Summary:
This CL implements v128.const for each vector type. New operand types
are added to ensure the vector contents can be serialized without LEB
encoding. Tests are added for instruction selection, encoding,
assembly and disassembly.
Reviewers: aheejin, dschuff, aardappel
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50873
llvm-svn: 340336
Add missing SIMD types (v2f64) and binary ops. Also adds
tablegen support for automatically prepending prefix byte to SIMD
opcodes.
Differential Revision: https://reviews.llvm.org/D50292
Patch by Thomas Lively
llvm-svn: 339186
Summary:
One for register based, much like the existing definitions,
and one for stack based (suffix _S).
This allows us to use registers in most of LLVM (which works better),
and stack based in MC (which results in a simpler and more readable
assembler / disassembler).
Tried to keep this change as small as possible while passing tests,
follow-up commit will:
- Add reg->stack conversion in MI.
- Fix asm/disasm in MC to be stack based.
- Fix emitter to be stack based.
tests passing:
llvm-lit -v `find test -name WebAssembly`
test/CodeGen/WebAssembly
test/MC/WebAssembly
test/MC/Disassembler/WebAssembly
test/DebugInfo/WebAssembly
test/CodeGen/MIR/WebAssembly
test/tools/llvm-objdump/WebAssembly
Reviewers: dschuff, sbc100, jgravelle-google, sunfish
Subscribers: aheejin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48183
llvm-svn: 334985
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Sign-extension opcodes have been split into a separate proposal from
the main threads proposal, so switch them to their own target
feature. See:
https://github.com/WebAssembly/sign-extension-ops
llvm-svn: 322966
This adds code to protect WebAssembly's `trunc_s` family of opcodes
from values outside their domain. Even though such conversions have
full undefined behavior in C/C++, LLVM IR's `fptosi` and `fptoui` do
not, and only return undef.
This also implements the proposed non-trapping float-to-int conversion
feature and uses that instead when available.
llvm-svn: 319128
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
llvm-svn: 296190
This changes locals from being declared by the emitLocal hook in
WebAssemblyTargetStreamer, rather than with an instruction. After exploring
the infastructure in LLVM more, this seems to make more sense since
declaring locals doesn't use an encoded opcode.
This also adds more 0xd opcodes, type encodings, and miscellaneous
binary encoding bits.
llvm-svn: 285040
This patch adds a pass, controlled by an option and off by default for
now, for making implicit get_local/set_local explicit. This simplifies
emitting wasm with MC.
Differential Revision: https://reviews.llvm.org/D25836
llvm-svn: 285009
Per spec changes, this implements block signatures, and adds just enough
logic to produce correct block signatures at the ends of functions.
Differential Revision: https://reviews.llvm.org/D25144
llvm-svn: 283503
This patch revamps the RegStackifier pass with a new tree traversal mechanism,
enabling three major new features:
- Stackification of values with multiple uses, using the result value of set_local
- More aggressive stackification of instructions with side effects
- Reordering operands in commutative instructions to enable more stackification.
llvm-svn: 259009
Teach the register stackifier to rematerialize constants that have multiple
uses instead of leaving them in registers. In the WebAssembly encoding, it's
the same code size to materialize most constants as it is to read a value
from a register.
llvm-svn: 258142
Refactor .param, .result, .local, and .endfunc, as directives, using the
proper MCTargetStreamer mechanism, rather than fake instructions.
llvm-svn: 257511
ISD::FCOPYSIGN permits its operands to have differing types, and DAGCombiner
uses this. Add some def : Pat rules to expand this out into an explicit
conversion and a normal copysign operation.
llvm-svn: 255220
Instead of trying to move ARGUMENT instructions back up to the top after
they've been scheduled or sunk down, use a fake physical register to
create a liveness constraint that prevents ARGUMENT instructions from
moving down in the first place. This is still not entirely ideal, however
it is more robust than letting them move and moving them back.
llvm-svn: 254084
The current approach to using get_local and set_local is to use them
implicitly, as register uses and defs. Introduce new copy instructions
which are themselves no-ops except for the get_local and set_local
that they imply, so that we use get_local and set_local consistently.
llvm-svn: 253905
This also takes the push/pop syntax another step forward, introducing stack
slot numbers to make it easier to see how expressions are connected. For
example, the value pushed in $push7 is popped in $pop7.
And, this begins an experiment with making get_local and set_local implicit
when an operation directly uses or defines a register. This greatly reduces
clutter. If this experiment succeeds, it may make sense to do this for
const instructions as well.
And, this introduces more special code for ARGUMENTS; hopefully this code
will soon be obviated by proper support for live-in virtual registers.
llvm-svn: 253465
This was regressed in r252656 which wasn't quite NFC. Instead of using a
custom instruction as before, use a pattern to select CONST_I32 for the
global addrs.
Differential Revision: http://reviews.llvm.org/D14587
llvm-svn: 253276
Mangling type information into MachineInstr opcode names was a temporary
measure, and it's starting to get hairy. At the same time, the MC instruction
printer wants to use AsmString strings for printing. This patch takes the
first step, starting the process of adding AsmStrings for instructions.
llvm-svn: 252203
This pass implements a simple algorithm for conversion from CFG to
wasm's structured control flow. It doesn't yet handle multiple-entry
loops; that will be added in a future patch.
It also adds initial support for switch statements.
Differential Revision: http://reviews.llvm.org/D12735
llvm-svn: 247818