Summary:
Add some optional code to validate getInstSizeInBytes for emitted
instructions. This flushed out some issues which are fixed by this
patch:
- Streamline getInstSizeInBytes
- Properly define the VI readlane/writelane instruction as VOP3
- Fix the inline constant determination. Specifically, this change
fixes an issue where a 32-bit value of 0xffffffff was recorded
as unsigned. This is equal to -1 when restricting to a 32-bit
comparison, and an inline constant can be used.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D50629
Change-Id: Id87c3b7975839da0de8156a124b0ce98c5fb47f2
llvm-svn: 340903
This needs to be done in the SSA fold operands
pass to be effective, so there is a bit of overlap
with SIShrinkInstructions but I don't think this
is practically avoidable.
llvm-svn: 340859
Summary:
Patch by Marek Olsak and David Stuttard, both of AMD.
This adds a new amdgcn intrinsic supporting s.buffer.load, in particular
multiple dword variants. These are convenient to use from some front-end
implementations.
Also modified the existing llvm.SI.load.const intrinsic to common up the
underlying implementation.
This modification also requires that we can lower to non-uniform loads correctly
by splitting larger dword variants into sizes supported by the non-uniform
versions of the load.
V2: Addressed minor review comments.
V3: i1 glc is now i32 cachepolicy for consistency with buffer and
tbuffer intrinsics, plus fixed formatting issue.
V4: Added glc test.
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51098
Change-Id: I83a6e00681158bb243591a94a51c7baa445f169b
llvm-svn: 340684
getTargetCustom() requires values for "Kind" in the constructor
that are not in the PSVKind enum. Passing a value that is not inside
an enum as an argument to a constructor of the type of the enum is
UB. Changing to the underlying type of the enum would solve the UB
Differential Revision: https://reviews.llvm.org/D50909
llvm-svn: 340200
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
Summary:
These instructions interact with hardware blocks outside the shader core,
and they can have "scalar" side effects even when EXEC = 0. We don't
want these scalar side effects to occur when all lanes want to skip
these instructions, so always add the execz skip branch instruction
for basic blocks that contain them.
Also ensure that we skip scalar stores / atomics, though we don't
code-gen those yet.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48431
Change-Id: Ieaeb58352e2789ffd64745603c14970c60819d44
llvm-svn: 338235
Summary:
This is a follow-up to r335942.
- Merge SISubtarget into AMDGPUSubtarget and rename to GCNSubtarget
- Rename AMDGPUCommonSubtarget to AMDGPUSubtarget
- Merge R600Subtarget::Generation and GCNSubtarget::Generation into
AMDGPUSubtarget::Generation.
Reviewers: arsenm, jvesely
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49037
llvm-svn: 336851
Summary:
We now have two sets of generated TableGen files, one for R600 and one
for GCN, so each sub-target now has its own tables of instructions,
registers, ISel patterns, etc. This should help reduce compile time
since each sub-target now only has to consider information that
is specific to itself. This will also help prevent the R600
sub-target from slowing down new features for GCN, like disassembler
support, GlobalISel, etc.
Reviewers: arsenm, nhaehnle, jvesely
Reviewed By: arsenm
Subscribers: MatzeB, kzhuravl, wdng, mgorny, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46365
llvm-svn: 335942
Memory clauses are formed into bundles in presence of xnack.
Their source operands are marked as early-clobber.
This allows to allocate distinct source and destination registers
within a clause and prevent breaking the clause with s_nop in the
hazard recognizer.
Clauses are undone before post-RA scheduler to allow some rescheduling,
which will not break the clause since artificial edges are created in
the dag to keep memory operations together. Yet this allows a better
ILP in some cases.
Differential Revision: https://reviews.llvm.org/D47511
llvm-svn: 333691
Summary:
MCTargetDesc/AMDGPUMCTargetDesc.h contains enums for all the instuction
and register defintions, which are huge so we only want to include
them where needed.
This will also make it easier if we want to split the R600 and GCN
definitions into separate tablegenerated files.
I was unable to remove AMDGPUMCTargetDesc.h from SIMachineFunctionInfo.h
because it uses some enums from the header to initialize default values
for the SIMachineFunction class, so I ended up having to remove includes of
SIMachineFunctionInfo.h from headers too.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: MatzeB, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46272
llvm-svn: 332930
- Report error for invalid dpp_ctrl values.
- Changed the way it is reported, now the error will be emitted into
asm and will work with release build as well.
- Added dpp_ctrl value verifier for codegen.
- Added symbolic constants for dpp_ctrl.
Differential Revision: https://reviews.llvm.org/D46565
llvm-svn: 331775
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
If a packed inline constant is sign extended it must be truncated
after the shift. I.e. a constant (0xH0000, 0xHBC00), will be represented
as 0xFFFFFFFFBC000000 in the IR because the immediate is sign extended
to 64 bit. After the value shifted right by 16 to use it in a low part
with op_sel_hi it becomes 0xFFFFFFFFBC00 and does not qualify as inline
constant any longer.
Fixed the error and added verification code. Without the fix and with
the verification bug is causing pk_max_f16_literal.ll to fail.
Differential Revision: https://reviews.llvm.org/D45987
llvm-svn: 330752
It's possible to validly spill the frame offset register
in a call sequence to a VGPR. There are definitely issues
with SGPR spilling to memory, so move the assert later.
llvm-svn: 330612
Also assert that it is correct for SGPRs. There is currently a bug
where stack slot coloring replaces SGPR spill FIs with one with
the default ID, which results in a more confusing assert later
about a dead object.
llvm-svn: 330607
Summary:
This fixes a case where the argument to a sendmsg intrinsic
ends up in a VGPR, for whatever reason.
The underlying performance issue is that a multiplication that
can be an s_mul_i32 is instead needlessly generated as
v_mul_u32_u24, but this is not addressed by this patch.
Change-Id: I61fd4034314d5acdf6074632c30b65364dfa7328
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D45826
llvm-svn: 330393
This is used by llvm tblgen as well as by LLVM Targets, so the only
common place is Support for now. (maybe we need another target for these
sorts of things - but for now I'm at least making them correct & we can
make them better if/when people have strong feelings)
llvm-svn: 328395
Normally DCE kills these, but at -O0 these get left behind
leaving suspicious looking illegal copies.
Replace with IMPLICIT_DEF to avoid iterator issues.
llvm-svn: 327842
Summary:
For use by LLPC SPV_AMD_shader_ballot extension.
The v_writelane instruction was already implemented for use by SGPR
spilling, but I had to add an extra dummy operand tied to the
destination, to represent that all lanes except the selected one keep
the old value of the destination register.
.ll test changes were due to schedule changes caused by that new
operand.
Differential Revision: https://reviews.llvm.org/D42838
llvm-svn: 326353
Summary:
The PeepholeOptimizer pass calls this function solely based on checking
DefMI->isMoveImmediate(), which only checks the MoveImm bit of the
instruction description. So it's up to FoldImmediate itself to properly
check that DefMI *actually* moves from an immediate.
I don't have a separate test case for this, but the next patch introduces
a test case which happens to crash without this change.
This error is caught by the assertion in MachineOperand::getImm().
Change-Id: I88e7cdbcf54d75e1a296822e6fe5f9a5f095bbf8
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D40342
llvm-svn: 319155
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
Use VOP3 add/addc like usual.
This has some tradeoffs. Inline immediates fold
a little better, but other constants are worse off.
SIShrinkInstructions could be made smarter to handle
these cases.
This allows us to avoid selecting scalar adds where we
need to track the carry in scc and replace its users.
This makes it easier to use the carryless VALU adds.
llvm-svn: 318340
Summary:
Kill the thread if operand 0 == false.
llvm.amdgcn.wqm.vote can be applied to the operand.
Also allow kill in all shader stages.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D38544
llvm-svn: 316427
The hardware will only forward EXEC_LO; the high 32 bits will be zero.
Additionally, inline constants do not work. At least,
v_addc_u32_e64 v0, vcc, v0, v1, -1
which could conceivably be used to combine (v0 + v1 + 1) into a single
instruction, acts as if all carry-in bits are zero.
The llvm.amdgcn.ps.live test is adjusted; it would be nice to combine
s_mov_b64 s[0:1], exec
v_cndmask_b32_e64 v0, v1, v2, s[0:1]
into
v_mov_b32 v0, v3
but it's not particularly high priority.
Fixes dEQP-GLES31.functional.shaders.helper_invocation.value.*
llvm-svn: 314522
We can have a v_mac with an immediate src0.
We can still fold if it's an inline immediate,
otherwise it already uses the constant bus.
llvm-svn: 313852
MachineScheduler when clustering loads or stores checks if base
pointers point to the same memory. This check is done through
comparison of base registers of two memory instructions. This
works fine when instructions have separate offset operand. If
they require a full calculated pointer such instructions can
never be clustered according to such logic.
Changed shouldClusterMemOps to accept base registers as well and
let it decide what to do about it.
Differential Revision: https://reviews.llvm.org/D37698
llvm-svn: 313208
These two instructions are normally selected, but when the
two address pass converts mac into mad we end up with the
mad where we could have one of these.
Differential Revision: https://reviews.llvm.org/D37389
llvm-svn: 312928
Summary:
This intrinsic lets us set inactive lanes to an identity value when
implementing wavefront reductions. In combination with Whole Wavefront
Mode, it lets inactive lanes be skipped over as required by GLSL/Vulkan.
Lowering the intrinsic needs to happen post-RA so that RA knows that the
destination isn't completely overwritten due to the EXEC shenanigans, so
we need another pseudo-instruction to represent the un-lowered
intrinsic.
Reviewers: tstellar, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D34719
llvm-svn: 310088
Summary:
Whole Wavefront Wode (WWM) is similar to WQM, except that all of the
lanes are always enabled, regardless of control flow. This is required
for implementing wavefront reductions in non-uniform control flow, where
we need to use the inactive lanes to propagate intermediate results, so
they need to be enabled. We need to propagate WWM to uses (unless
they're explicitly marked as exact) so that they also propagate
intermediate results correctly. We do the analysis and exec mask munging
during the WQM pass, since there are interactions with WQM for things
that require both WQM and WWM. For simplicity, WWM is entirely
block-local -- blocks are never WWM on entry or exit of a block, and WWM
is not propagated to the block level. This means that computations
involving WWM cannot involve control flow, but we only ever plan to use
WWM for a few limited purposes (none of which involve control flow)
anyways.
Shaders can ask for WWM using the @llvm.amdgcn.wwm intrinsic. There
isn't yet a way to turn WWM off -- that will be added in a future
change.
Finally, it turns out that turning on inactive lanes causes a number of
problems with register allocation. While the best long-term solution
seems like teaching LLVM's register allocator about predication, for now
we need to add some hacks to prevent ourselves from getting into trouble
due to constraints that aren't currently expressed in LLVM. For the gory
details, see the comments at the top of SIFixWWMLiveness.cpp.
Reviewers: arsenm, nhaehnle, tpr
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D35524
llvm-svn: 310087
Summary:
Previously, we assumed that certain types of instructions needed WQM in
pixel shaders, particularly DS instructions and image sampling
instructions. This was ok because with OpenGL, the assumption was
correct. But we want to start using DPP instructions for derivatives as
well as other things, so the assumption that we can infer whether to use
WQM based on the instruction won't continue to hold. This intrinsic lets
frontends like Mesa indicate what things need WQM based on their
knowledge of the API, rather than second-guessing them in the backend.
We need to keep around the old method of enabling WQM, but eventually we
should remove it once Mesa catches up. For now, this will let us use DPP
instructions for computing derivatives correctly.
Reviewers: arsenm, tpr, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D35167
llvm-svn: 310085