isNegatibleForFree() should not matter here (as the test diffs show)
because it's always a win to replace an fsub+fadd with fneg. The
problem in D50195 persists because either (1) we are doing these
folds in the wrong order or (2) we're missing another fold for fadd.
llvm-svn: 339299
I don't know if it's possible to expose this diff in a test,
but we should always try simplifications (no new nodes created)
before more complicated transforms for efficiency (similar to
what we do in IR).
llvm-svn: 339298
LLVM triple normalization is handling "unknown" and empty components
differently; for example given "x86_64-unknown-linux-gnu" and
"x86_64-linux-gnu" which should be equivalent, triple normalization
returns "x86_64-unknown-linux-gnu" and "x86_64--linux-gnu". autoconf's
config.sub returns "x86_64-unknown-linux-gnu" for both
"x86_64-linux-gnu" and "x86_64-unknown-linux-gnu". This changes the
triple normalization to behave the same way, replacing empty triple
components with "unknown".
This addresses PR37129.
Differential Revision: https://reviews.llvm.org/D50219
llvm-svn: 339294
On Darwin we pin the DWARF line tables to version 2. Stop doing so for
DWARF v5 and later.
Differential revision: https://reviews.llvm.org/D49381
llvm-svn: 339288
Normally, if any registers are spilled, we prefer to spill lr on Thumb1
so we can fold the "bx lr" into the "pop". However, if there are tail
calls involved, restoring lr is expensive, so skip the optimization in
that case.
The spill of r7 in the new test also isn't necessary, but that's
mostly orthogonal to this patch. (It's the same code in
ARMFrameLowering, but it's not related to tail calls.)
Differential Revision: https://reviews.llvm.org/D49459
llvm-svn: 339283
Template manglings use a fresh back-referencing context, so we
need to do the same. This fixes several existing tests which are
marked as FIXME, so those are now actually run.
llvm-svn: 339275
When reading a custom WASM section, it was possible that its name
extended beyond the size of the section. This resulted in a bogus value
for the section size due to the size overflowing.
Fixes heap buffer overflow detected by OSS-fuzz:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=8190
Differential revision: https://reviews.llvm.org/D50387
llvm-svn: 339269
When using APPLE extensions, don't duplicate the compiler invocation's
flags both in AT_producer and AT_APPLE_flags.
Differential revision: https://reviews.llvm.org/D50453
llvm-svn: 339268
The isConstOrConstSplat result is only used in a ISD::matchUnaryPredicate call which can perform the equivalent iteration just as quickly.
llvm-svn: 339262
This patch aims to improve the codegen for vector loads involving the
scalar_to_vector (load X) sequence. Initially, ld->mv instructions were used
for scalar_to_vector (load X), so this patch allows scalar_to_vector (load X)
to utilize:
LXSD and LXSDX for i64 and f64
LXSIWAX for i32 (sign extension to i64)
LXSIWZX for i32 and f64
Committing on behalf of Amy Kwan.
Differential Revision: https://reviews.llvm.org/D48950
llvm-svn: 339260
Summary:
Currently, in line with GCC, when specifying reserved registers like sp or pc on an inline asm() clobber list, we don't always preserve the original value across the statement. And in general, overwriting reserved registers can have surprising results.
For example:
```
extern int bar(int[]);
int foo(int i) {
int a[i]; // VLA
asm volatile(
"mov r7, #1"
:
:
: "r7"
);
return 1 + bar(a);
}
```
Compiled for thumb, this gives:
```
$ clang --target=arm-arm-none-eabi -march=armv7a -c test.c -o - -S -O1 -mthumb
...
foo:
.fnstart
@ %bb.0: @ %entry
.save {r4, r5, r6, r7, lr}
push {r4, r5, r6, r7, lr}
.setfp r7, sp, #12
add r7, sp, #12
.pad #4
sub sp, #4
movs r1, #7
add.w r0, r1, r0, lsl #2
bic r0, r0, #7
sub.w r0, sp, r0
mov sp, r0
@APP
mov.w r7, #1
@NO_APP
bl bar
adds r0, #1
sub.w r4, r7, #12
mov sp, r4
pop {r4, r5, r6, r7, pc}
...
```
r7 is used as the frame pointer for thumb targets, and this function needs to restore the SP from the FP because of the variable-length stack allocation a. r7 is clobbered by the inline assembly (and r7 is included in the clobber list), but LLVM does not preserve the value of the frame pointer across the assembly block.
This type of behavior is similar to GCC's and has been discussed on the bugtracker: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=11807 . No consensus seemed to have been reached on the way forward. Clang behavior has briefly been discussed on the CFE mailing (starting here: http://lists.llvm.org/pipermail/cfe-dev/2018-July/058392.html). I've opted for following Eli Friedman's advice to print warnings when there are reserved registers on the clobber list so as not to diverge from GCC behavior for now.
The patch uses MachineRegisterInfo's target-specific knowledge of reserved registers, just before we convert the inline asm string in the AsmPrinter.
If we find a reserved register, we print a warning:
```
repro.c:6:7: warning: inline asm clobber list contains reserved registers: R7 [-Winline-asm]
"mov r7, #1"
^
```
Reviewers: eli.friedman, olista01, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: efriedma, eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49727
llvm-svn: 339257
Provide a pass-through of the numerator for divide by one cases - this is the same approach we take in DAGCombiner::visitSDIVLike.
I investigated whether we could achieve this by magic MULHU/SRL values but nothing appeared to work as we don't have a way for MULHU(x,c) -> x
llvm-svn: 339254
Match the GNU assembler in supporting immediate operands for these
instructions even when the reg-reg mnemonic is used.
Differential Revision: https://reviews.llvm.org/D50046
Patch by Kito Cheng.
llvm-svn: 339252
This accounts for the missing IR fold noted in D50195. We don't need any fast-math to enable the negation transform.
FP negation can always be folded into an fmul/fdiv constant to eliminate the fneg.
I've limited this to one-use to ensure that we are eliminating an instruction rather than replacing fneg by a
potentially expensive fdiv or fmul.
Differential Revision: https://reviews.llvm.org/D50417
llvm-svn: 339248
As requested in D50392, this is a minor refactor to BuildExactSDIV to stop taking the uniform constant APInt divisor and instead extract it locally.
I also cleanup the operands and valuetypes to better match BuildUDiv (and BuildSDIV in the near future).
llvm-svn: 339246
Summary:
https://rise4fun.com/Alive/IT3
Comes up in the [most ugliest] `signed int` -> `signed char` case of
`-fsanitize=implicit-conversion` (https://reviews.llvm.org/D50250)
Previously, we were stuck with `not`: {F6867736}
But now we are able to completely get rid of it: {F6867737}
(FIXME: why are we loosing the metadata? that seems wrong/strange.)
Here, we only want to do that it we will be able to completely
get rid of that 'not'.
Reviewers: spatel, craig.topper
Reviewed By: spatel
Subscribers: vsk, erichkeane, llvm-commits
Differential Revision: https://reviews.llvm.org/D50301
llvm-svn: 339243
Summary: Extend fix for PR34170 to support inline assembly with multiple output operands that do not naturally go in the register class it is constrained to (eg. double in a 32-bit GPR as in the PR).
Reviewers: bogner, t.p.northover, lattner, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: efriedma, tra, eraman, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D45437
llvm-svn: 339225
Function template names are not stored in the backref table,
but non-template function names are. The general pattern seems
to be that when you are demangling a symbol name, if the name
starts with '?' it does not go into the backreference table,
otherwise it does. Note that this even handles the general case
of operator names (template or otherwise) not going into the
back-reference table, anonymous namespaces not going into the
backreference table, etc.
It's important that we apply this check *only* for the
unqualified portion of a name, and only for symbol names.
For example, this does not apply to type names (such as class
templates) and we need to make sure that these still do go
into the backref table.
Differential Revision: https://reviews.llvm.org/D50394
llvm-svn: 339211
Frontends emit 'unused' coverage mapping records for functions which are
provably unused in a TU. These unused records contain a single counter
with CounterKind::Zero. However, a function may be unused in one TU and
used in another. When this happens, prefer the records with a full set
of counters instead of arbitrarily picking the first loaded record.
There is no impact on the single-TU case. In the multiple-TU case, this
resolves issues causing a function to appear unused when it's not.
Testing: check-{llvm,clang,compiler-rt}
rdar://42981322
llvm-svn: 339194
https://reviews.llvm.org/D50283
reviewed by bogner
This patch refactors FileCheck's implementation into support so it can
be used from C++ in other places (Unit tests).
llvm-svn: 339192
Fixup test to check for GCN prefix
These patterns always zero extend the result even though it might need sign extension.
This has been broken since the addition of i16 support.
It has popped up in mad_sat(char) test since min(max()) combination is turned into v_med3, resulting in the following (incorrect) sequence:
v_mad_i16 v2, v10, v9, v11
v_med3_i32 v2, v2, v8, v7
Fixes mad_sat(char) piglit on VI.
Differential Revision: https://reviews.llvm.org/D49836
llvm-svn: 339190
Add missing SIMD types (v2f64) and binary ops. Also adds
tablegen support for automatically prepending prefix byte to SIMD
opcodes.
Differential Revision: https://reviews.llvm.org/D50292
Patch by Thomas Lively
llvm-svn: 339186
Vgather requires must be in a packet with a store, which contradicts
the no-packets feature. As a consequence, gather/scatter could not be
used with no-packets. Relax this, and allow gather packets as exceptions
to the no-packets requirements.
llvm-svn: 339177
Summary:
This patch extends CFGSort pass to support exception handling. Once it
places a loop header, it does not place blocks that are not dominated by
the loop header until all the loop blocks are sorted. This patch extends
the same algorithm to exception 'catch' part, using the information
calculated by WebAssemblyExceptionInfo class.
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, llvm-commits
Differential Revision: https://reviews.llvm.org/D46500
llvm-svn: 339172
Summary:
Reworked the previously committed patch to insert shuffles for reused
extract element instructions in the correct position. Previous logic was
incorrect, and might lead to the crash with PHIs and EH instructions.
Reviewers: efriedma, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50143
llvm-svn: 339166
getOrCompHotCountThreshold/getOrCompColdCountThreshold introduced in
https://reviews.llvm.org/D45377 contain a bad mistake and will only return 1 or 0
instead of the true hot/cold cutoff value. The patch fixes the mistake. But the
mistake seems not causing big performance difference according to internal server
benchmarks testing.
Differential Revision: https://reviews.llvm.org/D50370
llvm-svn: 339162
Scatter could have multiple identical indices. We need to maintain sequential order. We get this right in LegalizeVectorTypes, but not in this code.
Differential Revision: https://reviews.llvm.org/D50374
llvm-svn: 339157
In combineMetadata, we should be able to preserve K's nonnull metadata,
if K does not move. This condition should hold for all replacements by
NewGVN/GVN, but I added a bunch of assertions to verify that.
Fixes PR35038.
There probably are additional kinds of metadata that could be preserved
using similar reasoning. This is follow-up work.
Reviewers: dberlin, davide, efriedma, nlopes
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D47339
llvm-svn: 339149
This was missed in D50185.
NFC until we add actual non-uniform support to BuildSDIV (similar BuildUDIV support in D49248) - for now it just early outs.
llvm-svn: 339147
Remove the redundant check against zero when updating ProcResourceCounters in
nextGroup(), as pointed out in https://reviews.llvm.org/D50187.
Review: Ulrich Weigand.
llvm-svn: 339139
This function is shared between both implementations. I am not sure if
Utils/Local.h is the best place though.
Reviewers: davide, dberlin, efriedma, xbolva00
Reviewed By: efriedma, xbolva00
Differential Revision: https://reviews.llvm.org/D47337
llvm-svn: 339138
This fixes an inconsistency in code generation when compiling with or
without debug information (-g). When debug information is available in
an empty block, the original test would fail, resulting in possibly
different code.
Patch by: Jeroen Dobbelaere
Differential revision: https://reviews.llvm.org/D49467
llvm-svn: 339129
When potential jump instruction and target are in the same segment, use
jump instruction with immediate field.
In cases where offset does not fit immediate value of a bc/j instructions,
offset is stored into register, and then jump register instruction is used.
Differential Revision: https://reviews.llvm.org/D48019
llvm-svn: 339126
Summary:
The accelerator tables use the debug_str section to store their strings.
However, they do not support the indirect method of access that is
available for the debug_info section (DW_FORM_strx et al.).
Currently our code is assuming that all strings can/will be referenced
indirectly, and puts all of them into the debug_str_offsets section.
This is generally true for regular (unsplit) dwarf, but in the DWO case,
most of the strings in the debug_str section will only be used from the
accelerator tables. Therefore the contents of the debug_str_offsets
section will be largely unused and bloating the main executable.
This patch rectifies this by teaching the DwarfStringPool to
differentiate between strings accessed directly and indirectly. When a
user inserts a string into the pool it has to declare whether that
string will be referenced directly or not. If at least one user requsts
indirect access, that string will be assigned an index ID and put into
debug_str_offsets table. Otherwise, the offset table is skipped.
This approach reduces the overall binary size (when compiled with
-gdwarf-5 -gsplit-dwarf) in my tests by about 2% (debug_str_offsets is
shrunk by 99%).
Reviewers: probinson, dblaikie, JDevlieghere
Subscribers: aprantl, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D49493
llvm-svn: 339122
This patch refactors the existing TargetLowering::BuildUDIV base implementation to support non-uniform constant vector denominators.
It also includes a fold for MULHU by pow2 constants to SRL which can now more readily occur from BuildUDIV.
Differential Revision: https://reviews.llvm.org/D49248
llvm-svn: 339121
I was trying to add a test case for LLD and found that it
is impossible to set sh_entsize via yaml.
The patch implements the missing part.
Differential revision: https://reviews.llvm.org/D50235
llvm-svn: 339113
This is necessary to add a VI specific builtin,
__builtin_amdgcn_s_dcache_wb. We already have an
overly specific feature for one of these builtins,
for s_memrealtime. I'm not sure whether it's better
to add more of those, or to get rid of that and merge
it with vi-insts.
Alternatively, maybe this logically goes with scalar-stores?
llvm-svn: 339104
Src0 doesn't really convey any meaning to what the operand is. Passthru matches what's used in the documentation for the intrinsic this comes from.
llvm-svn: 339101
Summary:
This change uses a single offset pointer used throughout the
implementation of the individual record parsers. This allows us to
report where in a trace file parsing failed.
We're still in an intermediate step here as we prepare to refactor this
further into a set of types and use object-oriented design principles
for a cleaner implementation. The next steps will be to allow us to
parse/dump files in a streaming fashion and incrementally build up the
structures in memory instead of the current all-or-nothing approach.
Reviewers: kpw, eizan
Reviewed By: kpw
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50169
llvm-svn: 339092
Logic for tracking implicit control flow instructions was added to GVN to
perform PRE optimizations correctly. It appears that GVN is not the only
optimization that sometimes does PRE, so this logic is required in other
places (such as Jump Threading).
This is an NFC patch that encapsulates all ICF-related logic in a dedicated
utility class separated from GVN.
Differential Revision: https://reviews.llvm.org/D40293
llvm-svn: 339086
Summary:
Wasm does not have direct counterparts to some of LLVM IR's atomicrmw
instructions (min, max, umin, umax, and nand). This enables atomic
expansion using cmpxchg instruction within a loop for those atomicrmw
instructions.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D49440
llvm-svn: 339084
Summary:
The spec only defines a SIMD expression type of V128 and
leaves interpretation of different vector types to the instructions.
Differential Revision: https://reviews.llvm.org/D50367
Patch by Thomas Lively
llvm-svn: 339082
This matches our behaviour for regular (i.e. relocated) references to
private symbols and therefore avoids needing to unnecessarily write
address-significant .L symbols to the object file's symbol table,
which can interfere with stack traces.
Fixes check-cfi after r339050.
llvm-svn: 339066
Everything should quiet, and I think everything should
flush.
I assume the min3/med3/max3 follow the same rules
as regular min/max for flushing, which should at
least be conservatively correct.
There are still more operations that need to
be handled.
llvm-svn: 339065
Not sure why this was checking for denormals for f16.
My interpretation of the IEEE standard is conversions
should produce a canonical result, and the ISA manual
says denormals are created when appropriate.
llvm-svn: 339064
If denormals are enabled, denormals are canonical.
Also fix a few other issues. minnum/maxnum are supposed
to canonicalize. Temporarily improve workaround for the
instruction behavior change in gfx9.
Handle selects and fcopysign.
The tests were also largely broken, since they were
checking for a flush used on some targets after the
store of the result.
llvm-svn: 339061
This assert fires when attempting to extract a subregister from the
global PIC base register. This virtual register SD node is not in the
VRBaseMap, so we shouldn't call getVR to look it up there. If this is a
RegisterSDNode, we should be able to use the virtual register directly.
Fixes PR38385
llvm-svn: 339056
Properly shrink `pow()` to `powf()` as a binary function and, when no other
simplification applies, do not discard it.
Differential revision: https://reviews.llvm.org/D50113
llvm-svn: 339046
Summary:
Expand isFNEG so that we generate the appropriate F(N)M(ADD|SUB)
instructions in more cases. For example, the following sequence
a = _mm256_broadcast_ss(f)
d = _mm256_fnmadd_ps(a, b, c)
generates an fsub and fma without this patch and an fnma with this
change.
Reviewers: craig.topper
Subscribers: llvm-commits, davidxl, wmi
Differential Revision: https://reviews.llvm.org/D48467
llvm-svn: 339043
If the store is volatile this might be a memory mapped IO access. In that case we shouldn't generate a load that didn't exist in the source
Differential Revision: https://reviews.llvm.org/D50270
llvm-svn: 339041
for all the uses from the same def is done.
We run into a compile time problem with flex generated code combined with
`-fno-jump-tables`. The cause is that machineLICM hoists a lot of invariants
outside of a big loop, and drastically increases the compile time in global
register splitting and copy coalescing. https://reviews.llvm.org/D49353
relieves the problem in global splitting. This patch is to handle the problem
in copy coalescing.
About the situation where the problem in copy coalescing happens. After
machineLICM, we have several defs outside of a big loop with hundreds or
thousands of uses inside the loop. Rematerialization in copy coalescing
happens for each use and everytime rematerialization is done, shrinkToUses
will be called to update the huge live interval. Because we have 'n' uses
for a def, and each live interval update will have at least 'n' complexity,
the total update work is n^2.
To fix the problem, we try to do the live interval update work in a collective
way. If a def has many copylike uses larger than a threshold, each time
rematerialization is done for one of those uses, we won't do the live interval
update in time but delay that work until rematerialization for all those uses
are completed, so we only have to do the live interval update work once.
Delaying the live interval update could potentially change the copy coalescing
result, so we hope to limit that change to those defs with many
(like above a hundred) copylike uses, and the cutoff can be adjusted by the
option -mllvm -late-remat-update-threshold=xxx.
Differential Revision: https://reviews.llvm.org/D49519
llvm-svn: 339035
On windows when raw_fd_ostream::write_impl calls write, a 32 bit input is required for character count. As a variable with size_t is used for this argument, on x64 integral demotion occurs. In the case of large files an infinite loop follows.
See: https://bugs.llvm.org/show_bug.cgi?id=37926
This fix allows the output of files larger than the previous int32 limit.
Differential Revision: https://reviews.llvm.org/D48948
llvm-svn: 339027
Summary:
Ensure that NormalizedBuildVector returns a BUILD_VECTOR with operands of the
same type. This fixes an assertion failure in VerifySDNode.
Reviewers: SjoerdMeijer, t.p.northover, javed.absar
Reviewed By: SjoerdMeijer
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D50202
llvm-svn: 339013
Currently we use #pragma push_macro(LLVM_DEBUG) to fiddle with the LLVM_DEBUG
macro so that we can silence debugging the Knuth division algorithm unless it's
actually desired. Unfortunately this is incompatible with enabling modules
while building LLVM (via LLVM_ENABLE_MODULES=ON), probably due to a bug being
fixed by D33004.
llvm-svn: 339009
ld64 supplies its own Thumb bit for Thumb functions, and intentionally zeroes
out that part of any addend in an object file. But it only does that for
symbols marked N_EXT -- i.e. external symbols. So LLVM should avoid setting
that extra bit in other cases.
llvm-svn: 339007
The patch was reverted because of bug detected by sanitizer. The bug is fixed,
respective tests added.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 339005
Multiple failues reported by sanitizer-x86_64-linux, seem to be caused by this
patch. Reverting to see if they sustain without it.
Differential Revision: https://reviews.llvm.org/D50172
llvm-svn: 338994
`isKnownNonNullFromDominatingCondition` is able to prove non-null basing on `br` or `guard`
by `%p != null` condition, but is unable to do so basing on `(%p != null) && %other_cond`.
This patch allows it to do so.
Differential Revision: https://reviews.llvm.org/D50172
Reviewed By: reames
llvm-svn: 338990
If there is a frequently taken branch dominated by a guard, and its condition is available
at the point of the guard, we can widen guard with condition of this branch and convert
the branch into unconditional:
guard(cond1)
if (cond2) {
// taken in 99.9% cases
// do something
} else {
// do something else
}
Converts to
guard(cond1 && cond2)
// do something
Differential Revision: https://reviews.llvm.org/D49974
Reviewed By: reames
llvm-svn: 338988
In the past, DbgInfoIntrinsic has a strong assumption that these
intrinsics all have variables and expressions attached to them.
However, it is too strong to derive the class for other debug entities.
Now, it has problems for debug labels.
In order to make DbgInfoIntrinsic as a base class for 'debug info', I
create a class for 'variable debug info', DbgVariableIntrinsic.
DbgDeclareInst, DbgAddrIntrinsic, and DbgValueInst will be derived from it.
Differential Revision: https://reviews.llvm.org/D50220
llvm-svn: 338984
This code was moved out from BasicObjectLayerMaterializationUnit, which required
the supplied object to be well formed. The getObjectSymbolFlags function does
not require a well-formed object, so we have to propagate the error here.
llvm-svn: 338975
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338969
There are a bunch of edge cases and inconsistencies in how we're emitting sections
cause this warning to fire and it needs more work.
This reverts commit r335558.
llvm-svn: 338968
Summary:
Previously, in the NewPM pipeline, TailCallElim recalculates the DomTree when it modifies any instruction in the Function.
For example,
```
CallInst *CI = dyn_cast<CallInst>(&I);
...
CI->setTailCall();
Modified = true;
...
if (!Modified || ...)
return PreservedAnalyses::all();
```
After applying this patch, the DomTree only recalculates if needed (plus an extra insertEdge() + an extra deleteEdge() call).
When optimizing SQLite with `-passes="default<O3>"` pipeline of the newPM, the number of DomTree recalculation decreases by 6.2%, the number of nodes visited by DFS decreases by 2.9%. The time used by DomTree will decrease approximately 1%~2.5% after applying the patch.
Statistics:
```
Before the patch:
23010 dom-tree-stats - Number of DomTree recalculations
489264 dom-tree-stats - Number of nodes visited by DFS -- DomTree
After the patch:
21581 dom-tree-stats - Number of DomTree recalculations
475088 dom-tree-stats - Number of nodes visited by DFS -- DomTree
```
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49982
llvm-svn: 338954
This change allows users pass compression level that was not listed
in the enum. Also, I think using different values than zlib's
compression levels was just confusing.
Differential Revision: https://reviews.llvm.org/D50196
llvm-svn: 338939
At one point in time acquire implied mayLoad and mayStore as did release. Thus we needed separate pseudos that also carried that property. This appears to no longer be the case. I believe it was changed in 2012 with a comment saying that atomic memory accesses are marked volatile which preserves the ordering.
So from what I can tell we shouldn't need additional pseudos since they aren't carry any flags that are different from the normal instructions. The only thing I can think of is that we may consider them for load folding candidates in the peephole pass now where we didn't before. If that's important hopefully there's something in the memory operand we can check to prevent the folding without relying on pseudo instructions.
Differential Revision: https://reviews.llvm.org/D50212
llvm-svn: 338925
resize() (zeroing) makes every allocated page resident. The actual size of the compressed buffer is usually much
smaller. Making every page resident is wasteful.
When linking a test binary with ~1.9GiB uncompressed debug info with LLD, this optimization decreases max RSS by ~1.5GiB.
Differential Revision: https://reviews.llvm.org/50223
llvm-svn: 338913
Add a parameter for testing specifically for
sNaNs - at least one instruction pattern on AMDGPU
needs to check specifically for this.
Also handle more cases, and add a target hook
for custom nodes, similar to the hooks for known
bits.
llvm-svn: 338910
Clang uses "ctpop & 1" to implement __builtin_parity. If the popcnt instruction isn't supported this generates a large amount of code to calculate the population count. Instead we can bisect the data down to a single byte using xor and then check the parity flag.
Even when popcnt is supported, its still a good idea to split 64-bit data on 32-bit targets using an xor in front of a single popcnt. Otherwise we get two popcnts and an add before the and.
I've specifically targeted this at the sizes supported by clang builtins, but we could generalize this if we think that's useful.
Differential Revision: https://reviews.llvm.org/D50165
llvm-svn: 338907
Merge the helper functions for shrinking unary and binary functions into a
single one, while keeping all their functionality. Otherwise, NFC.
llvm-svn: 338905
In r337830 I added SCEV checks to enable us to insert fewer bounds checks. Unfortunately, this sometimes crashes when multiple bounds checks are added due to SCEV caching issues. This patch splits the bounds checking pass into two phases, one that computes all the conditions (using SCEV checks) and the other that adds the new instructions.
Differential Revision: https://reviews.llvm.org/D49946
llvm-svn: 338902
Summary:
Previously, `removeUnreachableBlocks` still returns true (which indicates the CFG is changed) even when all the unreachable blocks found is awaiting deletion in the DDT class.
This makes code pattern like
```
// Code modified from lib/Transforms/Scalar/SimplifyCFGPass.cpp
bool EverChanged = removeUnreachableBlocks(F, nullptr, DDT);
...
do {
EverChanged = someMightHappenModifications();
EverChanged |= removeUnreachableBlocks(F, nullptr, DDT);
} while (EverChanged);
```
become a dead loop.
Fix this by detecting whether a BasicBlock is already awaiting deletion.
Reviewers: kuhar, brzycki, dmgreen, grosser, davide
Reviewed By: kuhar, brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49738
llvm-svn: 338882
We don't expect module names to be present in the index. This patch adds
DW_TAG_module to the blacklist.
Differential revision: https://reviews.llvm.org/D50237
llvm-svn: 338878
Some instructions expand to more than one decoder group.
This has been hitherto ignored, but is handled with this patch.
Review: Ulrich Weigand
https://reviews.llvm.org/D50187
llvm-svn: 338849
In r338216 / D49860 TempFile::keep was extended to allow keeping across
filesystems. The aim on Windows was to have this happen in rename_internal
using the existing system API. However, to fix an issue and preserve the
idea of "renaming" not being a move, put Windows keep-across-filesystem in
TempFile::keep.
Differential Revision: https://reviews.llvm.org/D50048
llvm-svn: 338841
First step towards a BuildSDIV equivalent to D49248 for non-uniform vector support - this just pushes the splat detection down into TargetLowering::BuildSDIV where its still used.
Differential Revision: https://reviews.llvm.org/D50185
llvm-svn: 338838
Summary:
This change implements the profile loading functionality in LLVM to
support XRay's profiling mode in compiler-rt.
We introduce a type named `llvm::xray::Profile` which allows building a
profile representation. We can load an XRay profile from a file to build
Profile instances, or do it manually through the Profile type's API.
The intent is to get the `llvm-xray` tool to generate `Profile`
instances and use that as the common abstraction through which all
conversion and analysis can be done. In the future we can generate
`Profile` instances from `Trace` instances as well, through conversion
functions.
Some of the key operations supported by the `Profile` API are:
- Path interning (`Profile::internPath(...)`) which returns a unique path
identifier.
- Block appending (`Profile::addBlock(...)`) to add thread-associated
profile information.
- Path ID to Path lookup (`Profile::expandPath(...)`) to look up a
PathID and return the original interned path.
- Block iteration.
A 'Path' in this context represents the function call stack in
leaf-to-root order. This is represented as a path in an internally
managed prefix tree in the `Profile` instance. Having a handle (PathID)
to identify the unique Paths we encounter for a particular Profile
allows us to reduce the amount of memory required to associate profile
data to a particular Path.
This is the first of a series of patches to migrate the `llvm-stacks`
tool towards using a single profile representation.
Depends on D48653.
Reviewers: kpw, eizan
Reviewed By: kpw
Subscribers: mgorny, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D48370
llvm-svn: 338825
There are a lot of permutations of types here generating a lot of patterns in the isel table. It's more efficient to just ReplaceUses and RemoveDeadNode from the Select function.
The test changes are because we have a some shuffle patterns that have a bitcast as their root node. But the behavior is identical to another instruction whose pattern doesn't start with a bitcast. So this isn't a functional change.
llvm-svn: 338824
Summary:
This patch refines the logic of `recalculate()` in the `DomTreeUpdater` in the following two aspects:
1. Previously, `recalculate()` tests whether there are pending updates/BBs awaiting deletion and then do recalculation under Lazy UpdateStrategy; and do recalculation immediately under Eager UpdateStrategy. (The former behavior is inherited from the `DeferredDominance` class). This is an inconsistency between two strategies and there is no obvious reason to do this. So the behavior is changed to always recalculate available trees when calling `recalculate()`.
2. Fix the issue of when DTU under Lazy UpdateStrategy holds nothing but with BBs awaiting deletion, after calling `recalculate()`, BBs awaiting deletion aren't flushed. An additional unittest is added to cover this case.
Reviewers: kuhar, dmgreen, brzycki, grosser, davide
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50173
llvm-svn: 338822
Move all the patterns to X86InstrVecCompiler.td so we can keep SSE/AVX/AVX512 all in one place.
To save some patterns we'll use an existing DAG combine to convert f128 fand/for/fxor to integer when sse2 is enabled. This allows use to reuse all the existing patterns for v2i64.
I believe this now makes SHA instructions the only case where VEX/EVEX and legacy encoded instructions could be generated simultaneously.
llvm-svn: 338821
This is the second patch of the series which intends to enable jump threading for an inlined method whose return type is std::pair<int, bool> or std::pair<bool, int>.
The first patch is https://reviews.llvm.org/rL338485.
This patch handles code sequences that merges two values using `shl` and `or`, then extracts one value using `and`.
Differential Revision: https://reviews.llvm.org/D49981
llvm-svn: 338817
Summary:
This patch is the second in a series of patches related to the [[ http://lists.llvm.org/pipermail/llvm-dev/2018-June/123883.html | RFC - A new dominator tree updater for LLVM ]].
It converts passes (e.g. adce/jump-threading) and various functions which currently accept DDT in local.cpp and BasicBlockUtils.cpp to use the new DomTreeUpdater class.
These converted functions in utils can accept DomTreeUpdater with either UpdateStrategy and can deal with both DT and PDT held by the DomTreeUpdater.
Reviewers: brzycki, kuhar, dmgreen, grosser, davide
Reviewed By: brzycki
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48967
llvm-svn: 338814
If the producing instruction is legacy encoded it doesn't implicitly zero the upper bits. This is important for the SHA instructions which don't have a VEX encoded version. We might also be able to hit this with the incomplete f128 support that hasn't been ported to VEX.
llvm-svn: 338812
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.
llvm-svn: 338806
This one requires a bit of explaination. It's not every day you simply delete code to implement an optimization. :)
The transform in question is sinking an instruction from a loop to the uses in loop exiting blocks. We know (from LCSSA) that all of the uses outside the loop must be phi nodes, and after predecessor splitting, we know all phi users must have a single operand. Since the use must be strictly dominated by the def, we know from the definition of dominance/ssa that the exit block must execute along a (non-strict) subset of paths which reach the def. As a result, duplicating a potentially faulting instruction can not *introduce* a fault that didn't previously exist in the program.
The full story is that this patch builds on "rL338671: [LICM] Factor out fault legality from canHoistOrSinkInst [NFC]" which pulled this logic out of a common helper routine. As best I can tell, this check was originally added to the helper function for hoisting legality, later an incorrect fastpath for loads/calls was added, and then the bug was fixed by duplicating the fault safety check in the hoist path. This left the redundant check in the common code to pessimize sinking for no reason. I split it out in an NFC, and am not removing the unneccessary check. I wanted there to be something easy to revert in case I missed something.
Reviewed by: Anna Thomas (in person)
llvm-svn: 338794
At least on ELF, it's impossible to tell from the object file whether
two globals with the same section marking were merged: the merged global
uses "private" linkage to hide its symbol, and the aliases look like
regular symbols. I can't think of any other reason to disallow it.
(Of course, we can only merge globals in the same section.)
The weird alignment handling matches AsmPrinter; our alignment handling
for global variables should probably be refactored.
Differential Revision: https://reviews.llvm.org/D49822
llvm-svn: 338791
Summary:
By not reconstructing the operand list of the SDNode, this change makes
it easier to add the forthcoming new tbuffer and buffer intrinsics.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49995
Change-Id: I0cb79ef0801532645d7dd954a6d7355139db7b38
llvm-svn: 338784
Summary:
I encountered some problems with SIFixWWMLiveness when WWM is in a loop:
1. It sometimes gave invalid MIR where there is some control flow path
to the new implicit use of a register on EXIT_WWM that does not pass
through any def.
2. There were lots of false positives of registers that needed to have
an implicit use added to EXIT_WWM.
3. Adding an implicit use to EXIT_WWM (and adding an implicit def just
before the WWM code, which I tried in order to fix (1)) caused lots
of the values to be spilled and reloaded unnecessarily.
This commit is a rework of SIFixWWMLiveness, with the following changes:
1. Instead of considering any register with a def that can reach the WWM
code and a def that can be reached from the WWM code, it now
considers three specific cases that need to be handled.
2. A register that needs liveness over WWM to be synthesized now has it
done by adding itself as an implicit use to defs other than the
dominant one.
Also added the following fixmes:
FIXME: We should detect whether a register in one of the above
categories is already live at the WWM code before deciding to add the
implicit uses to synthesize its liveness.
FIXME: I believe this whole scheme may be flawed due to the possibility
of the register allocator doing live interval splitting.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D46756
Change-Id: Ie7fba0ede0378849181df3f1a9a7a39ed1a94a94
llvm-svn: 338783
Summary:
This fixes a problem where a load from global+idx generated incorrect
code on <=gfx7 when the index is divergent.
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47383
Change-Id: Ib4d177d6254b1dd3f8ec0203fdddec94bd8bc5ed
llvm-svn: 338779
This will remove suboptimal branching from the generated ll/sc loops.
The extra simplification pass affects a lot of testcases, which have
been modified to accommodate this change: either by modifying the
test to become immune to the CFG simplification, or (less preferablt)
by adding option -hexagon-initial-cfg-clenaup=0.
llvm-svn: 338774
An instance of ReexportsFallbackDefinitionGenerator can be attached to a VSO
(via setFallbackDefinitionGenerator) to re-export symbols on demandy from a
backing VSO.
llvm-svn: 338764
r337748 made us start incrementing DebugCounters all of the time. This
makes tsan unhappy in multithreaded environments.
Since it doesn't make much sense to use DebugCounters with multiple
threads, this patch makes us only count anything if the user passed a
-debug-counter option or if some other piece of code explicitly asks
for it (e.g. the pass in D50031).
The amount of global state here makes writing a unittest for this
behavior somewhat awkward. So, no test is provided.
Differential Revision: https://reviews.llvm.org/D50150
llvm-svn: 338762
Summary:
On Windows, TempFile::create() was prone to failing with permission
denied errors when a process created many tempfiles without providing
a model large enough to accommodate them. There was also a problem
with createUniqueEntity getting into an infinite loop when all names
permitted by the model are in use. This change fixes both of these
problems and adds a unit test for them.
Reviewers: pcc, rnk, zturner
Reviewed By: zturner
Subscribers: inglorion, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50126
llvm-svn: 338745
Rather than allowing invalid bitcasts to be lowered to wasm
call instructions that won't validate, generate wrappers that
contain unreachable thereby delaying the error until runtime.
Differential Revision: https://reviews.llvm.org/D49517
llvm-svn: 338744
We need to both record and resolve back-references lazily due to
not being able to know until a demangling is complete whether or
not a name should go into the back-reference table.. This patch
implements lazy resolution of back-references, but we still have
eager recording of back-references. This will be fixed in a
subsequent patch.
llvm-svn: 338736
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.
Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.
Differential Revision: https://reviews.llvm.org/D50157
llvm-svn: 338735
This adds the NAN checks suggested in PR37776:
https://bugs.llvm.org/show_bug.cgi?id=37776
If both operands to maxnum are NAN, that should get constant folded, so we don't
have to handle that case. This is the same assumption as other FP ops in this
function. Returning 'false' is always conservatively correct.
Copying from the bug report:
Currently, we have this for "when is cannotBeOrderedLessThanZero
(mustBePositiveOrNaN) true for maxnum":
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | x |
------------------------
|NaN | x | x | x |
------------------------
The cases with (Neg & NaN) are wrong. We should have:
L
-------------------
| Pos | Neg | NaN |
------------------------
|Pos | x | x | x |
------------------------
R |Neg | x | | |
------------------------
|NaN | x | | x |
------------------------
Differential Revision: https://reviews.llvm.org/D50081
llvm-svn: 338716
Adds some cleaned up debug messages from back when I was writing this.
Hopefully useful to others (and myself) as to why unroll and jam is not
transforming as expected.
Differential Revision: https://reviews.llvm.org/D50062
llvm-svn: 338676
As a part of adding the tiny codemodel, we need to support ldr's with :got:
relocations on them. This seems to be mostly already done, just needs the
relocation type support.
Differential Revision: https://reviews.llvm.org/D50137
llvm-svn: 338673
This method has three callers, each of which wanted distinct handling:
1) Sinking into a loop is moving an instruction known to execute before a loop into the loop. We don't need to worry about introducing a fault at all in this case.
2) Hoisting from a loop into a preheader already duplicated the check in the caller.
3) Sinking from the loop into an exit block was the only true user of the code within the routine. For the moment, this has just been lifted into the caller, but up next is examining the logic more carefully. Whitelisting of loads and calls - while consistent with the previous code - is rather suspicious. Either way, a behavior change is worthy of it's own patch.
llvm-svn: 338671
In expansion of FCOPYSIGN, the shift node is missing when the two
operands of FCOPYSIGN are of the same size. We should always generate
shift node (if the required shift bit is not zero) to put the sign
bit into the right position, regardless of the size of underlying
types.
Differential Revision: https://reviews.llvm.org/D49973
llvm-svn: 338665
Originally, this was part of a larger refactoring I'd planned, but had to abandoned. I figured the minor improvement in readability was worthwhile.
llvm-svn: 338663
Adding the FP_ROUND nodes when combining FP_TO_[SU]INT of elements
feeding a BUILD_VECTOR into an FP_TO_[SU]INT of the built vector
loses precision. This patch removes the code that adds these nodes
to true f64 operands. It also adds patterns required to ensure
the code is still vectorized rather than converting individual
elements and inserting into a vector.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38342
Differential Revision: https://reviews.llvm.org/D50121
llvm-svn: 338658
AArch64 ELF ABI does not define a static relocation type for TLS offset within
a module, which makes it impossible for compiler to generate a valid
DW_AT_location content for thread local variables. Currently LLVM generates an
invalid R_AARCH64_ABS64 relocation at the DW_AT_location field for a TLS
variable. That causes trouble for linker because thread local variable does
not have an absolute address at link time. AArch64 GCC solves the problem by
not generating DW_AT_location for thread local variables. We should do the
same in LLVM.
Differential Revision: https://reviews.llvm.org/D43860
llvm-svn: 338655
Summary:
Mark a variable as maybe-unused to prevent a -Wunused-but-set-variable
warning in optimized builds where asserts are removed.Test/first commit
to check setup and understand patch submission process.
Reviewers: srhines, pirama, dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49756
llvm-svn: 338654
(Previously reverted in r338442)
I'm told that the breakage came from us using an x86 triple on configs
that didn't have x86 enabled. This is remedied by moving the
debugcounter test to an x86 directory (where there's also a
opt-bisect-isel.ll test for similar reasons).
I can't repro the reverse-iteration failure mentioned in the revert with
this patch, so I assume that a misconfiguration on my end is what caused
that.
Original commit message:
Add DebugCounters to DivRemPairs
For people who don't use DebugCounters, NFCI.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D50033
llvm-svn: 338653
The callable flag can be used to indicate that a symbol is callable. If present,
the symbol is callable. If absent, the symbol may or may not be callable (the
client must determine this by context, for example by examining the program
representation that will provide the symbol definition).
This flag will be used in the near future to enable creation of lazy compilation
stubs based on SymbolFlagsMap instances only (without having to provide
additional information to determine which symbols need stubs).
llvm-svn: 338649
This is patch 4 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 4 combines separate DWARFUnitVectors for compile and type units
into a single DWARFUnitVector that contains both. For now the
implementation distinguishes compile units from type units by putting
all compile units at the front of the vector, reflecting the DWARF v4
distinction between .debug_info and .debug_types sections. A future
patch will change this to allow the free mixing of unit kinds, as is
specified by DWARF v5.
Differential Revision: https://reviews.llvm.org/D49744
llvm-svn: 338633
This is patch 3 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 3 simply renames DWARFUnitSection to DWARFUnitVector, as the
object-file section of a unit is nearly irrelevant now.
Differential Revision: https://reviews.llvm.org/D49743
llvm-svn: 338632
This is patch 2 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 2 takes the existing std::deque<DWARFUnitSection> for type units
and makes it a simple DWARFUnitSection, simplifying the handling of
type units and making it more consistent with compile units.
Differential Revision: https://reviews.llvm.org/D49742
llvm-svn: 338629
This is patch 1 of 4 NFC refactorings to handle type units and compile
units more consistently and with less concern about the object-file
section that they came from.
Patch 1 replaces the templated DWARFUnitSection with a non-templated
version. That is, instead of being a SmallVector of pointers to a
specific unit kind, it is not a SmallVector of pointers to the base
class for both type and compile units. Virtual methods are magic.
Differential Revision: https://reviews.llvm.org/D49741
llvm-svn: 338628
Mutate the node type during selection when it
doesn't matter. This avoids an intermediate bitcast
node on targets with legal i16/f16.
Also fixes missing output modifiers on v_cvt_pkrtz_f32_f16,
which I assume are OK.
llvm-svn: 338619
Summary:
Added an option that allows to emit only '.loc' and '.file' kind debug
directives, but disables emission of the DWARF sections. Required for
NVPTX target to support profiling. It requires '.loc' and '.file'
directives, but does not require any DWARF sections for the profiler.
Reviewers: probinson, echristo, dblaikie
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D46021
llvm-svn: 338616
It seems like perhaps because cstdio isn't directly included, the
compiler is accidentally picking up wprintf from somewhere else
and trying to call that. Hopefully this fixes it.
llvm-svn: 338614
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
This is useful for understanding how our demangler processes
back references and for investigating issues related to
back references. But it's a feature only useful for debugging
the demangling process itself, so I'm marking it hidden.
llvm-svn: 338609
After we detected the presence of a template via ?$ we would proceed by
only demangling a simple unqualified name. This means we would fail on
templated operators (and perhaps other yet-to-be-determined things)
This was discovered while doing some refactoring to store richer
semantic information about the demangled types to pave the way for
overhauling the way we handle backreferences. (Specifically, we need to
defer recording or resolving back-references until a symbol has been
completely demangled, because we need to use information that only
occurs later in the mangled string to decide whether a back-reference
should be recorded.)
Differential Revision: https://reviews.llvm.org/D50145
llvm-svn: 338608
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
The bug is visible in the constant-folded x86 tests. We can't use the
negated shift amount when the type is not power-of-2:
https://rise4fun.com/Alive/US1r
...so in that case, use the regular lowering that includes a select
to guard against a shift-by-bitwidth. This path is improved by only
calculating the modulo shift amount once now.
Also, improve the rotate (with power-of-2 size) lowering to use
a negate rather than subtract from bitwidth. This improves the
codegen whether we have a rotate instruction or not (although
we can still see that we're not matching to a legal rotate in
all cases).
llvm-svn: 338592
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).
Differential Revision: https://reviews.llvm.org/D50083
llvm-svn: 338586
This patch just extract code into a separate function to remove some
duplication between the old and new pass manager pipeline. Due to the
different CGSCC iterators used, not all code duplication was eliminated.
llvm-svn: 338585
Getting the DWARF types section is only implemented for ELF object
files. We already disabled emitting debug types in clang (r337717), but
now we also report an fatal error (rather than crashing) when trying to
obtain this section in MC. Additionally we ignore the generate debug
types flag for unsupported target triples.
See PR38190 for more information.
Differential revision: https://reviews.llvm.org/D50057
llvm-svn: 338527
Summary:
Add _L to _LZ image intrinsic table mapping to table gen.
In ISelLowering check if image intrinsic has lod and if it's equal
to zero, if so remove lod and change opcode to equivalent mapped _LZ.
Change-Id: Ie24cd7e788e2195d846c7bd256151178cbb9ec71
Subscribers: arsenm, mehdi_amini, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49483
llvm-svn: 338523
The DAG combiner logic to simplify AND masks in shift counts is invalid.
While it is true that the SystemZ shift instructions ignore all but the
low 6 bits of the shift count, it is still invalid to simplify the AND
masks while the DAG still uses the standard shift operators (which are
*not* defined to match the SystemZ instruction behavior).
Instead, this patch performs equivalent operations during instruction
selection. For completely removing the AND, this now happens via
additional DAG match patterns implemented by a multi-alternative
PatFrags. For simplifying a 32-bit AND to a 16-bit AND, the existing DAG
patterns were already mostly OK, they just needed an output XForm to
actually truncate the immediate value.
Unfortunately, the latter change also exposed a bug in TableGen: it
seems XForms are currently only handled correctly for direct operands of
the outermost operation node. This patch also fixes that bug by simply
recurring through the whole pattern. This should be NFC for all other
targets.
Differential Revision: https://reviews.llvm.org/D50096
llvm-svn: 338521
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338494
It's not strictly required by the transform of the cmov and the add, but it makes sure we restrict it to the cases we know we want to match.
While there canonicalize the operand order of the cmov to simplify the matching and emitting code.
llvm-svn: 338492
This revision implements support for generating DWARFv5 .debug_addr section.
The implementation is pretty straight-forward: we just check the dwarf version
and emit section header if needed.
Reviewers: aprantl, dblaikie, probinson
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D50005
llvm-svn: 338487
This patch intends to enable jump threading when a method whose return type is std::pair<int, bool> or std::pair<bool, int> is inlined.
For example, jump threading does not happen for the if statement in func.
std::pair<int, bool> callee(int v) {
int a = dummy(v);
if (a) return std::make_pair(dummy(v), true);
else return std::make_pair(v, v < 0);
}
int func(int v) {
std::pair<int, bool> rc = callee(v);
if (rc.second) {
// do something
}
SROA executed before the method inlining replaces std::pair by i64 without splitting in both callee and func since at this point no access to the individual fields is seen to SROA.
After inlining, jump threading fails to identify that the incoming value is a constant due to additional instructions (like or, and, trunc).
This series of patch add patterns in InstructionSimplify to fold extraction of members of std::pair. To help jump threading, actually we need to optimize the code sequence spanning multiple BBs.
These patches does not handle phi by itself, but these additional patterns help NewGVN pass, which calls instsimplify to check opportunities for simplifying instructions over phi, apply phi-of-ops optimization to result in successful jump threading.
SimplifyDemandedBits in InstCombine, can do more general optimization but this patch aims to provide opportunities for other optimizers by supporting a simple but common case in InstSimplify.
This first patch in the series handles code sequences that merges two values using shl and or and then extracts one value using lshr.
Differential Revision: https://reviews.llvm.org/D48828
llvm-svn: 338485
EFLAGS copy lowering.
If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.
Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).
The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...
It isn't though....
This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.
The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D
llvm-svn: 338481
It is necessary to generate fixups in .debug_line as relaxation is
enabled due to the address delta may be changed after relaxation.
DWARF will record the mappings of lines and addresses in
.debug_line section. It will encode the information using special
opcodes, standard opcodes and extended opcodes in Line Number
Program. I use DW_LNS_fixed_advance_pc to encode fixed length
address delta and DW_LNE_set_address to encode absolute address
to make it possible to generate fixups in .debug_line section.
Differential Revision: https://reviews.llvm.org/D46850
llvm-svn: 338477
Previously we were just visiting the blocks in the function in IR order, which
is rather arbitrary. Therefore we wouldn't always visit defs before uses, but
the translation code relies on this assumption in some places.
Only codegen change seen in tests is an elision of a redundant copy.
Fixes PR38396
llvm-svn: 338476
Call shouldOutlineFromFunctionByDefault, isFunctionSafeToOutlineFrom,
getOutliningType, and getMachineOutlinerMBBFlags using the correct
TargetInstrInfo. And don't create a MachineFunction for a function
declaration.
The call to getOutliningCandidateInfo is still a little weird, but at
least the weirdness is explicitly called out.
Differential Revision: https://reviews.llvm.org/D49880
llvm-svn: 338465
Disable ARMCodeGenPrepare by default again. It is causing verifier
failues in V8 that look like:
Duplicate integer as switch case
switch i32 %trunc, label %if.end13 [
i32 0, label %cleanup36
i32 0, label %if.then8
], !dbg !4981
i32 0
fatal error: error in backend: Broken function found, compilation aborted!
I will continue reducing the test case and send it along.
llvm-svn: 338452
Correct the address space for the inserted argument
stack slot.
AMDGPU seems to not do anything with this information,
so I don't think this was breaking anything.
llvm-svn: 338428
When lowering calling conventions, prefer to decompose vectors
into the constitute register types. This avoids artifical constraints
to satisfy a wide super-register.
This improves code quality because now optimizations don't need to
deal with the super-register constraint. For example the immediate
folding code doesn't deal with 4 component reg_sequences, so by
breaking the register down earlier the existing immediate folding
code is able to work.
This also avoids the need for the shader input processing code
to manually split vector types.
llvm-svn: 338416
Don't declare them as X86SchedWritePair when the folded class will never be used.
Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
As was done for vector rotations, we can efficiently use ISD::MULHU for vXi8/vXi16 ISD::SRL lowering.
Shift-by-zero cases are still problematic (mainly on v32i8 due to extra AND/ANDN/OR or VPBLENDVB blend masks but v8i16/v16i16 aren't great either if PBLENDW fails) so I've limited this first patch to known non-zero cases if we can't easily use PBLENDW.
Differential Revision: https://reviews.llvm.org/D49562
llvm-svn: 338407
This patch does the same thing as r338153 for COFF.
Note that this patch affects only the order of log messages.
The output file is already deterministic.
Differential Revision: https://reviews.llvm.org/D50023
llvm-svn: 338406
Summary:
Similar to D49636, but for PMADDUBSW. This instruction has the additional complexity that the addition of the two products saturates to 16-bits rather than wrapping around. And one operand is treated as signed and the other as unsigned.
A C example that triggers this pattern
```
static const int N = 128;
int8_t A[2*N];
uint8_t B[2*N];
int16_t C[N];
void foo() {
for (int i = 0; i != N; ++i)
C[i] = MIN(MAX((int16_t)A[2*i]*(int16_t)B[2*i] + (int16_t)A[2*i+1]*(int16_t)B[2*i+1], -32768), 32767);
}
```
Reviewers: RKSimon, spatel, zvi
Reviewed By: RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49829
llvm-svn: 338402
This commit fixes two issues with the liveness information after the
call:
1) The code always spills RCX and RDX if InProlog == true, which results
in an use of undefined phys reg.
2) FinalReg, JoinReg, RoundedReg, SizeReg are not added as live-ins to
the basic blocks that use them, therefore they are seen undefined.
https://llvm.org/PR38376
Differential Revision: https://reviews.llvm.org/D50020
llvm-svn: 338400
Workaround bug where the InstCombine pass was asserting on the IR added in lit
test, where we have a bitcast instruction after a GEP from an addrspace cast.
The second bitcast in the test was getting combined into
`bitcast <16 x i32>* %0 to <16 x i32> addrspace(3)*`, which looks like it should
be an addrspace cast instruction instead. Otherwise if control flow is allowed
to continue as it is now we create a GEP instruction
`<badref> = getelementptr inbounds <16 x i32>, <16 x i32>* %0, i32 0`. However
because the type of this instruction doesn't match the address space we hit an
assert when replacing the bitcast with that GEP.
```
void llvm::Value::doRAUW(llvm::Value*, bool): Assertion `New->getType() == getType() && "replaceAllUses of value with new value of different type!"' failed.
```
Differential Revision: https://reviews.llvm.org/D50058
llvm-svn: 338395
Summary:
When inserting lcssa Phi Nodes in the exit block
mak sure to preserve the original instructions DL.
Reviewers: vsk
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D50009
llvm-svn: 338391
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
It also generates label debug information under global isel.
Differential Revision: https://reviews.llvm.org/D45556
llvm-svn: 338390
Summary:
This patch improves Inliner to provide causes/reasons for negative inline decisions.
1. It adds one new message field to InlineCost to report causes for Always and Never instances. All Never and Always instantiations must provide a simple message.
2. Several functions that used to return the inlining results as boolean are changed to return InlineResult which carries the cause for negative decision.
3. Changed remark priniting and debug output messages to provide the additional messages and related inline cost.
4. Adjusted tests for changed printing.
Patch by: yrouban (Yevgeny Rouban)
Reviewers: craig.topper, sammccall, sgraenitz, NutshellySima, shchenz, chandlerc, apilipenko, javed.absar, tejohnson, dblaikie, sanjoy, eraman, xbolva00
Reviewed By: tejohnson, xbolva00
Subscribers: xbolva00, llvm-commits, arsenm, mehdi_amini, eraman, haicheng, steven_wu, dexonsmith
Differential Revision: https://reviews.llvm.org/D49412
llvm-svn: 338387
This is being done in order to make GVN able to better optimize certain inputs.
MemDep doesn't use PhiValues directly, but does need to notifiy it when things
get invalidated.
Differential Revision: https://reviews.llvm.org/D48489
llvm-svn: 338384
Summary:
If the ExtractElement instructions can be optimized out during the
vectorization and we need to reshuffle the parent vector, this
ShuffleInstruction may be inserted in the wrong place causing compiler
to produce incorrect code.
Reviewers: spatel, RKSimon, mkuper, hfinkel, javed.absar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49928
llvm-svn: 338380
We could choose a free 0 for this, but this
matches the behavior for fmul undef, 1.0. Also,
the NaN use is more useful for folding use operations
although if it's not eliminated it is more expensive
in terms of code size.
llvm-svn: 338376
This patch teaches llvm-mca how to identify dependency breaking instructions on
btver2.
An example of dependency breaking instructions is the zero-idiom XOR (example:
`XOR %eax, %eax`), which always generates zero regardless of the actual value of
the input register operands.
Dependency breaking instructions don't have to wait on their input register
operands before executing. This is because the computation is not dependent on
the inputs.
Not all dependency breaking idioms are also zero-latency instructions. For
example, `CMPEQ %xmm1, %xmm1` is independent on
the value of XMM1, and it generates a vector of all-ones.
That instruction is not eliminated at register renaming stage, and its opcode is
issued to a pipeline for execution. So, the latency is not zero.
This patch adds a new method named isDependencyBreaking() to the MCInstrAnalysis
interface. That method takes as input an instruction (i.e. MCInst) and a
MCSubtargetInfo.
The default implementation of isDependencyBreaking() conservatively returns
false for all instructions. Targets may override the default behavior for
specific CPUs, and return a value which better matches the subtarget behavior.
In future, we should teach to Tablegen how to automatically generate the body of
isDependencyBreaking from scheduling predicate definitions. This would allow us
to expose the knowledge about dependency breaking instructions to the machine
schedulers (and, potentially, other codegen passes).
Differential Revision: https://reviews.llvm.org/D49310
llvm-svn: 338372
Since z13, the max group size will be 2 if any μop has more than 3 register
sources.
This has been ignored sofar in the SystemZHazardRecognizer, but is now
handled by recognizing those instructions and adjusting the tracking of
decoding and the cost heuristic for grouping.
Review: Ulrich Weigand
https://reviews.llvm.org/D49847
llvm-svn: 338368
This fold was written in an odd way and tried to avoid
an endless loop by bailing out on all constants instead
of the supposedly problematic case of -1. But (X & -1)
should always be simplified before we reach here, so I'm
not sure how that is a problem.
There were no tests for the commuted patterns, so I added
those at rL338364.
llvm-svn: 338367
isFNEG was duplicating much of what was done by getTargetConstantBitsFromNode in its own calls to getTargetConstantFromNode.
Noticed while reviewing D48467.
llvm-svn: 338358
Contrary to ELF, we don't add any markers that distinguish data generated
with .short/.long from normal instructions, so the .inst directive only
adds compatibility with assembly that uses it.
Differential Revision: https://reviews.llvm.org/D49936
llvm-svn: 338356
Contrary to ELF, we don't add any markers that distinguish data generated
with .long from normal instructions, so the .inst directive only adds
compatibility with assembly that uses it.
Differential Revision: https://reviews.llvm.org/D49935
llvm-svn: 338355
The patch introduces loop analysis (VPLoopInfo/VPLoop) for VPBlockBases.
This analysis will be necessary to perform some H-CFG transformations and
detect and introduce regions representing a loop in the H-CFG.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48816
llvm-svn: 338346
In one place we checked X86Subtarget.slowLEA() to decide if the pass should run. But to decide what the pass should we only check isSLM. This resulted in Goldmont going down the Bonnell path.
llvm-svn: 338342
This patch fixes demangling of template aliases as template-template
arguments, and also fixes function pointers and references as
not type template parameters. All of these can be properly
demangled now, so I've ported over the test
clang/test/CodeGenCXX/ms-template-callbacks.cpp. All of these
tests pass
llvm-svn: 338340
Also refactors some existing code to materialize addresses for the large code
model so it can be shared between G_GLOBAL_VALUE and G_BLOCK_ADDR.
This implements PR36390.
Differential Revision: https://reviews.llvm.org/D49903
llvm-svn: 338337
The vector contains the SDNodes that these functions create. The number of nodes is always a small number so we should use SmallVector to avoid a heap allocation.
llvm-svn: 338329
This patch adds support for demangling r-value references, new
operators such as the ""_foo operator, lambdas, alias types,
nullptr_t, and various other C++11'isms.
There is 1 failing test remaining in this file, which appears to
be related to back-referencing. This type of problem has the
potential to get ugly so I'd rather fix it in a separate patch.
Differential Revision: https://reviews.llvm.org/D50013
llvm-svn: 338324
This is exchanging a sub-of-1 with add-of-minus-1:
https://rise4fun.com/Alive/plKAH
This is another step towards improving select-of-constants codegen (see D48970).
x86 is the motivating target, and those diffs all appear to be wins. PPC and AArch64 look neutral.
I've limited this to early combining (!LegalOperations) in case a target wants to reverse it, but
I think canonicalizing to 'add' is more likely to produce further transforms because we have more
folds for 'add'.
Differential Revision: https://reviews.llvm.org/D49924
llvm-svn: 338317
The patch introduces dominator analysis for VPBlockBases and extend
VPlan's GraphTraits specialization with the required interfaces. Dominator
analysis will be necessary to perform some H-CFG transformations and
to introduce VPLoopInfo (LoopInfo analysis on top of the VPlan representation).
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48815
llvm-svn: 338310
Thinking about it more it might be possible for the later nodes to be folded in getNode in such a way that the other created nodes are left dead. This can cause use counts to be incorrect on nodes that aren't dead.
So its probably safer to leave this alone.
llvm-svn: 338298
Summary:
Normally, inling does not happen if caller does not have
"null-pointer-is-valid"="true" attibute but callee has it.
However, alwaysinline may force callee to be inlined.
In this case, if the caller has the "null-pointer-is-valid"="true"
attribute, copy the attribute to caller.
Reviewers: efriedma, a.elovikov, lebedev.ri, jyknight
Reviewed By: efriedma
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D50000
llvm-svn: 338292
This teaches the outliner to save LR to a register rather than the stack when
possible. This allows us to avoid bumping the stack in outlined functions in
some cases. By doing this, in a later patch, we can teach the outliner to do
something like this:
f1:
...
bl OUTLINED_FUNCTION
...
f2:
...
move LR's contents to a register
bl OUTLINED_FUNCTION
move the register's contents back
instead of falling back to saving LR in both cases.
llvm-svn: 338278
Summary:
Attempt to extract a shrl from a udiv or a shl from a mul if this allows a rotate to be formed. This targets cases where the input to a rotate pattern was a mul or udiv by a constant and InstCombine merged one of the shifts with the op.
Patch by: sameconrad (Sam Conrad)
Reviewers: RKSimon, craig.topper, spatel, lebedev.ri, javed.absar
Reviewed By: lebedev.ri
Subscribers: efriedma, kparzysz, llvm-commits
Differential Revision: https://reviews.llvm.org/D47681
llvm-svn: 338270
This reapplies commit r338206 reverted by r338214 since the bug that
r338206 uncovered has been fixed in r338268.
Add support for inline assembly with matching input operand that do not
naturally go in the register class it is constrained to (eg. double in a
32-bit GPR). Note that regular input is already handled by existing
code.
llvm-svn: 338269
This patch enables instructions that are destructive on their
destination- and first source operand, to be prefixed with a
MOVPRFX instruction.
This patch also adds a variety of tests:
- positive tests for all instructions and forms that accept a
movprfx for either or both predicated and unpredicated forms.
- negative tests for all instructions and forms that do not accept
an unpredicated or predicated movprfx.
- negative tests for the diagnostics that get emitted when a MOVPRFX
instruction is used incorrectly.
This is patch [2/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49593
llvm-svn: 338261
This patch adds predicated and unpredicated MOVPRFX instructions, which
can be prepended to SVE instructions that are destructive on their first
source operand, to make them a constructive operation, e.g.
add z1.s, p0/m, z1.s, z2.s <=> z1 = z1 + z2
can be made constructive:
movprfx z0, z1
add z0.s, p0/m, z0.s, z2.s <=> z0 = z1 + z2
The predicated MOVPRFX instruction can additionally be used to zero
inactive elements, e.g.
movprfx z0.s, p0/z, z1.s
add z0.s, p0/m, z0.s, z2.s
Not all instructions can be prefixed with the MOVPRFX instruction
which is why this patch also adds a mechanism to validate prefixed
instructions. The exact rules when a MOVPRFX applies is detailed in
the SVE supplement of the Architectural Reference Manual.
This is patch [1/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49592
llvm-svn: 338258
By using PhiValuesAnalysis we can get all the values reachable from a phi, so
we can be more precise instead of giving up when a phi has phi operands. We
can't make BaseicAA directly use PhiValuesAnalysis though, as the user of
BasicAA may modify the function in ways that PhiValuesAnalysis can't cope with.
For this optional usage to work correctly BasicAAWrapperPass now needs to be not
marked as CFG-only (i.e. it is now invalidated even when CFG is preserved) due
to how the legacy pass manager handles dependent passes being invalidated,
namely the depending pass still has a pointer to the now-dead dependent pass.
Differential Revision: https://reviews.llvm.org/D44564
llvm-svn: 338242
The machine verifier asserts with:
Assertion failed: (isMBB() && "Wrong MachineOperand accessor"), function getMBB, file ../include/llvm/CodeGen/MachineOperand.h, line 542.
It calls analyzeBranch which tries to call getMBB if the opcode is
JMP_1, but in this case we do:
JMP_1 @OUTLINED_FUNCTION
I believe we have to use TAILJMPd64 instead of JMP_1 since JMP_1 is used
with brtarget8.
Differential Revision: https://reviews.llvm.org/D49299
llvm-svn: 338237
Summary:
These instructions interact with hardware blocks outside the shader core,
and they can have "scalar" side effects even when EXEC = 0. We don't
want these scalar side effects to occur when all lanes want to skip
these instructions, so always add the execz skip branch instruction
for basic blocks that contain them.
Also ensure that we skip scalar stores / atomics, though we don't
code-gen those yet.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48431
Change-Id: Ieaeb58352e2789ffd64745603c14970c60819d44
llvm-svn: 338235
Code in `CC_ARM_AAPCS_Custom_Aggregate()` is responsible for handling
homogeneous aggregates for `CC_ARM_AAPCS_VFP`. When an aggregate ends up
fully on stack, the function tries to pack all resulting items of the
aggregate as tightly as possible according to AAPCS.
Once the first item was laid out, the alignment used for consecutive
items was the size of one item. This logic went wrong for 128-bit
vectors because their alignment is normally only 64 bits, and so could
result in inserting unexpected padding between the first and second
element.
The patch fixes the problem by updating the alignment with the item size
only if this results in reducing it.
Differential Revision: https://reviews.llvm.org/D49720
llvm-svn: 338233
There are a couple of issues you run into when you start getting into
more complex names, especially with regards to function local statics.
When you've got something like:
int x() {
static int n = 0;
return n;
}
Then this needs to demangle to something like
int `int __cdecl x()'::`1'::n
The nested mangled symbols (e.g. `int __cdecl x()` in the above
example) also share state with regards to back-referencing, so
we need to be able to re-use the demangler in the middle of
demangling a symbol while sharing back-ref state.
To make matters more complicated, there are a lot of ambiguities
when demangling a symbol's qualified name, because a function local
scope pattern (usually something like `?1??name?`) looks suspiciously
like many other possible things that can occur, such as `?1` meaning
the second back-ref and disambiguating these cases is rather
interesting. The `?1?` in a local scope pattern is actually a special
case of the more general pattern of `? + <encoded number> + ?`, where
"encoded number" can itself have embedded `@` symbols, which is a
common delimeter in mangled names. So we have to take care during the
disambiguation, which is the reason for the overly complicated
`isLocalScopePattern` function in this patch.
I've added some pretty obnoxious tests to exercise all of this, which
exposed several other problems related to back-referencing, so those
are fixed here as well. Finally, I've uncommented some tests that were
previously marked as `FIXME`, since now these work.
Differential Revision: https://reviews.llvm.org/D49965
llvm-svn: 338226
The DAGCombiner has a mechanism for ensuring all nodes have been visited at least once. Every time a node is visited, it makes sure its operands have been in the worklist at least once. This ensures that when multiple nodes are created by a combine, only the last node needs to be returned. The earlier nodes can all be found Through this operand check. These means we don't need to explicitly add nodes to the worklist when a combine creates multiple nodes.
I've removed the most obvious cases here. There are probably more than can be removed.
llvm-svn: 338222
These are reassociated versions of the same pattern and
similar transforms as in rL338200 and rL338118.
The motivation is identical to those commits:
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338221
We need to be able to initiate a nested demangling from inside
of an "outer" demangling. These need to be able to share some
state, such as back-references. As a result, we can't store
things like the output stream or the mangled name in the Demangler
class, since each demangling will have different values. So
remove this state and pass it through the necessary methods.
llvm-svn: 338219
Dsymutil's update functionality was broken on Windows because we tried
to rename a file while we're holding open handles to that file. TempFile
provides a solution for this through its keep(Twine) method. This patch
changes dsymutil to make use of that functionality.
Differential revision: https://reviews.llvm.org/D49860
llvm-svn: 338216
The WHILE instructions generate a predicate that is true while the
comparison of the first scalar operand (incremented for each predicate
element) with the second scalar operand is true and false thereafter.
WHILELE While incrementing signed scalar less than or equal to scalar
WHILELO While incrementing unsigned scalar lower than scalar
WHILELS While incrementing unsigned scalar lower than or same as scalar
WHILELT While incrementing signed scalar less than scalar
e.g.
whilele p0.s, x0, x1
generates predicate p0 (for 32bit elements) by incrementing
(signed) x0 and comparing that vector to splat(x1).
llvm-svn: 338211
The instructions added in this patch permit active elements within
a vector to be processed sequentially without unpacking the vector.
PFIRST Set the first active element to true.
PNEXT Find next active element in predicate.
CTERMEQ Compare and terminate loop when equal.
CTERMNE Compare and terminate loop when not equal.
llvm-svn: 338210
There are some very subtle differences between how one should
parse symbol names and type names. They differ with respect
to back-referencing, the set of legal values that can appear
as the unqualified portion, and various other aspects.
By separating the parsing code into separate paths, we can
remove a lot of ambiguity during the demangling process, which
is necessary for demangling more complicated things like
function local statics, nested classes, and lambdas.
llvm-svn: 338207
Add support for inline assembly with matching input operand that do not
naturally go in the register class it is constrained to (eg. double in a
32-bit GPR). Note that regular input is already handled by existing
code.
llvm-svn: 338206
This removes the need for an assert to ensure the pointer isn't null.
Years ago we had ifs the checked the pointer was non-null before very access to the vector. These checks were removed and replaced with a single assert. But a reference seems more suitable here.
llvm-svn: 338205
X86 normally requires immediates to be a signed 32-bit value which would exclude i64 0x80000000. But for add/sub we can negate the constant and use the opposite instruction.
llvm-svn: 338204
https://rise4fun.com/Alive/jDd
Patterns with add/sub combos can be improved using
'not' ops. This is better for analysis and may lead
to follow-on transforms because 'xor' and 'add' are
commutative/associative. It can also help codegen.
llvm-svn: 338200
This patch adds PFALSE (unconditionally sets all elements of
the predicate to false) and PTEST (set the status flags for the
predicate).
llvm-svn: 338198
SelectionDAGBuilder widens v3i32/v3f32 arguments to
to v4i32/v4f32 which consume an additional register.
In addition to wasting argument space, this produces extra
instructions since now it appears the 4th vector component has
a meaningful value to most combines.
llvm-svn: 338197
This patch adds support for instructions that partition a predicate
based on data-dependent termination conditions in a loop.
BRKA Break after the first true condition
BRKAS Break after the first true condition, setting condition flags
BRKB Break before the first true condition
BRKBS Break before the first true condition, setting condition flags
BRKPA Break after the first true condition, propagating from the
previous partition
BRKPAS Break after the first true condition, propagating from the
previous partition, setting condition flags
BRKPB Break before the first true condition, propagating from the
previous partition
BRKPBS Break before the first true condition, propagating from the
previous partition, setting condition flags
BRKN Propagate break to next partition
BKRNS Propagate break to next partition, setting condition flags
llvm-svn: 338196
We now, from clang, can turn arrays of
static short g_data[] = {16, 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0};
into structs of the form
@g_data = internal global <{ [8 x i16], [8 x i16] }> ...
GlobalOpt will incorrectly SROA it, not realising that the access to the first
element may overflow into the second. This fixes it by checking geps more
thoroughly.
I believe this makes the globalsra-partial.ll test case invalid as the %i value
could be out of bounds. I've re-purposed it as a negative test for this case.
Differential Revision: https://reviews.llvm.org/D49816
llvm-svn: 338192
Stack overflow on invalid. While collapsing references, we were skipping over a
cycle check in ForwardTemplateReference leading to a stack overflow. This commit
fixes the problem by duplicating the cycle check in ReferenceType.
llvm-svn: 338190
Summary:
Fixing 2 issues with the DT update in trivial branch switching, though I don't have a case where DT update fails.
1. After splitting ParentBB->UnswitchedBB edge, new edges become: ParentBB->LoopExitBB->UnswitchedBB, so remove ParentBB->LoopExitBB edge.
2. AFAIU, for multiple CFG changes, DT should be updated using batch updates, vs consecutive addEdge and removeEdge calls.
Reviewers: chandlerc, kuhar
Subscribers: sanjoy, jlebar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49925
llvm-svn: 338180
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D49160
llvm-svn: 338164
Fixed the ASAN failure from before in r338148, so recommiting.
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338160
There was a missing check for if a candidate list was entirely deleted. This
adds that check.
This fixes an asan failure caused by running test/CodeGen/AArch64/addsub_ext.ll
with the MachineOutliner enabled.
llvm-svn: 338148
This feature enables the fusion of such operations on Cortex A57 and Cortex
A72, as recommended in their Software Optimisation Guides, sections 4.14 and
4.11, respectively.
Differential revision: https://reviews.llvm.org/D49563
llvm-svn: 338147
Errors like the following are reported by:
https://urldefense.proofpoint.com/v2/url?u=http-3A__lab.llvm.org-3A8011_builders_llvm-2Dclang-2Dx86-5F64-2Dexpensive-2Dchecks-2Dwin_builds_11261&d=DwIBAg&c=5VD0RTtNlTh3ycd41b3MUw&r=DA8e1B5r073vIqRrFz7MRA&m=929oWPCf7Bf2qQnir4GBtowB8ZAlIRWsAdTfRkDaK-g&s=9k-wbEUVpUm474hhzsmAO29VXVvbxJPWD9RTgCD71fQ&e=
*** Bad machine code: Explicit definition marked as use ***
- function: cal_align1
- basic block: %bb.0 entry (0x47edd98)
- instruction: LDB $r3, $r2, 0
- operand 0: $r3
This is because RegState info was missing for ScratchReg inside
expandMEMCPY. This caused incomplete register usage information to
MachineInstr verifier which then would complain as there could be potential
code-gen issue if the complained MachineInstr is used in place where
register usage information matters even though the memcpy expanding is not
in such case as it happens at the last stage of IR optimization pipeline.
We should always specify those register usage information which compiler
couldn't deduct automatically whenever we add a hardware register manually.
Reported-by: Builder llvm-clang-x86_64-expensive-checks-win Build #11261
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 338134
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338133
This is a follow-up suggested in D48970.
Alive proofs:
https://rise4fun.com/Alive/sII
We can eliminate an instruction in the usual select-of-constants
to bit hack transform by adjusting the add/sub with constant.
This is always a win.
There are more transforms that are likely wins, but they may need
target hooks in case some targets do not benefit.
This is another step towards making up for canonicalizing to
select-of-constants in rL331486.
llvm-svn: 338132
R600 can't handle immediates for BFE, these will be eliminated later.
Fixes powr/pow regressions n r600 since r334817
Differential Revision: https://reviews.llvm.org/D49641
llvm-svn: 338127
This patch adds support for various integer reduction operations:
SADDV signed add reduction to scalar
UADDV unsigned add reduction to scalar
SMAXV signed maximum reduction to scalar
SMINV signed minimum reduction to scalar
UMAXV unsigned maximum reduction to scalar
UMINV unsigned minimum reduction to scalar
ANDV logical AND reduction to scalar
ORV logical OR reduction to scalar
EORV logical EOR reduction to scalar
The reduction is predicated, e.g.
smaxv s0, p0, z1.s
performs a signed maximum reduction on active elements in z1,
and stores the (signed max value) result in s0.
llvm-svn: 338126
This patch adds support for various floating-point
reduction operations:
FADDA strictly-ordered add reduction, accumulating in scalar
FADDV recursive add reduction to scalar
FMAXV recursive max reduction to scalar
FMINV recursive min reduction to scalar
FMAXNMV recursive max number reduction to scalar
FMINNMV recursive min number reduction to scalar
The reduction is predicated, e.g.
fadda d0, p0, d0, z1.d
performs the add-reduction in strict order on active elements
in z1, accumulating into d0.
faddv d0, p0, z1.d
performs the add-reduction (not in strict order)
on active elements in z1, storing the result in d0.
llvm-svn: 338123
This patch adds support for transcendental acceleration
instructions 'FEXPA' (exponential accelerator) and 'FTSSEL'
(trigonometric select coefficient).
llvm-svn: 338121
The tests with constants show a missing optimization.
Analysis for adds is better than subs, so this can also
help with other transforms. And codegen is better with
adds for targets like x86 (destructive ops, no sub-from).
https://rise4fun.com/Alive/llK
llvm-svn: 338118
This is a follow-up for the patch rL335020. When we replace compares against
trunc with compares against wide IV, we can also replace signed predicates with
unsigned where it is legal.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D48763
llvm-svn: 338115
Not sure why they were being explicitly excluded, but I believe all the math inside the if works. I changed the absolute value to be uint64_t instead of int64_t so INT64_MIN+1 wouldn't be signed wrap.
llvm-svn: 338101
Summary:
Some links were failing with "Global is external, but doesn't have
external or weak linkage!" in ThinLTO builds with debug
information. This happened when we elide the body of a global that is
referenced by debug info. This results in a declaration, which we
would then internalize - but declarations cannot be internal. This
change avoids the problem by not internalizing these declarations.
Fixes PR38046.
Reviewers: pcc, tejohnson
Subscribers: mehdi_amini, aprantl, hiraditya, JDevlieghere, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49777
llvm-svn: 338100
Summary:
This is the pattern you get from the loop vectorizer for something like this
int16_t A[1024];
int16_t B[1024];
int32_t C[512];
void pmaddwd() {
for (int i = 0; i != 512; ++i)
C[i] = (A[2*i]*B[2*i]) + (A[2*i+1]*B[2*i+1]);
}
In this case we will have (add (mul (build_vector), (build_vector)), (mul (build_vector), (build_vector))). This is different than the pattern we currently match which has the build_vectors between an add and a single multiply. I'm not sure what C code would get you that pattern.
Reviewers: RKSimon, spatel, zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49636
llvm-svn: 338097
If this happens the operands aren't updated and the existing node is returned. Make sure we pass this existing node up to the DAG combiner so that a proper replacement happens. Otherwise we get stuck in an infinite loop with an unoptimized node.
llvm-svn: 338090
Masked loads are calling DAG.getRoot rather than calling SelectionDAGBuilder::getRoot, which means the PendingLoads weren't emptied to update the root and create any needed TokenFactor. So it would be incorrect to call setRoot for the masked load.
This patch instead adds the masked load to PendingLoads so that the root doesn't get update until a store or scatter or something happens.. Alternatively, we could call SelectionDAGBuilder::getRoot before it, but that would create unnecessary serialization.
llvm-svn: 338085
Summary:
r262157 added ELF-specific logic to put a comdat on the __profc_*
globals created for available_externally functions. We should be able to
generalize that logic to all object file formats that support comdats,
i.e. everything other than MachO. This fixes duplicate symbol errors,
since on COFF, linkonce_odr doesn't make the symbol weak.
Fixes PR38251.
Reviewers: davidxl, xur
Subscribers: hiraditya, dmajor, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D49882
llvm-svn: 338082
The test failure was caused by the compiler not emitting a __debug_ranges section with DWARF 4 and
earlier when no ranges are needed. The test checks for the existence regardless.
llvm-svn: 338081
The DAGCombiner has a system for ensuring all nodes are visited. It doesn't require an AddToWorkList for every node that is created by a combine.
llvm-svn: 338079
Properly demangle function parameter back-references.
Previously we treated lists of function parameters and template
parameters the same. There are some important differences with regards
to back-references, and some less important differences regarding which
characters can appear before or after the name.
The important differences are that with a given type T, all instances of
a function parameter list share the same global back-ref table.
Specifically, if X and Y are function pointers, then there are 3
entities in the declaration X func(Y) which all affect and are affected
by the master parameter back-ref table:
1) The parameter list of X's function type
2) the parameter list of func itself
3) The parameter list of Y's function type.
The previous code would create a back-reference table that was local to
a single parameter list, so it would not be shared across parameter
lists.
This was discovered when porting ms-back-references.test from clang's
mangling tests. All of these tests should now pass with the new changes.
In doing so, I split the function for parsing template and function
parameters into two separate functions. This makes the template
parameter list parsing code in particular very small and easy to
understand now.
Differential Revision: https://reviews.llvm.org/D49875
llvm-svn: 338075
Summary:
In non-integral address spaces, we're not allowed to introduce inttoptr/ptrtoint
intrinsics. Instead, we need to expand any pointer arithmetic as geps on the
base pointer. Luckily this is a common task for SCEV, so all we have to do here
is hook up the corresponding helper function and add test case.
Fixes PR38290
Reviewers: sanjoy
Differential Revision: https://reviews.llvm.org/D49832
llvm-svn: 338073
Only wanting to pass a single SCEV operand to use as the offset of
the GEP is a common operation. Right now this requires creating a
temporary stack array at every call site. Add an overload
that encapsulates that pattern and simplify the call sites.
Suggested-By: sanjoy (in https://reviews.llvm.org/D49832)
llvm-svn: 338072
Summary:
The behavior of followCopyChain with a subreg depends on the order in
which subranges appear in a live interval, which is bad.
This commit fixes that, and allows the copy chain to continue only if
all matching subranges that are not undefined take us to the same def.
I don't have a test for this; the reproducer I had on my branch with
various other local changes does not reproduce the problem on upstream
llvm. Also that reproducer was an ll test; attempting to convert it to a
mir test made the subranges appear in a different order and hid the
problem.
However I would argue that the old behavior was obviously wrong
and needs fixing.
Subscribers: MatzeB, qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D49535
Change-Id: Iee7936ef305918f3b498ac432e2cf651ae5cc2df
llvm-svn: 338070
LowerDbgDeclare inserts a dbg.value before each use of an address
described by a dbg.declare. When inserting a dbg.value before a CallInst
use, however, it fails to append DW_OP_deref to the DIExpression.
The DW_OP_deref is needed to reflect the fact that a dbg.value describes
a source variable directly (as opposed to a dbg.declare, which relies on
pointer indirection).
This patch adds in the DW_OP_deref where needed. This results in the
correct values being shown during a debug session for a program compiled
with ASan and optimizations (see https://reviews.llvm.org/D49520). Note
that ConvertDebugDeclareToDebugValue is already correct -- no changes
there were needed.
One complication is that SelectionDAG is unable to distinguish between
direct and indirect frame-index (FRAMEIX) SDDbgValues. This patch also
fixes this long-standing issue in order to not regress integration tests
relying on the incorrect assumption that all frame-index SDDbgValues are
indirect. This is a necessary fix: the newly-added DW_OP_derefs cannot
be lowered properly otherwise. Basically the fix prevents a direct
SDDbgValue with DIExpression(DW_OP_deref) from being dereferenced twice
by a debugger. There were a handful of tests relying on this incorrect
"FRAMEIX => indirect" assumption which actually had incorrect
DW_AT_locations: these are all fixed up in this patch.
Testing:
- check-llvm, and an end-to-end test using lldb to debug an optimized
program.
- Existing unit tests for DIExpression::appendToStack fully cover the
new DIExpression::append utility.
- check-debuginfo (the debug info integration tests)
Differential Revision: https://reviews.llvm.org/D49454
llvm-svn: 338069
For function pointers, we would print something like
int __cdecl (*)(int)
We need to move the calling convention inside, and print
int (__cdecl *)(int)
This patch implements this change for regular function pointers as
well as member function pointers.
llvm-svn: 338068
This converts the arg qualifier mangling tests from
clang/CodeGenCXX/mangle-ms-arg-qualifiers.cpp to demangling tests.
Most tests already pass, so this patch doesn't come with any
functional change, just the addition of new tests. The few tests
that don't pass are left in with a FIXME label so that they don't
run but serve as documentation about what still doesn't work.
llvm-svn: 338067
After this patch, we can now properly demangle pointers to member
functions. The calling convention is located in the wrong place,
but this will be fixed in a followup since it also affects non
member function pointers.
Differential Revision: https://reviews.llvm.org/D49639
llvm-svn: 338065
Even though gas doesn't document it, it has been supported there for
a very long time.
This produces the 32 bit relative virtual address (aka image relative
address) for a given symbol. ".rva foo" is essentially equal to
".long foo@imgrel".
Differential Revision: https://reviews.llvm.org/D49821
llvm-svn: 338063
Scale the offset of VGPR spills by the wave size when it cannot fit in the
12-bit offset immediate field and so is added to the soffset SGPR. This
accounts for hardware swizzling of scratch memory.
Differential Revision: https://reviews.llvm.org/D49448
llvm-svn: 338060
- Save/restore only registers that are used.
This includes Callee saved registers and Caller saved registers
(arguments and temporaries) for integer and FP registers.
- If there is a call in the interrupt handler, save/restore all
Caller saved registers (arguments and temporaries) and all FP registers.
- Emit special return instructions depending on "interrupt"
attribute type.
Based on initial patch by Zhaoshi Zheng.
Reviewers: asb
Reviewed By: asb
Subscribers: rkruppe, the_o, MartinMosbeck, brucehoult, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, llvm-commits
Differential Revision: https://reviews.llvm.org/D48411
llvm-svn: 338047
When fusing instructions A and B, we must add all predecessors of B as
predecessors of A to avoid instructions getting scheduling in between.
There is a special case involving ExitSU: Every other node must be
scheduled before it by design and we don't need to make this explicit in
the graph, however when fusing with a different node we need to schedule
every othere node before the fused node too and we need to make this
explicit now: This patch adds a dependency from the fused node to all
roots in the graph.
Differential Revision: https://reviews.llvm.org/D49830
llvm-svn: 338046
Summary:
A follow-up for D49266 / rL337166.
At least one of these cases is more canonical,
so we really do have to handle it.
https://godbolt.org/g/pkzP3Xhttps://rise4fun.com/Alive/pQyhZZ
We won't get to these cases with I1 being -1,
as that will be constant-folded to true or false.
I'm also not sure we actually hit the 'ule' case,
but i think the worst think that could happen is that being dead code.
Reviewers: spatel, craig.topper, RKSimon, javed.absar, efriedma
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49497
llvm-svn: 338044
Summary:
NVPTX target dos not use register-based frame information. Instead it
relies on the artificial local_depot that is used instead of the frame
and the data for variables must be emitted relatively to this
local_depot.
Reviewers: tra, jlebar, echristo
Subscribers: jholewinski, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45963
llvm-svn: 338039
Summary:
For NVPTX target the value of `DW_AT_frame_base` attribute must be set
to `DW_OP_call_frame_cfa`.
Reviewers: tra, jlebar, echristo
Subscribers: jholewinski, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45785
llvm-svn: 338036
The standard library functions ::isprint/std::isprint have platform-
and locale-dependent behavior which makes LLVM's output less
predictable. In particular, regression tests my fail depending on the
implementation of these functions.
Implement llvm::isPrint in StringExtras.h with a standard behavior and
replace all uses of ::isprint/std::isprint by a call it llvm::isPrint.
The function is inlined and does not look up language settings so it
should perform better than the standard library's version.
Such a replacement has already been done for isdigit, isalpha, isxdigit
in r314883. gtest does the same in gtest-printers.cc using the following
justification:
// Returns true if c is a printable ASCII character. We test the
// value of c directly instead of calling isprint(), which is buggy on
// Windows Mobile.
inline bool IsPrintableAscii(wchar_t c) {
return 0x20 <= c && c <= 0x7E;
}
Similar issues have also been encountered by Julia:
https://github.com/JuliaLang/julia/issues/7416
I noticed the problem myself when on Windows isprint('\t') started to
evaluate to true (see https://stackoverflow.com/questions/51435249) and
thus caused several unit tests to fail. The result of isprint doesn't
seem to be well-defined even for ASCII characters. Therefore I suggest
to replace isprint by a platform-independent version.
Differential Revision: https://reviews.llvm.org/D49680
llvm-svn: 338034
Create a processHeaderPhiOperands for analysing the instructions
in the aft blocks that must be moved before the loop.
Differential Revision: https://reviews.llvm.org/D49061
llvm-svn: 338033
Previous version of this patch failed on darwin targets because of
different handling of cross-debug-section relocations. This fixes the
tests to emit the DW_AT_str_offsets_base attribute correctly in both
cases. Since doing this is a non-trivial amount of code, and I'm going
to need it in more than one test, I've added a helper function to the
dwarfgen DIE class to do it.
Original commit message follows:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 338031
- Some of the v8.3 pointer authentication instruction inhabit the Hint space
- These instructions can be assembled to hint instructions which act as NOP instructions prior to v8.3
- This patch permits using the hint instructions for all v8a targets
- Also, correct the RETA{A,B} instructions to match the instruction attributes of RET (set isTerminator and isBarrier)
Differential Revision: https://reviews.llvm.org/D49786
llvm-svn: 338029
On Windows when raw_fd_ostream::write_impl calls write, a 32 bit input
is required for character count. As a variable with size_t is used for
this argument on x64 integral demotion occurs. In the case of large
files an infinite loop follows.
See PR37926.
This fix allows the output of files larger than previous int32 limit.
Differential Revision: https://reviews.llvm.org/D48948
Patch by Owen Reynolds
Reviewed by: zturner
llvm-svn: 338027
Override getTypeForExtReturn so that functions returning
an i32 typed value have it sign extended on MIPS64.
Also provide patterns to get rid of unneeded sign extensions
for arithmetic instructions which implicitly sign extend
their results.
Differential Revision: https://reviews.llvm.org/D48374
llvm-svn: 338019
This reverts commit r337951.
While that kind of shared constant generally works fine in a MinGW
setting, it broke some cases of inline assembly that worked before:
$ cat const-asm.c
int MULH(int a, int b) {
int rt, dummy;
__asm__ (
"imull %3"
:"=d"(rt), "=a"(dummy)
:"a"(a), "rm"(b)
);
return rt;
}
int func(int a) {
return MULH(a, 1);
}
$ clang -target x86_64-win32-gnu -c const-asm.c -O2
const-asm.c:4:9: error: invalid variant '00000001'
"imull %3"
^
<inline asm>:1:15: note: instantiated into assembly here
imull __real@00000001(%rip)
^
A similar error is produced for i686 as well. The same test with a
target of x86_64-win32-msvc or i686-win32-msvc works fine.
llvm-svn: 338018
a helper function with a nice overview comment. NFC.
This is a preperatory refactoring to implementing another component of
mitigation here that was descibed in the design document but hadn't been
implemented yet.
llvm-svn: 338016
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010
I'm not sure if this was trying to avoid optimizing the new nodes further or what. Or maybe to prevent a cycle if something tried to reform the multiply? But I don't think its a reliable way to do that. If the user of the expanded multiply is visited by the DAGCombiner after this conversion happens, the DAGCombiner will check its operands, see that they haven't been visited by the DAGCombiner before and it will then add the first node to the worklist. This process will repeat until all the new nodes are visited.
So this seems like an unreliable prevention at best. So this patch just returns the new nodes like any other combine. If this starts causing problems we can try to add target specific nodes or something to more directly prevent optimizations.
Now that we handle the combine normally, we can combine any negates the mul expansion creates into their users since those will be visited now.
llvm-svn: 338007
These calls were making sure some newly created nodes were added to worklist, but the DAGCombiner has internal support for ensuring it has visited all nodes. Any time it visits a node it ensures the operands have been queued to be visited as well. This means if we only need to return the last new node. The DAGCombiner will take care of adding its inputs thus walking backwards through all the new nodes.
llvm-svn: 337996
The function in question is copy-pasted lots of times in DWARF-related classes.
Thus it will make sense to place its implementation into the Support library.
Reviewed by: lhames
Differential Revision: https://reviews.llvm.org/D49824
llvm-svn: 337995
- Remove unnecessary anchor function
- Remove unnecessary override of getAnalysisUsage
- Use reference instead of pointers where things cannot be nullptr
- Use ArrayRef instead of std::vector where possible
llvm-svn: 337989
- Avoid duplication of regmask size calculation.
- Simplify allocateRegisterMask() call.
- Rename allocateRegisterMask() to allocateRegMask() to be consistent
with naming in MachineOperand.
llvm-svn: 337986
Some BPF JIT backends would want to optimize memcpy in their own
architecture specific way.
However, at the moment, there is no way for JIT backends to see memcpy
semantics in a reliable way. This is due to LLVM BPF backend is expanding
memcpy into load/store sequences and could possibly schedule them apart from
each other further. So, BPF JIT backends inside kernel can't reliably
recognize memcpy semantics by peephole BPF sequence.
This patch introduce new intrinsic expand infrastructure to memcpy.
To get stable in-order load/store sequence from memcpy, we first lower
memcpy into BPF::MEMCPY node which then expanded into in-order load/store
sequences in expandPostRAPseudo pass which will happen after instruction
scheduling. By this way, kernel JIT backends could reliably recognize
memcpy through scanning BPF sequence.
This new memcpy expand infrastructure is gated by a new option:
-bpf-expand-memcpy-in-order
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 337977
Reuse the handling for llvm.used, and don't transform such globals.
Fixes a failure on the asan buildbot caused by my previous commit.
llvm-svn: 337973
If the DAGCombiner's rotate matching was working as expected,
I don't think we'd see any test diffs here.
This sidesteps the issue of custom lowering for rotates raised in PR38243:
https://bugs.llvm.org/show_bug.cgi?id=38243
...by only dealing with legal operations.
llvm-svn: 337966
In some cases LSV sees (load/store _ (select _ <pointer expression>
<pointer expression>)) patterns in input IR, often due to sinking and
other forms of CFG simplification, sometimes interspersed with
bitcasts and all-constant-indices GEPs. With this
patch`areConsecutivePointers` method would attempt to handle select
instructions. This leads to an increased number of successful
vectorizations.
Technically, select instructions could appear in index arithmetic as
well, however, we don't see those in our test suites / benchmarks.
Also, there is a lot more freedom in IR shapes computing integral
indices in general than in what's common in pointer computations, and
it appears that it's quite unreliable to do anything short of making
select instructions first class citizens of Scalar Evolution, which
for the purposes of this patch is most definitely an overkill.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49428
llvm-svn: 337965
Instead of depending on implicit padding from the structure layout code,
use a packed struct and emit the padding explicitly.
Differential Revision: https://reviews.llvm.org/D49710
llvm-svn: 337961
GNU binutils tools have no problems with this kind of shared constants,
provided that we actually hook it up completely in AsmPrinter and
produce a global symbol.
This effectively reverts SVN r335918 by hooking the rest of it up
properly.
This feature was implemented originally in SVN r213006, with no reason
for why it can't be used for MinGW other than the fact that GCC doesn't
do it while MSVC does.
Differential Revision: https://reviews.llvm.org/D49646
llvm-svn: 337951
In SVN r334523, the first half of comdat constant pool handling was
hoisted from X86WindowsTargetObjectFile (which despite the name only
was used for msvc targets) into the arch independent
TargetLoweringObjectFileCOFF, but the other half of the handling was
left behind in X86AsmPrinter::GetCPISymbol.
With only half of the handling in place, inconsistent comdat
sections/symbols are created, causing issues with both GNU binutils
(avoided for X86 in SVN r335918) and with the MS linker, which
would complain like this:
fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0x4
Differential Revision: https://reviews.llvm.org/D49644
llvm-svn: 337950
Saves materializing the immediate for the "ands".
Corresponding patterns exist for lsrs+lsls, but that seems less common
in practice.
Now implemented as a DAGCombine.
Differential Revision: https://reviews.llvm.org/D49585
llvm-svn: 337945
as well as sext(C + x + ...) -> (D + sext(C-D + x + ...))<nuw><nsw>
similar to the equivalent transformation for zext's
if the top level addition in (D + (C-D + x * n)) could be proven to
not wrap, where the choice of D also maximizes the number of trailing
zeroes of (C-D + x * n), ensuring homogeneous behaviour of the
transformation and better canonicalization of such AddRec's
(indeed, there are 2^(2w) different expressions in `B1 + ext(B2 + Y)` form for
the same Y, but only 2^(2w - k) different expressions in the resulting `B3 +
ext((B4 * 2^k) + Y)` form, where w is the bit width of the integral type)
This patch generalizes sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and
sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformations added in
r209568 relaxing the requirements the following way:
1. C2 doesn't have to be a power of 2, it's enough if it's divisible by 2
a sufficient number of times;
2. C1 doesn't have to be less than C2, instead of extracting the entire
C1 we can split it into 2 terms: (00...0XXX + YY...Y000), keep the
second one that may cause wrapping within the extension operator, and
move the first one that doesn't affect wrapping out of the extension
operator, enabling further simplifications;
3. C1 and C2 don't have to be positive, splitting C1 like shown above
produces a sum that is guaranteed to not wrap, signed or unsigned;
4. in AddExpr case there could be more than 2 terms, and in case of
AddExpr the 2nd and following terms and in case of AddRecExpr the
Step component don't have to be in the C2*X form or constant
(respectively), they just need to have enough trailing zeros,
which in turn could be guaranteed by means other than arithmetics,
e.g. by a pointer alignment;
5. the extension operator doesn't have to be a sext, the same
transformation works and profitable for zext's as well.
Apparently, optimizations like SLPVectorizer currently fail to
vectorize even rather trivial cases like the following:
double bar(double *a, unsigned n) {
double x = 0.0;
double y = 0.0;
for (unsigned i = 0; i < n; i += 2) {
x += a[i];
y += a[i + 1];
}
return x * y;
}
If compiled with `clang -std=c11 -Wpedantic -Wall -O3 main.c -S -o - -emit-llvm`
(!{!"clang version 7.0.0 (trunk 337339) (llvm/trunk 337344)"})
it produces scalar code with the loop not unrolled with the unsigned `n` and
`i` (like shown above), but vectorized and unrolled loop with signed `n` and
`i`. With the changes made in this commit the unsigned version will be
vectorized (though not unrolled for unclear reasons).
How it all works:
Let say we have an AddExpr that looks like (C + x + y + ...), where C
is a constant and x, y, ... are arbitrary SCEVs. Let's compute the
minimum number of trailing zeroes guaranteed of that sum w/o the
constant term: (x + y + ...). If, for example, those terms look like
follows:
i
XXXX...X000
YYYY...YY00
...
ZZZZ...0000
then the rightmost non-guaranteed-zero bit (a potential one at i-th
position above) can change the bits of the sum to the left (and at
i-th position itself), but it can not possibly change the bits to the
right. So we can compute the number of trailing zeroes by taking a
minimum between the numbers of trailing zeroes of the terms.
Now let's say that our original sum with the constant is effectively
just C + X, where X = x + y + .... Let's also say that we've got 2
guaranteed trailing zeros for X:
j
CCCC...CCCC
XXXX...XX00 // this is X = (x + y + ...)
Any bit of C to the left of j may in the end cause the C + X sum to
wrap, but the rightmost 2 bits of C (at positions j and j - 1) do not
affect wrapping in any way. If the upper bits cause a wrap, it will be
a wrap regardless of the values of the 2 least significant bits of C.
If the upper bits do not cause a wrap, it won't be a wrap regardless
of the values of the 2 bits on the right (again).
So let's split C to 2 constants like follows:
0000...00CC = D
CCCC...CC00 = (C - D)
and represent the whole sum as D + (C - D + X). The second term of
this new sum looks like this:
CCCC...CC00
XXXX...XX00
----------- // let's add them up
YYYY...YY00
The sum above (let's call it Y)) may or may not wrap, we don't know,
so we need to keep it under a sext/zext. Adding D to that sum though
will never wrap, signed or unsigned, if performed on the original bit
width or the extended one, because all that that final add does is
setting the 2 least significant bits of Y to the bits of D:
YYYY...YY00 = Y
0000...00CC = D
----------- <nuw><nsw>
YYYY...YYCC
Which means we can safely move that D out of the sext or zext and
claim that the top-level sum neither sign wraps nor unsigned wraps.
Let's run an example, let's say we're working in i8's and the original
expression (zext's or sext's operand) is 21 + 12x + 8y. So it goes
like this:
0001 0101 // 21
XXXX XX00 // 12x
YYYY Y000 // 8y
0001 0101 // 21
ZZZZ ZZ00 // 12x + 8y
0000 0001 // D
0001 0100 // 21 - D = 20
ZZZZ ZZ00 // 12x + 8y
0000 0001 // D
WWWW WW00 // 21 - D + 12x + 8y = 20 + 12x + 8y
therefore zext(21 + 12x + 8y) = (1 + zext(20 + 12x + 8y))<nuw><nsw>
This approach could be improved if we move away from using trailing
zeroes and use KnownBits instead. For instance, with KnownBits we could
have the following picture:
i
10 1110...0011 // this is C
XX X1XX...XX00 // this is X = (x + y + ...)
Notice that some of the bits of X are known ones, also notice that
known bits of X are interspersed with unknown bits and not grouped on
the rigth or left.
We can see at the position i that C(i) and X(i) are both known ones,
therefore the (i + 1)th carry bit is guaranteed to be 1 regardless of
the bits of C to the right of i. For instance, the C(i - 1) bit only
affects the bits of the sum at positions i - 1 and i, and does not
influence if the sum is going to wrap or not. Therefore we could split
the constant C the following way:
i
00 0010...0011 = D
10 1100...0000 = (C - D)
Let's compute the KnownBits of (C - D) + X:
XX1 1 = carry bit, blanks stand for known zeroes
10 1100...0000 = (C - D)
XX X1XX...XX00 = X
--- -----------
XX X0XX...XX00
Will this add wrap or not essentially depends on bits of X. Adding D
to this sum, however, is guaranteed to not to wrap:
0 X
00 0010...0011 = D
sX X0XX...XX00 = (C - D) + X
--- -----------
sX XXXX XX11
As could be seen above, adding D preserves the sign bit of (C - D) +
X, if any, and has a guaranteed 0 carry out, as expected.
The more bits of (C - D) we constrain, the better the transformations
introduced here canonicalize expressions as it leaves less freedom to
what values the constant part of ((C - D) + x + y + ...) can take.
Reviewed By: mzolotukhin, efriedma
Differential Revision: https://reviews.llvm.org/D48853
llvm-svn: 337943
When VectorLegalizer::LegalizeOp creates a new SDValue after iterating
over its arguments, we need to refer to the same result number of the
new node that the original value used.
Reviewed by: cameron.mcinally
Differential Revision: https://reviews.llvm.org/D49805
llvm-svn: 337939
Currently ComputeNumSignBits does early exit while processing some
of the operations (add, sub, mul, and select). This prevents the
function from using AssumptionCacheTracker if passed.
Differential Revision: https://reviews.llvm.org/D49759
llvm-svn: 337936
For example v = <2 x i1> is represented as bbbbaaaa in a predicate register,
where b = v[1], a = v[0]. Extracting v[1] is equivalent to extracting bit 4
from the predicate register.
llvm-svn: 337934
This recommits r337910 after fixing an "ambiguous call to addAttribute"
error with some compilers (gcc circa 4.9 and MSVC). It seems that these
compilers will consider a "false -> pointer" conversion during overload
resolution. This creates ambiguity because one I added an overload which
takes a MCExpr * as an argument.
I fix this by making the new overload take MCExpr&, which avoids the
conversion. It also documents the fact that we expect a valid MCExpr
object.
Original commit message follows:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 337933
Initially, in https://reviews.llvm.org/D44890, I had these defined as
empty functions inside the header when the respective event listener
was not built in. As done in that commit, that wasn't correct, because
it was a ODR violation. Krasimir hot-fixed that in r333265, but that
wasn't quite right either, because it'd lead to the symbol not being
available.
Instead just move the fallbacksto ExecutionEngineBindings.cpp. Could
define them as static inlines in the header too, but I don't think it
matters.
Reviewers: whitequark
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49654
llvm-svn: 337930
This reverts commit r337910 as it's generating "ambiguous call to
addAttribute" errors on some bots.
Will resubmit once I get a chance to look into the problem.
llvm-svn: 337924
Add support for lowering pointer arguments.
Changing type from pointer to integer is already done in
MipsTargetLowering::getRegisterTypeForCallingConv.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D49419
llvm-svn: 337912
Summary:
The motivation for this is D49493, where we'd like to test details of
debug_str_offsets behavior which is difficult to trigger from a
traditional test.
This adds the plubming necessary for dwarfgen to generate this section.
The more interesting changes are:
- I've moved emitStringOffsetsTableHeader function from DwarfFile to
DwarfStringPool, so I can generate the section header more easily from
the unit test.
- added a new addAttribute overload taking an MCExpr*. This is used to
generate the DW_AT_str_offsets_base, which links a compile unit to the
offset table.
I've also added a basic test for reading and writing DW_form_strx forms.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D49670
llvm-svn: 337910
NFC changes to make scheduler TableGen files more readable, by using loops
instead of a lot of similar defs with just e.g. a latency value that changes.
https://reviews.llvm.org/D49598
Review: Ulrich Weigand, Javed Abshar
llvm-svn: 337909
r337828 resolves a PredicateInfo issue with unnamed types.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 337904
Add support for inline assembly with output operand that do not
naturally go in the register class it is constrained to (eg. double in a
32-bit GPR as in the PR).
llvm-svn: 337903
code.
This consolidates all our hardening calls, and simplifies the code
a bit. It seems much more clear to handle all of these together.
No functionality changed here.
llvm-svn: 337895
This function actually does two things: it traces the predicate state
through each of the basic blocks in the function (as that isn't directly
handled by the SSA updater) *and* it hardens everything necessary in the
block as it goes. These need to be done together so that we have the
currently active predicate state to use at each point of the hardening.
However, this also made obvious that the flag to disable actual
hardening of loads was flawed -- it also disabled tracing the predicate
state across function calls within the body of each block. So this patch
sinks this debugging flag test to correctly guard just the hardening of
loads.
Unless load hardening was disabled, no functionality should change with
tis patch.
llvm-svn: 337894
The target independent AsmParser doesn't recognise .hword, .word, .dword
which are required for Mips. Currently MipsAsmParser recognises these
through dispatch to MipsAsmParser::parseDataDirective. This contains
equivalent logic to AsmParser::parseDirectiveValue. This patch allows
reuse of AsmParser::parseDirectiveValue by making use of
addAliasForDirective to support .hword, .word and .dword.
Original patch provided by Alex Bradbury at D47001 was modified to fix
handling of microMIPS symbols. The `AsmParser::parseDirectiveValue`
calls either `EmitIntValue` or `EmitValue`. In this patch we override
`EmitIntValue` in the `MipsELFStreamer` to clear a pending set of
microMIPS symbols.
Differential revision: https://reviews.llvm.org/D49539
llvm-svn: 337893
Summary:
Previously, passes use
```
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
DTU.deleteBB(DelBB);
```
to delete a BasicBlock.
But passes which don't have the ability to update DomTree (e.g. tailcallelim, simplifyCFG) cannot recognize a DelBB awaiting deletion and will continue to process this DelBB.
This is a simple approach to notify devs of passes which may use DTU in the future to deal with deleted BasicBlocks under Lazy Strategy correctly.
Reviewers: kuhar, brzycki, dmgreen
Reviewed By: kuhar
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49731
llvm-svn: 337891
Summary:
This is a follow-up to r303043. In computeMapping(), we need to disqualify an
InstrMapping if it would be impossible to repair one of the registers in the
instruction to match the mapping.
This change is needed in order to be able to define an instruction
mapping for G_SELECT for the AMDGPU target and will be tested
by test/CodeGen/AMDGPU/GlobalISel/regbankselect-select.mir
Reviewers: ab, qcolombet, t.p.northover, dsanders
Reviewed By: qcolombet
Subscribers: tpr, llvm-commits
Differential Revision: https://reviews.llvm.org/D49735
llvm-svn: 337882
This ports the profiling runtime on Fuchsia and enables the
instrumentation. Unlike on other platforms, Fuchsia doesn't use
files to dump the instrumentation data since on Fuchsia, filesystem
may not be accessible to the instrumented process. We instead use
the data sink to pass the profiling data to the system the same
sanitizer runtimes do.
Differential Revision: https://reviews.llvm.org/D47208
llvm-svn: 337881
against v1.2 BCBS attacks directly.
Attacks using spectre v1.2 (a subset of BCBS) are described in the paper
here:
https://people.csail.mit.edu/vlk/spectre11.pdf
The core idea is to speculatively store over the address in a vtable,
jumptable, or other target of indirect control flow that will be
subsequently loaded. Speculative execution after such a store can
forward the stored value to subsequent loads, and if called or jumped
to, the speculative execution will be steered to this potentially
attacker controlled address.
Up until now, this could be mitigated by enableing retpolines. However,
that is a relatively expensive technique to mitigate this particular
flavor. Especially because in most cases SLH will have already mitigated
this. To fully mitigate this with SLH, we need to do two core things:
1) Unfold loads from calls and jumps, allowing the loads to be post-load
hardened.
2) Force hardening of incoming registers even if we didn't end up
needing to harden the load itself.
The reason we need to do these two things is because hardening calls and
jumps from this particular variant is importantly different from
hardening against leak of secret data. Because the "bad" data here isn't
a secret, but in fact speculatively stored by the attacker, it may be
loaded from any address, regardless of whether it is read-only memory,
mapped memory, or a "hardened" address. The only 100% effective way to
harden these instructions is to harden the their operand itself. But to
the extent possible, we'd like to take advantage of all the other
hardening going on, we just need a fallback in case none of that
happened to cover the particular input to the control transfer
instruction.
For users of SLH, currently they are paing 2% to 6% performance overhead
for retpolines, but this mechanism is expected to be substantially
cheaper. However, it is worth reminding folks that this does not
mitigate all of the things retpolines do -- most notably, variant #2 is
not in *any way* mitigated by this technique. So users of SLH may still
want to enable retpolines, and the implementation is carefuly designed to
gracefully leverage retpolines to avoid the need for further hardening
here when they are enabled.
Differential Revision: https://reviews.llvm.org/D49663
llvm-svn: 337878
Summary: truncateToMinimalBitWidths() doesn't handle all Instructions and the worst case is compiler crash via llvm_unreachable(). Fix is to add a case to handle PHINode and changed the worst case to NO-OP (from compiler crash).
Reviewers: sbaranga, mssimpso, hsaito
Reviewed By: hsaito
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49461
llvm-svn: 337861
if the top level addition in (D + (C-D + x + ...)) could be proven to
not wrap, where the choice of D also maximizes the number of trailing
zeroes of (C-D + x + ...), ensuring homogeneous behaviour of the
transformation and better canonicalization of such expressions.
This enables better canonicalization of expressions like
1 + zext(5 + 20 * %x + 24 * %y) and
zext(6 + 20 * %x + 24 * %y)
which get both transformed to
2 + zext(4 + 20 * %x + 24 * %y)
This pattern is common in address arithmetics and the transformation
makes it easier for passes like LoadStoreVectorizer to prove that 2 or
more memory accesses are consecutive and optimize (vectorize) them.
Reviewed By: mzolotukhin
Differential Revision: https://reviews.llvm.org/D48853
llvm-svn: 337859
We generated a subtract for the power of 2 minus one then negated the result. The negate can be optimized away by swapping the subtract operands, but DAG combine doesn't know how to do that and we don't add any of the new nodes to the worklist anyway.
This patch makes use explicitly emit the swapped subtract.
llvm-svn: 337858
Use a left shift and 2 subtracts like we do for 30. Move this out from behind the slow lea check since it doesn't even use an LEA.
Use this for multiply by 14 as well.
llvm-svn: 337856
Just some gardening here.
Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.
Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.
llvm-svn: 337848
When building with LTO, builtin functions that are defined but whose calls have not been inserted yet, get internalized. The Global Dead Code Elimination phase in the new LTO implementation then removes these function definitions. Later optimizations add calls to those functions, and the linker then dies complaining that there are no definitions. This CL fixes the new LTO implementation to check if a function is builtin, and if so, to not internalize (and later DCE) the function. As part of this fix I needed to move the RuntimeLibcalls.{def,h} files from the CodeGen subidrectory to the IR subdirectory. I have updated all the files that accessed those two files to access their new location.
Fixes PR34169
Patch by Caroline Tice!
Differential Revision: https://reviews.llvm.org/D49434
llvm-svn: 337847
Summary:
Enabling this fully exposes a latent bug in the instruction folding: we
never update the register constraints for the register operands when
fusing a load into another operation. The fused form could, in theory,
have different register constraints on its operands. And in fact,
TCRETURNm* needs its memory operands to use tailcall compatible
registers.
I've updated the folding code to re-constrain all the registers after
they are mapped onto their new instruction.
However, we still can't enable folding in the general case from
TCRETURNr* to TCRETURNm* because doing so may require more registers to
be available during the tail call. If the call itself uses all but one
register, and the folded load would require both a base and index
register, there will not be enough registers to allocate the tail call.
It would be better, IMO, to teach the register allocator to *unfold*
TCRETURNm* when it runs out of registers (or specifically check the
number of registers available during the TCRETURNr*) but I'm not going
to try and solve that for now. Instead, I've just blocked the forward
folding from r -> m, leaving LLVM free to unfold from m -> r as that
doesn't introduce new register pressure constraints.
The down side is that I don't have anything that will directly exercise
this. Instead, I will be immediately using this it my SLH patch. =/
Still worse, without allowing the TCRETURNr* -> TCRETURNm* fold, I don't
have any tests that demonstrate the failure to update the memory operand
register constraints. This patch still seems correct, but I'm nervous
about the degree of testing due to this.
Suggestions?
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49717
llvm-svn: 337845
When we inline a function with a min-legal-vector-width attribute we need to make sure the caller also ends up with at least that vector width.
This patch is necessary to make always_inline functions like intrinsics propagate their min-legal-vector-width. Though nothing uses min-legal-vector-width yet.
A future patch will add heuristics to preventing inlining with different vector width mismatches. But that code would need to be in inline cost analysis which is separate from the code added here.
Differential Revision: https://reviews.llvm.org/D49162
llvm-svn: 337844
Before this, TCI contained all the call information for each Candidate.
This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.
A follow-up patch for the AArch64 outliner will demonstrate this.
llvm-svn: 337840
Having the missed remark code in the middle of `findCandidates` made the
function hard to follow. This yanks that out into a new function,
`emitNotOutliningCheaperRemark`.
llvm-svn: 337839
Just some simple gardening to improve clarity.
Before, we had something along the lines of
1) Create a std::vector of Candidates
2) Create an OutlinedFunction
3) Create a std::vector of pointers to Candidates
4) Copy those over to the OutlinedFunction and the Candidate list
Now, OutlinedFunctions create the Candidate pointers. They're still copied
over to the main list of Candidates, but it makes it a bit clearer what's
going on.
llvm-svn: 337838
This patch uses SCEV to avoid inserting some bounds checks when they are not needed. This slightly improves the performance of code compiled with the bounds check sanitizer.
Differential Revision: https://reviews.llvm.org/D49602
llvm-svn: 337830
This is a workaround and it would be better to fix this generally, but
doing it generally is quite tricky. See D48541 and PR38117.
Doing it in PredicateInfo directly allows us to use the type address to
differentiate different unnamed types, because neither the created
declarations nor the ssa_copy calls should be visible after
PredicateInfo got destroyed.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D49126
llvm-svn: 337828
For the final DTPREL addition, rather than a lui/daddiu/daddu triple,
LLVM was erronously emitting a daddiu/daddiu pair, treating the %dtprel_hi
as if it were a %dtprel_lo, since Mips::Hi expands unshifted for Sym64.
Instead, use a new TlsHi node and, although unnecessary due to the exact
structure of the nodes emitted, use TlsHi for local exec too to prevent
future bugs. Also garbage-collect the unused TprelLo and TlsGd nodes,
and TprelHi since its functionality is provided by the new common TlsHi node.
Patch by James Clarke.
Differential revision: https://reviews.llvm.org/D49259
llvm-svn: 337827
helper and restructure the post-load hardening to use this.
This isn't as trivial as I would have liked because the post-load
hardening used a trick that only works for it where it swapped in
a temporary register to the load rather than replacing anything.
However, there is a simple way to do this without that trick that allows
this to easily reuse a friendly API for hardening a value in a register.
That API will in turn be usable in subsequent patcehs.
This also techincally changes the position at which we insert the subreg
extraction for the predicate state, but that never resulted in an actual
instruction and so tests don't change at all.
llvm-svn: 337825
ARM Stage 2 builders have been suspiciously broken since the pass was
committed. Disabling to hopefully fix the bots and give me time to
debug.
llvm-svn: 337821
SmallVectorTemplateCommon wants to know the address of the first element
so it can detect whether it's in "small size" mode.
The old implementation split the small array, creating the storage for
the first element in SmallVectorTemplateCommon, and pulling the rest
into SmallVectorStorage where we know the size of the array. This
bloats SmallVector size 0 by the larger of sizeof(void*) and sizeof(T),
and we're not even using the storage.
The new implementation leaves the full small storage to
SmallVectorStorage. To calculate the offset of the first element in
SmallVectorTemplateCommon, we just need to know how far to jump, which
we can calculate out-of-band. One subtlety is that we need
SmallVectorStorage to be properly aligned even when the size is 0, to be
sure that (for large alignments) we actually have the padding and it's
well defined to do the pointer math.
llvm-svn: 337820
There are two forms for label debug information in DWARF format.
1. Labels in a non-inlined function:
DW_TAG_label
DW_AT_name
DW_AT_decl_file
DW_AT_decl_line
DW_AT_low_pc
2. Labels in an inlined function:
DW_TAG_label
DW_AT_abstract_origin
DW_AT_low_pc
We will collect label information from DBG_LABEL. Before every DBG_LABEL,
we will generate a temporary symbol to denote the location of the label.
The symbol could be used to get DW_AT_low_pc afterwards. So, we create a
mapping between 'inlined label' and DBG_LABEL MachineInstr in DebugHandlerBase.
The DBG_LABEL in the mapping is used to query the symbol before it.
The AbstractLabels in DwarfCompileUnit is used to process labels in inlined
functions.
We also keep a mapping between scope and labels in DwarfFile to help to
generate correct tree structure of DIEs.
Differential Revision: https://reviews.llvm.org/D45556
Patch by Hsiangkai Wang.
llvm-svn: 337799
Summary:
We were marking G_EXTRACT operations unsupported if the output type
was larger than the input type. I don't see how this could ever actually
happen, so I dropped the constraint. Doing this makes it possible to
reuse the same legality code for G_INSERT.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, rovka, kristof.beyls, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D49600
llvm-svn: 337794
This new JIT event listener supports generating profiling data for
the linux 'perf' profiling tool, allowing it to generate function and
instruction level profiles.
Currently this functionality is not enabled by default, but must be
enabled with LLVM_USE_PERF=yes. Given that the listener has no
dependencies, it might be sensible to enable by default once the
initial issues have been shaken out.
I followed existing precedent in registering the listener by default
in lli. Should there be a decision to enable this by default on linux,
that should probably be changed.
Please note that until https://reviews.llvm.org/D47343 is resolved,
using this functionality with mcjit rather than orcjit will not
reliably work.
Disregarding the previous comment, here's an example:
$ cat /tmp/expensive_loop.c
bool stupid_isprime(uint64_t num)
{
if (num == 2)
return true;
if (num < 1 || num % 2 == 0)
return false;
for(uint64_t i = 3; i < num / 2; i+= 2) {
if (num % i == 0)
return false;
}
return true;
}
int main(int argc, char **argv)
{
int numprimes = 0;
for (uint64_t num = argc; num < 100000; num++)
{
if (stupid_isprime(num))
numprimes++;
}
return numprimes;
}
$ clang -ggdb -S -c -emit-llvm /tmp/expensive_loop.c -o
/tmp/expensive_loop.ll
$ perf record -o perf.data -g -k 1 ./bin/lli -jit-kind=mcjit /tmp/expensive_loop.ll 1
$ perf inject --jit -i perf.data -o perf.jit.data
$ perf report -i perf.jit.data
- 92.59% lli jitted-5881-2.so [.] stupid_isprime
stupid_isprime
main
llvm::MCJIT::runFunction
llvm::ExecutionEngine::runFunctionAsMain
main
__libc_start_main
0x4bf6258d4c544155
+ 0.85% lli ld-2.27.so [.] do_lookup_x
And line-level annotations also work:
│ for(uint64_t i = 3; i < num / 2; i+= 2) {
│1 30: movq $0x3,-0x18(%rbp)
0.03 │1 38: mov -0x18(%rbp),%rax
0.03 │ mov -0x10(%rbp),%rcx
│ shr $0x1,%rcx
3.63 │ ┌──cmp %rcx,%rax
│ ├──jae 6f
│ │ if (num % i == 0)
0.03 │ │ mov -0x10(%rbp),%rax
│ │ xor %edx,%edx
89.00 │ │ divq -0x18(%rbp)
│ │ cmp $0x0,%rdx
0.22 │ │↓ jne 5f
│ │ return false;
│ │ movb $0x0,-0x1(%rbp)
│ │↓ jmp 73
│ │ }
3.22 │1 5f:│↓ jmp 61
│ │ for(uint64_t i = 3; i < num / 2; i+= 2) {
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D44892
llvm-svn: 337789
This code was really nasty, had several bugs in it originally, and
wasn't carrying its weight. While on Zen we have all 4 ports available
for SHRX, on all of the Intel parts with Agner's tables, SHRX can only
execute on 2 ports, giving it 1/2 the throughput of OR.
Worse, all too often this pattern required two SHRX instructions in
a chain, hurting the critical path by a lot.
Even if we end up needing to safe/restore EFLAGS, that is no longer so
bad. We pay for a uop to save the flag, but we very likely get fusion
when it is used by forming a test/jCC pair or something similar. In
practice, I don't expect the SHRX to be a significant savings here, so
I'd like to avoid the complex code required. We can always resurrect
this if/when someone has a specific performance issue addressed by it.
llvm-svn: 337781
Summary: SmallVector's elements are moved when resizing and cause use-after-free.
Reviewers: probinson, dblaikie
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D49702
llvm-svn: 337772
The intent is to use it for location list tables as well. Change is almost NFC with the exception
of the spelling of some strings used during dumping (all lowercase now).
Reviewer: JDevlieghere
Differential Revision: https://reviews.llvm.org/D49500
llvm-svn: 337763
Summary:
Similar to what lld already does for dllimport symbols which are
prefaced with __imp_ (see lld patch r240620), strip off the __imp_
prefix in LTO. Otherwise we can get 2 separate GlobalResolution for
a single symbol, the dllimport declaration, and the definition, which
leads to incorrect LTO handling.
Fixes PR38105.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49138
llvm-svn: 337762
We really should set *status to memory_alloc_failure, but we need to refactor
the demangler a bit to properly propagate the failure up the stack. Until then,
its better to explicitly terminate then rely on a null dereference crash.
rdar://31240372
llvm-svn: 337759
This actually has nothing to do with the associative comdat sections
that aren't supported by GNU binutils ld.
Clarify the comments from SVN r335918 and use a separate flag for it.
Differential Revision: https://reviews.llvm.org/D49645
llvm-svn: 337757
Since SVN r335286, the .xdata sections are produced without an attached
symbol, which requires using a different syntax when printing assembly
output.
Instead of the usual syntax of '.section <name>,"dr",discard,<symbol>',
use '.section <name>,"dr"' + '.linkonce discard' (which is what GCC
uses for all assembly output).
This fixes PR38254.
Differential Revision: https://reviews.llvm.org/D49651
llvm-svn: 337756
This matches the structure used on X86 and ARM. This requires
a little bit of duplication of the parts that are equal in both
AArch64 COFF variants though.
Before SVN r335286, these classes didn't add anything that MCAsmInfoCOFF
didn't, but now they do.
This makes AArch64 match X86 in how comdat is used for float constants
for MinGW.
Differential Revision: https://reviews.llvm.org/D49637
llvm-svn: 337755
Summary:
Without this change, the WholeProgramDevirt pass, which requires the
TargetLibraryInfo, will construct one from the default triple.
Fixes PR38139.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49278
llvm-svn: 337750
This patch makes debug counters keep track of the total number of times
we've called `shouldExecute` for each counter, so it's easier to build
automated tooling on top of these.
A patch to print these counts is coming soon.
Patch by Zhizhou Yang!
Differential Revision: https://reviews.llvm.org/D49560
llvm-svn: 337748
Summary:
Check if the parent basic block and caller exists
before calling CS.getCaller when constant folding
strip.invariant.group instrinsic.
This avoids a crash when the function containing the intrinsic
is being inlined. The instruction is checked for any simplifiction
but has not yet been added to a basic block.
Reviewers: Prazek, rsmith, efriedma
Reviewed By: efriedma
Subscribers: eraman, llvm-commits
Differential Revision: https://reviews.llvm.org/D49690
llvm-svn: 337742
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.
llvm-svn: 337740
RegScavenger::unprocess walks backward, so it should undo the effects
of defs before undoing effects of kills. Previously it did things in
the opposite order, leaving a register apparently unused (dead) in the
case where an instruction both used (killed) and defined a register.
Differential Revision: https://reviews.llvm.org/D42200
llvm-svn: 337735
Summary:
OpChain has subclasses, so add a virtual destructor.
This fixes an issue when deleting subclasses of OpChain (see MatchSMLAD() specifically) in r337701.
Reviewers: javed.absar
Subscribers: llvm-commits, SjoerdMeijer, samparker
Differential Revision: https://reviews.llvm.org/D49681
llvm-svn: 337713
In preparing to allow ARMParallelDSP pass to parallelise more than
smlads, I've restructed some elements:
- The ParallelMAC struct has been renamed to BinOpChain.
- The BinOpChain struct holds two value lists: LHS and RHS, as well
as inheriting from the OpChain base class.
- The OpChain struct holds all the values of the represented chain
and has had the memory locations functionality inserted into it.
- ParallelMACList becomes OpChainList and it now holds pointers
instead of objects.
Differential Revision: https://reviews.llvm.org/D49020
llvm-svn: 337701
Two minor issues: The new MCD SchedWrite name does not contain "Unit" like
all the others, so a check is needed. Also, print "LSU" instead of "LS".
Review: Ulrich Weigand
llvm-svn: 337700
Arm specific codegen prepare is implemented to perform type promotion
on icmp operands, which can enable the removal of uxtb and uxth
(unsigned extend) instructions. This is possible because performing
type promotion before ISel alleviates this duty from the DAG builder
which has to perform legalisation, but has a limited view on data
ranges.
The pass visits any instruction operand of an icmp and creates a
worklist to traverse the use-def tree to determine whether the values
can simply be promoted. Our concern is values in the registers
overflowing the narrow (i8, i16) data range, so instructions marked
with nuw can be promoted easily. For add and sub instructions, we are
able to use the parallel dsp instructions to operate on scalar data
types and avoid overflowing bits. Underflowing adds and subs are also
permitted when the result is only used by an unsigned icmp.
Differential Revision: https://reviews.llvm.org/D48832
llvm-svn: 337687
In ConstructSSAForLoadSet if an available value is actually the load that we're
doing SSA construction to eliminate, then we can omit it as SSAUpdate will add
in the value for the phi that will be replacing it anyway. This can result in
simpler IR which can allow further optimisation.
Differential Revision: https://reviews.llvm.org/D44160
llvm-svn: 337686
Bug fix for PR37445. The underlying problem and its fix are similar to PR37808.
The bug lies in MemorySSAUpdater::getPreviousDefRecursive(), where PhiOps is
computed before the call to tryRemoveTrivialPhi() and it ends up being out of
date, pointing to stale data. We have now turned each of the PhiOps into a
TrackingVH<MemoryAccess>.
Differential Revision: https://reviews.llvm.org/D49425
llvm-svn: 337680
Summary:
Pretty mechanical follow-up for D49196.
As microarchitecture.pdf notes, "20 AMD Ryzen pipeline",
"20.8 Register renaming and out-of-order schedulers":
The integer register file has 168 physical registers of 64 bits each.
The floating point register file has 160 registers of 128 bits each.
"20.14 Partial register access":
The processor always keeps the different parts of an integer register together.
...
An instruction that writes to part of a register will therefore have a false dependence
on any previous write to the same register or any part of it.
Reviewers: andreadb, courbet, RKSimon, craig.topper, GGanesh
Reviewed By: GGanesh
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D49393
llvm-svn: 337676
Bug fix for PR36787. When reasoning if it's safe to hoist a load we
want to make sure that the defining memory access dominates the new
insertion point of the hoisted instruction. safeToHoistLdSt calls
firstInBB(InsertionPoint,DefiningAccess) which returns false if
InsertionPoint == DefiningAccess, and therefore it falsely thinks
it's safe to hoist.
Differential Revision: https://reviews.llvm.org/D49555
llvm-svn: 337674
a call, and then again as a return.
Also added a comment to try and explain better why we would be doing
what we're doing when hardening the (non-call) returns.
llvm-svn: 337673
This provides an overview of the algorithm used to harden specific
loads. It also brings this our terminology further in line with
hardening rather than checking.
Differential Revision: https://reviews.llvm.org/D49583
llvm-svn: 337667
This seems to be a net improvement. There's still an issue under avx512f where we have a 512-bit vpaddd, but not vpmaddwd so we end up doing two 256-bit vpmaddwds and inserting the results before a 512-bit vpaddd. It might be better to do two 512-bits paddds with zeros in the upper half. Same number of instructions, but breaks a dependency.
llvm-svn: 337656
Summary:
This takes 22ms out of ~20s compiling sqlite3.c because we call it
for every unit of compilation and every pass.
Reviewers: paquette, anemet
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D49586
llvm-svn: 337654
This is used on an extract vector element index which is most cases is going to be an i32 or i64 and the element will be a valid element number. But it is possible to construct IR with a larger type and large out of range value.
llvm-svn: 337652
This is a follow-up to the rL335185. Those commit adds some WrapperPat
patterns for microMIPS target. But declaration of the WrapperPat class
is under the NotInMicroMips predicate and microMIPS patterns cannot be
selected because predicate (Subtarget->inMicroMipsMode()) &&
(!Subtarget->inMicroMipsMode()) is always false.
This change move out the WrapperPat class declaration from the
NotInMicroMips predicate and enables microMIPS WrapperPat patterns.
Differential revision: https://reviews.llvm.org/D49533
llvm-svn: 337646
We tested different cap values with a recent commit of Chromium. Our results show that the 32-byte cap yields the smallest binary and all the caps yield similar performance.
Based on the results, we propose to change the cap value to 32-byte.
Patch by Zhaomo Yang!
Differential Revision: https://reviews.llvm.org/D49405
llvm-svn: 337622
This reapplies commit r337489 reverted by r337541
Additionally, this commit contains a speculative fix to the issue reported in r337541
(the report does not contain an actionable reproducer, just a stack trace)
llvm-svn: 337606
Incidentally all allocations that we currently perform were
properly aligned, but this was only an accident.
Thanks to Erik Pilkington for catching this.
llvm-svn: 337596
deprecating SymbolResolver and AsynchronousSymbolQuery.
Both lookup overloads take a VSO search order to perform the lookup. The first
overload is non-blocking and takes OnResolved and OnReady callbacks. The second
is blocking, takes a boolean flag to indicate whether to wait until all symbols
are ready, and returns a SymbolMap. Both overloads take a RegisterDependencies
function to register symbol dependencies (if any) on the query.
llvm-svn: 337595
This discards the unresolved symbols set and returns the flags map directly
(rather than mutating it via the first argument).
The unresolved symbols result made it easy to chain lookupFlags calls, but such
chaining should be rare to non-existant (especially now that symbol resolvers
are being deprecated) so the simpler method signature is preferable.
llvm-svn: 337594
A search order is a list of VSOs to be searched linearly to find symbols. Each
VSO now has a search order that will be used when fixing up definitions in that
VSO. Each VSO's search order defaults to just that VSO itself.
This is a first step towards removing symbol resolvers from ORC altogether. In
practice symbol resolvers tended to be used to implement a search order anyway,
sometimes with additional programatic generation of symbols. Now that VSOs
support programmatic generation of definitions via fallback generators, search
orders provide a cleaner way to achieve the desired effect (while removing a lot
of boilerplate).
llvm-svn: 337593
Ideally our ISD node types going into the isel table would have types consistent with their instruction domain. This prevents us having to duplicate patterns with different types for the same instruction.
Unfortunately, it seems our shuffle combining is currently relying on this a little remove some bitcasts. This seems to enable some switching between shufps and shufd. Hopefully there's some way we can address this in the combining.
Differential Revision: https://reviews.llvm.org/D49280
llvm-svn: 337590
CombineTo is most useful when you need to replace multiple results, avoid the worklist management, or you need to something else after the combine, etc. Otherwise you should be able to just return the new node and let DAGCombiner go through its usual worklist code.
All of the places changed in this patch look to be standard cases where we should be able to use the more stand behavior of just returning the new node.
Differential Revision: https://reviews.llvm.org/D49569
llvm-svn: 337589
This adds initial support for a demangling library (LLVMDemangle)
and tool (llvm-undname) for demangling Microsoft names. This
doesn't cover 100% of cases and there are some known limitations
which I intend to address in followup patches, at least until such
time that we have (near) 100% test coverage matching up with all
of the test cases in clang/test/CodeGenCXX/mangle-ms-*.
Differential Revision: https://reviews.llvm.org/D49552
llvm-svn: 337584
Summary:
When splitting predecessors in BasicBlockUtils, we create a new block as an immediate predecessor of the original BB, then we connect a given set of predecessors to the new block.
The API in this patch will be used to update MemoryPhis for this CFG change.
If all predecessors are being moved, we move the MemoryPhi directly. Otherwise we create a new MemoryPhi in the NewBB and populate its incoming values, while deleting them from BB's Phi.
[Split from D45299 for easier review]
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D49156
llvm-svn: 337581
We can safely use getConstant here as we're still lowering, which allows constant folding to kick in and simplify the vector shift codegen.
Noticed while working on D49562.
llvm-svn: 337578
Enable the optimization of operations on DPR and SPR via a feature instead
of checking the target.
Differential revision: https://reviews.llvm.org/D49463
llvm-svn: 337575
When pointer checking is enabled, it's important that every pointer is
checked before its value is used.
For stores MSan used to generate code that calculates shadow/origin
addresses from a pointer before checking it.
For userspace this isn't a problem, because the shadow calculation code
is quite simple and compiler is able to move it after the check on -O2.
But for KMSAN getShadowOriginPtr() creates a runtime call, so we want the
check to be performed strictly before that call.
Swapping materializeChecks() and materializeStores() resolves the issue:
both functions insert code before the given IR location, so the new
insertion order guarantees that the code calculating shadow address is
between the address check and the memory access.
llvm-svn: 337571
Summary:
Each of the four methods had a dozen lines and was doing almost exactly
the same thing: get the appropriate accelerator table kind and insert an
entry into it. I move this common logic to a helper function and make
these methods delegate to it.
This came up in the context of D49493, where I've needed to make adding
a string to a string pool slightly more complicated, and it seemed to
make sense to do it in one place instead of five.
To make this work I've needed to unify the interface of the AccelTable
data types, as some used to store DIE& and others DIE*. I chose to unify
to a reference as that's what the caller uses.
This technically isn't NFC, because it changes the StringPool used for
apple tables in the DWO case (now it uses the main file like DWARF v5
instead of the DWO file). However, that shouldn't matter, as DWO is not
a thing on apple targets (clang frontend simply ignores -gsplit-dwarf).
Reviewers: JDevlieghere, aprantl, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49542
llvm-svn: 337562
When merging through a TokenFactor we need to check that the
load may be ordered such that no other aliasing memory operations may
happen. It is not sufficient to just check that the load is a member
of the chain token factor as it there may be a indirect chain. Require
the load's chain has only one use.
This fixes PR37826.
Reviewers: spatel, davide, efriedma, craig.topper, RKSimon
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49388
llvm-svn: 337560
This version contains a fix to add values for which the state in ParamState change
to the worklist if the state in ValueState did not change. To avoid adding the
same value multiple times, mergeInValue returns true, if it added the value to
the worklist. The value is added to the worklist depending on its state in
ValueState.
Original message:
For comparisons with parameters, we can use the ParamState lattice
elements which also provide constant range information. This improves
the code for PR33253 further and gets us closer to use
ValueLatticeElement for all values.
Also, as we are using the range information in the solver directly, we
do not need tryToReplaceWithConstantRange afterwards anymore.
Reviewers: dberlin, mssimpso, davide, efriedma
Reviewed By: mssimpso
Differential Revision: https://reviews.llvm.org/D43762
llvm-svn: 337548
This is an early step towards using SimplifyDemandedVectorElts for target shuffle combining - this merely moves the existing X86ISD::VBROADCAST simplification code to use the SimplifyDemandedVectorElts mechanism.
Adds X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode to handle X86ISD::VBROADCAST - in time we can support all target shuffles (and other ops) here.
llvm-svn: 337547
Summary:
This patch makes us generate the debug_names section in response to some
user-facing commands (previously it was only generated if explicitly
selected via the -accel-tables option).
My goal was to make this work for DWARF>=5 (as it's an official part of
that standard), and also, as an extension, for DWARF<5 if one is
explicitly tuning for lldb as a debugger (because it brings a large
performance improvement there).
This is slightly complicated by the fact that the debug_names tables are
incompatible with the DWARF v4 type units (they assume that the type
units are in the debug_info section), and unfortunately, right now we
generate DWARF v4-style type units even for -gdwarf-5. For this reason,
I disable all accelerator tables if the user requested type unit
generation. I do this even for apple tables, as they have the same
problem (in fact generating type units for apple targets makes us crash
even before we get around to emitting the accelerator tables).
Reviewers: JDevlieghere, aprantl, dblaikie, echristo, probinson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49420
llvm-svn: 337544
As a consequence of recent discussions
(http://lists.llvm.org/pipermail/llvm-dev/2018-May/123164.html), this patch
changes the SystemZ SchedModels so that the IssueWidth is 6, which is the
decoder capacity, and NumMicroOps become the number of decoder slots needed
per instruction.
In addition, the SchedWrite latencies now match the MachineInstructions
def-operand indexes, and ReadAdvances have been added on instructions with
one register operand and one memory operand.
Review: Ulrich Weigand
https://reviews.llvm.org/D47008
llvm-svn: 337538
This patch adds the following instructions:
RBIT reverse bits within each active elemnt (predicated), e.g.
rbit z0.d, p0/m, z1.d
for 8, 16, 32 and 64 bit elements.
REV reverse order of elements in data/predicate vector
(unpredicated), e.g.
rev z0.d, z1.d
rev p0.d, p1.d
for 8, 16, 32 and 64 bit elements.
REVB reverse order of bytes within each active element, e.g.
revb z0.d, p0/m, z1.d
for 16, 32 and 64 bit elements.
REVH reverse order of 16-bit half-words within each active
element, e.g.
revh z0.d, p0/m, z1.d
for 32 and 64 bit elements.
REVW reverse order of 32-bit words within each active element,
e.g.
revw z0.d, p0/m, z1.d
for 64 bit elements.
llvm-svn: 337534
I'm optimistically reverting commit r337511, effectively reapplying
r337504 *without* changes.
The failing bots that had `SmallVector` in the backtrace recovered after
the unrelated commit r337508. The backtraces looked bogus anyway, with
`SmallVector::size()` calling (e.g.) `ConstantArray::get()`.
Here's the original commit message:
ADT: Shrink size of SmallVector by 8B on 64-bit platforms
Represent size and capacity directly as unsigned and calculate
`end()` using `begin() + size()`.
This limits the maximum size/capacity of a vector to UINT32_MAX.
https://reviews.llvm.org/D48518
llvm-svn: 337514
Summary:
lifetime2.C violates DR1696, which prevents reference members from being
initialized to temporaries, whose lifetime would end at the end of ctor.
Reviewers: sbc100
Subscribers: dschuff, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D49577
llvm-svn: 337512
remove dead declaration of a call instruction handling helper.
This moves to the 'harden' terminology that I've been trying to settle
on for returns. It also adds a really detailed comment explaining what
all we're trying to accomplish with return instructions and why.
Hopefully this makes it much more clear what exactly is being
"hardened".
Differential Revision: https://reviews.llvm.org/D49571
llvm-svn: 337510
It's more aggressive than we need to be, and leads to strange
workarounds in other places like call return value inference. Instead,
just directly mark an edge viable.
Tests by Florian Hahn.
Differential Revision: https://reviews.llvm.org/D49408
llvm-svn: 337507
Representing size and capacity directly as unsigned and calculate
`end()` using `begin() + size()`.
This limits the maximum size/capacity of a vector to UINT32_MAX.
https://reviews.llvm.org/D48518
llvm-svn: 337504
Summary:
Currently all type ids are emitted into the index file when it is
written. For distributed ThinLTO, that meant that all type ids were
being duplicated into every single distributed index file, regardless of
whether they were referenced, leading to huge amounts of unnecessary
duplication and size bloat.
Keep track of the type id GUIDs actually referenced by the GV summary
records being emitted, and only emit those type IDs.
Add a new test, and fix test/Assembler/thinlto-summary.ll so that all
type ids are referenced to prevent deletion in that test.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, vitalybuka, llvm-commits
Differential Revision: https://reviews.llvm.org/D49565
llvm-svn: 337503
We have a number of cases where we fail to reduce vector op widths, performing the op in a larger vector and then extracting a subvector. This is often because by default it would create illegal types.
This peephole patch attempts to handle a few common cases detailed in PR36761, which typically involved extension+conversion to vX2f64 types.
Differential Revision: https://reviews.llvm.org/D49556
llvm-svn: 337500
Returning SDValue() means nothing was changed. Returning the result of CombineTo returns the first argument of CombineTo. This is specially detected by DAGCombiner as meaning that something changed, but worklist management was already taken care of.
I think the only real effect of this change is that we now properly update the Statistic the counts the number of combines performed. That's the only thing between the check for null and the check for N in the DAGCombiner.
llvm-svn: 337491
This is mostly a preparation work for adding a limited support for
select instructions. It proved to be difficult to do due to size and
irregularity of Vectorizer::isConsecutiveAccess, this is fixed here I
believe.
It also turned out that these changes make it simpler to finish one of
the TODOs and fix a number of other small issues, namely:
1. Looking through bitcasts to a type of a different size (requires
careful tracking of the original load/store size and some math
converting sizes in bytes to expected differences in indices of GEPs).
2. Reusing partial analysis of pointers done by first attempt in proving
them consecutive instead of starting from scratch. This added limited
support for nested GEPs co-existing with difficult sext/zext
instructions. This also required a careful handling of negative
differences between constant parts of offsets.
3. Handing a case where the first pointer index is not an add, but
something else (a function parameter for instance).
I observe an increased number of successful vectorizations on a large
set of shader programs. Only few shaders are affected, but those that
are affected sport >5% less loads and stores than before the patch.
Reviewed By: rampitec
Differential-Revision: https://reviews.llvm.org/D49342
llvm-svn: 337489
As we already return true from needsAggressiveScheduling() for the most recent
hardware it would be cleaner to just return true for all PowerPC hardware.
Differential Revision: https://reviews.llvm.org/D48663
llvm-svn: 337488
Some trivial cases in udivrem were handled by directly assigning 0 or 1
to APInt objects. This would set the bit width to 1, instead of the bit
width of the inputs. A potentially undesirable side effect of that is
that with the bit width of 1, 1 equals -1.
Differential Revision: https://reviews.llvm.org/D49554
llvm-svn: 337478
Summary: Currently, isConsecutiveAccess() detects two pointers(PtrA and PtrB) as consecutive by
comparing PtrB with BaseDelta+PtrA. This works when both pointers are factorized or
both of them are not factorized. But isConsecutiveAccess() fails if one of the
pointers is factorized but the other one is not.
Here is an example:
PtrA = 4 * (A + B)
PtrB = 4 + 4A + 4B
This patch uses getMinusSCEV() to compute the distance between two pointers.
getMinusSCEV() allows combining the expressions and computing the simplified distance.
Author: FarhanaAleen
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D49516
llvm-svn: 337471
This patch fixes the latency/throughput of LEA instructions in the BtVer2
scheduling model.
On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of
1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA
with a "Scale" operand is also slow, and it has the same latency profile as the
3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e.
RThrouhgput of 2.0).
This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td.
The tablegen backend (for instruction-info) expands that definition into this
(file X86GenInstrInfo.inc):
```
static bool isThreeOperandsLEA(const MachineInstr &MI) {
return (
(
MI.getOpcode() == X86::LEA32r
|| MI.getOpcode() == X86::LEA64r
|| MI.getOpcode() == X86::LEA64_32r
|| MI.getOpcode() == X86::LEA16r
)
&& MI.getOperand(1).isReg()
&& MI.getOperand(1).getReg() != 0
&& MI.getOperand(3).isReg()
&& MI.getOperand(3).getReg() != 0
&& (
(
MI.getOperand(4).isImm()
&& MI.getOperand(4).getImm() != 0
)
|| (MI.getOperand(4).isGlobal())
)
);
}
```
A similar method is generated in the X86_MC namespace, and included into
X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h).
Back to the BtVer2 scheduling model:
A new scheduling predicate named JSlowLEAPredicate now checks if either the
instruction is a three-operands LEA, or it is an LEA with a Scale value
different than 1.
A variant scheduling class uses that new predicate to correctly select the
appropriate latency profile.
Differential Revision: https://reviews.llvm.org/D49436
llvm-svn: 337469
Summary:
Enable these passes for CFI and WPD in ThinLTO and LTO with the new pass
manager. Add a couple of tests for both PMs based on the clang tests
tools/clang/test/CodeGen/thinlto-distributed-cfi*.ll, but just test
through llvm-lto2 and not with distributed ThinLTO.
Reviewers: pcc
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49429
llvm-svn: 337461
We were emitting incorrect calls to libm functions that LLVM had decided it
knew about because the default is soft-float.
Recommitted without breaking ELF this time.
llvm-svn: 337450
changes that are intertwined here:
1) Extracting the tracing of predicate state through the CFG to its own
function.
2) Creating a struct to manage the predicate state used throughout the
pass.
Doing #1 necessitates and motivates the particular approach for #2 as
now the predicate management is spread across different functions
focused on different aspects of it. A number of simplifications then
fell out as a direct consequence.
I went with an Optional to make it more natural to construct the
MachineSSAUpdater object.
This is probably the single largest outstanding refactoring step I have.
Things get a bit more surgical from here. My current goal, beyond
generally making this maintainable long-term, is to implement several
improvements to how we do interprocedural tracking of predicate state.
But I don't want to do that until the predicate state management and
tracing is in reasonably clear state.
Differential Revision: https://reviews.llvm.org/D49427
llvm-svn: 337446
SCEV tries to constant-fold arguments of trunc operands in SCEVAddExpr, and when it does
that, it passes wrong flags into the recursion. It is only valid to pass flags that are proved for
narrow type into a computation in wider type if we can prove that trunc instruction doesn't
actually change the value. If it did lose some meaningful bits, we may end up proving wrong
no-wrap flags for sum of arguments of trunc.
In the provided test we end up with `nuw` where it shouldn't be because of this bug.
The solution is to conservatively pass `SCEV::FlagAnyWrap` which is always a valid thing to do.
Reviewed By: sanjoy
Differential Revision: https://reviews.llvm.org/D49471
llvm-svn: 337435
This prevents gold from printing a warning when trying to export
these symbols via the asan dynamic list after ThinLTO promotes them
from private symbols to external symbols with hidden visibility.
Differential Revision: https://reviews.llvm.org/D49498
llvm-svn: 337428
Summary:
The use of exception handling instructions should only be enabled with
`-mattr=+exception-handling` option.
Reviewers: jgravelle-google
Subscribers: dschuff, sbc100, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D49391
llvm-svn: 337425
As discussed on PR38197, this canonicalizes MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))
This returns the scalar-fp codegen lost by rL336971.
Additionally it handles the OP(N1, N0)) case for commutable (FADD/FMUL) ops.
Differential Revision: https://reviews.llvm.org/D49474
llvm-svn: 337419
Summary:
The optimizer is 10%+ slower with vs without debuginfo. I started checking where
the difference is coming from.
I compiled sqlite3.c with and without debug info from CTMark and compare the time difference.
I use Xcode Instrument to find where time is spent. This brings about 20ms, out of ~20s.
Reviewers: davide, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D49337
llvm-svn: 337416
Since DWARFv5 rnglists are self descriptive and have distinct encodings
for base-relative (offset_pair) and absolute (start_length) entries,
there's no need to use a base address specifier when describing a lone
address range in a section.
Use that, and improve the test coverage a bit here to include cases like
this and others.
llvm-svn: 337411
Summary:
If unfolding an SUnit results in both load or the operation using it which
already exist in the DAG, abort the unfold if they are already scheduled.
If not, make sure we don't add duplicate dependencies.
This fixes PR37916.
Reviewers: davide, eli.friedman, fhahn, bogner
Subscribers: MatzeB, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48666
llvm-svn: 337409
This is a follow-up to the rL337171. This patch fixes regression
introduced by the r337171 and enables MipsTruncIntFP pattern.
Differential revision: https://reviews.llvm.org/D49469
llvm-svn: 337392
Pulled out from D49225, we have a lot of repeated scalar cost calculations, often with arguments that don't look the same but turn out to be.
llvm-svn: 337390
When rL336971 removed the scalar-fp isel patterns, we lost the need for this canonicalization - commutation/folding can handle everything else.
llvm-svn: 337387
ARMSubtarget had a copy/pasted block to determine whether the target was
hard-float, but it just delegated to triple features anyway so it's better at
the TargetMachine level.
llvm-svn: 337384
This patch adds support for the following unpredicated
floating-point instructions:
FADD Floating point add
FSUB Floating point subtract
FMUL Floating point multiplication
FTSMUL Floating point trigonometric starting value
FRECPS Floating point reciprocal step
FRSQRTS Floating point reciprocal square root step
The instructions have the following assembly format:
fadd z0.h, z1.h, z2.h
and have variants for 16, 32 and 64-bit FP elements.
llvm-svn: 337383
This reverts commit 55222c9183c6e07f53a54c4061677734f54feac1.
I missed that this patch has a dependency on https://reviews.llvm.org/D49219
that has not been approved yet.
llvm-svn: 337373
The signed/unsigned DOT instructions perform a dot-product on
quadtuplets from two source vectors and accumulate the result in
the destination register. The instructions come in two forms:
Vector form, e.g.
sdot z0.s, z1.b, z2.b - signed dot product on four 8-bit quad-tuplets,
accumulating results in 32-bit elements.
udot z0.d, z1.h, z2.h - unsigned dot product on four 16-bit quad-tuplets,
accumulating results in 64-bit elements.
Indexed form, e.g.
sdot z0.s, z1.b, z2.b[3] - signed dot product on four 8-bit quad-tuplets
with specified quadtuplet from second
source vector, accumulating results in 32-bit
elements.
udot z0.d, z1.h, z2.h[1] - dot product on four 16-bit quad-tuplets
with specified quadtuplet from second
source vector, accumulating results in 64-bit
elements.
llvm-svn: 337372
Summary: This is how it appears to be handled in GCC and it prevents a
"Unknown mismatch" error in the SelectionDAGBuilder.
Reviewers: venkatra, jyknight, jrtc27
Reviewed By: jyknight, jrtc27
Subscribers: eraman, fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D49218
llvm-svn: 337370
This patch adds the following predicated instructions:
UDIV Unsigned divide active elements
UDIVR Unsigned divide active elements, reverse form.
SDIV Signed divide active elements
SDIVR Signed divide active elements, reverse form.
e.g.
udiv z0.s, p0/m, z0.s, z1.s
(unsigned divide active elements in z0 by z1, store result in z0)
sdivr z0.s, p0/m, z0.s, z1.s
(signed divide active elements in z1 by z0, store result in z0)
llvm-svn: 337369
This patch adds the following instructions:
MUL - multiply vectors, e.g.
mul z0.h, p0/m, z0.h, z1.h
- multiply with immediate, e.g.
mul z0.h, z0.h, #127
SMULH - signed multiply returning high half, e.g.
smulh z0.h, p0/m, z0.h, z1.h
UMULH - unsigned multiply returning high half, e.g.
umulh z0.h, p0/m, z0.h, z1.h
llvm-svn: 337358
* Delete a no-longer-used override, and mark the other
getRegisterTypeForCallingConv() as override.
* SPE only supports i32, not i64, as the internal type, so simply remove
the type check, so that DestReg and Opc are provably always set.
GCC 6.4 did not warn about either of the above.
llvm-svn: 337350
The X86ISD::MOVLHPS/MOVHLPS should now only be emitted in SSE1 only. This means that the v2i64/v2f64 types would be illegal thus we don't need these patterns.
llvm-svn: 337349
I'm trying to restrict the MOVLHPS/MOVHLPS ISD nodes to SSE1 only. With SSE2 we can use unpcks. I believe this will allow some patterns to be cleaned up to require fewer bitcasts.
I've put in an odd isel hack to still select MOVHLPS instruction from the unpckh node to avoid changing tests and because movhlps is a shorter encoding. Ideally we'd do execution domain switching on this, but the operands are in the wrong order and are tied. We might be able to try a commute in the domain switching using custom code.
We already support domain switching for UNPCKLPD and MOVLHPS.
llvm-svn: 337348
Summary:
The Signal Processing Engine (SPE) is found on NXP/Freescale e500v1,
e500v2, and several e200 cores. This adds support targeting the e500v2,
as this is more common than the e500v1, and is in SoCs still on the
market.
This patch is very intrusive because the SPE is binary incompatible with
the traditional FPU. After discussing with others, the cleanest
solution was to make both SPE and FPU features on top of a base PowerPC
subset, so all FPU instructions are now wrapped with HasFPU predicates.
Supported by this are:
* Code generation following the SPE ABI at the LLVM IR level (calling
conventions)
* Single- and Double-precision math at the level supported by the APU.
Still to do:
* Vector operations
* SPE intrinsics
As this changes the Callee-saved register list order, one test, which
tests the precise generated code, was updated to account for the new
register order.
Reviewed by: nemanjai
Differential Revision: https://reviews.llvm.org/D44830
llvm-svn: 337347
This is the lead-up to having SPE codegen. Add the rest of the
instructions, along with MC tests.
Differential Revision: https://reviews.llvm.org/D44829
llvm-svn: 337346
The presence of these symbols in the symbol table can cause symbol type
mismatch errors (or undefined symbol errors on emulated TLS targets)
and they can't be ICF'd anyway.
llvm-svn: 337338
These are all methods that, while not currently used in the
Itanium demangler, are generally useful enough that it's
likely the itanium demangler could find a use for them. More
importantly, they are all necessary for the Microsoft demangler
which is up and coming in a subsequent patch. Rather than
combine these into a single monolithic patch, I think it makes
sense to commit this utility code first since it is very simple,
this way it won't detract from the substance of the MS demangler
patch.
llvm-svn: 337316
InstCombine has a cast transform that matches a cast-of-select:
Orig = cast (Src = select Cond TV FV)
And tries to replace it with a select which has the cast folded in:
NewSel = select Cond (cast TV) (cast FV)
The combiner does RAUW(Orig, NewSel), so any debug values for Orig would
survive the transform. But debug values for Src would be lost.
This patch teaches InstCombine to replace all debug uses of Src with
NewSel (taking care of doing any necessary DIExpression rewriting).
Differential Revision: https://reviews.llvm.org/D49270
llvm-svn: 337310
Summary:
The only thing he suggested that I've skipped here is the double-wide
multiply instructions. Multiply is an area I'm nervous about there being
some hidden data-dependent behavior, and it doesn't seem important for
any benchmarks I have, so skipping it and sticking with the minimal
multiply support that matches what I know is widely used in existing
crypto libraries. We can always add double-wide multiply when we have
clarity from vendors about its behavior and guarantees.
I've tried to at least cover the fundamentals here with tests, although
I've not tried to cover every width or permutation. I can add more tests
where folks think it would be helpful.
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49413
llvm-svn: 337308
Previously we were assuming whole program compilation. Now that
separate compilation is a thing we need to update this pass.
Firstly, it can no longer assert on the existence of malloc and free.
This functions might not be in the current translation unit. If we
need them then we will generate not imports for them.
Secondly the global helper function we create should be marked as
weak since we will be generating a separate copy in each translation
unit.
Finally the names of the symbols used must be unique and fixed since
they need to agree across translation units.
Differential Revision: https://reviews.llvm.org/D49263
llvm-svn: 337301
Previously we passed 'null_frag' into the instruction definition. The multiclass is shared with MOVHPD which doesn't use null_frag. It turns out by passing X86Movsd it produces patterns equivalent to some standalone patterns.
llvm-svn: 337299
The Mips FastISel back-end does not extend i1 values while lowering icmp.
Ensure that we bail into DAG ISel when handling this case.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D49290
llvm-svn: 337288
Once we resolved an undef in a function we can run Solve, which could
lead to finding a constant return value for the function, which in turn
could turn undefs into constants in other functions that call it, before
resolving undefs there.
Computationally the amount of work we are doing stays the same, just the
order we process things is slightly different and potentially there are
a few less undefs to resolve.
We are still relying on the order of functions in the IR, which means
depending on the order, we are able to resolve the optimal undef first
or not. For example, if @test1 comes before @testf, we find the constant
return value of @testf too late and we cannot use it while solving
@test1.
This on its own does not lead to more constants removed in the
test-suite, probably because currently we have to be very lucky to visit
applicable functions in the right order.
Maybe we manage to come up with a better way of resolving undefs in more
'profitable' functions first.
Reviewers: efriedma, mssimpso, davide
Reviewed By: efriedma, davide
Differential Revision: https://reviews.llvm.org/D49385
llvm-svn: 337283
TTI::getMinMaxReductionCost typically can't handle pointer types - until this is changed its better to limit horizontal reduction to integer/float vector types only.
llvm-svn: 337280
Summary:
Part of the adjustCopiesBackFrom method wasn't correctly dealing with SubRange
intervals when updating.
2 changes. The first to ensure that bogus SubRange Segments aren't propagated when
encountering Segments of the form [1234r, 1234d:0) when preparing to merge value
numbers. These can be removed in this case.
The second forces a shrinkToUses call if SubRanges end on the copy index
(instead of just the parent register).
V2: Addressed review comments, plus MIR test instead of ll test
Subscribers: MatzeB, qcolombet, nhaehnle
Differential Revision: https://reviews.llvm.org/D40308
Change-Id: I1d2b2b4beea802fce11da01edf71feb2064aab05
llvm-svn: 337273
This patch completes support for the following floating point
instructions that take FP immediates:
FADD* (addition)
FSUB (subtract)
FSUBR (subtract reverse form)
FMUL* (multiplication)
FMAX* (maximum)
FMAXNM (maximum number)
FMIN (maximum)
FMINNM (maximum number)
All operations are predicated and take a FP immediate operand,
e.g.
fadd z0.h, p0/m, z0.h, #0.5
fmin z0.s, p0/m, z0.s, #1.0
^___________^ (tied)
* Instructions added in a previous patch.
llvm-svn: 337272
Similarly to rL336736, at least one more C API function does not
properly get declared as extern "C" due to a missing header, causing
name mangling and linking errors.
This patch fixes calls to LLVMAddAggressiveInstCombinerPass().
Differential Revision: https://reviews.llvm.org/D49416
Reviewed By: whitequark
llvm-svn: 337264
rL333307 was introduced to remove automatic target triple
normalization when calling sys::getDefaultTargetTriple(), arguing
that users of the latter already called Triple::normalize()
if necessary. However, users of the C API currently have no way of
doing target triple normalization.
This patch introduces an LLVMNormalizeTargetTriple function to
the C API which wraps Triple::normalize() and can be used on
the result of LLVMGetDefaultTargetTriple to achieve the same effect.
Differential Revision: https://reviews.llvm.org/D49414
Reviewed By: whitequark
llvm-svn: 337263
If we are only extracting vector elements via EXTRACT_VECTOR_ELT(s) we may be able to use SimplifyDemandedVectorElts to avoid unnecessary vector ops.
Differential Revision: https://reviews.llvm.org/D49262
llvm-svn: 337258