z0)
sdivr z0.s, p0/m, z0.s, z1.s
(signed divide active elements in z1 by z0, store result in z0)
llvm-svn: 337369
This patch adds the following instructions:
MUL - multiply vectors, e.g.
mul z0.h, p0/m, z0.h, z1.h
- multiply with immediate, e.g.
mul z0.h, z0.h, #127
SMULH - signed multiply returning high half, e.g.
smulh z0.h, p0/m, z0.h, z1.h
UMULH - unsigned multiply returning high half, e.g.
umulh z0.h, p0/m, z0.h, z1.h
llvm-svn: 337358