Commit Graph

12 Commits

Author SHA1 Message Date
Simon Pilgrim 2a9cde026c [X86][AVX] Reduce v4f64/v4i64 shuffle costs (PR37882)
These were being over cautious for costs for one/two op general shuffles - VSHUFPD doesn't have to replicate the same shuffle in both lanes like VSHUFPS does. 

llvm-svn: 335216
2018-06-21 11:37:13 +00:00
Simon Pilgrim 0783921987 [CostModel] Treat Identity shuffle masks as zero cost
As discussed on D47985, identity shuffle masks should probably be free.

I've limited this to the case where the input and output types all match - but we could probably accept all cases.

Differential Revision: https://reviews.llvm.org/D47986

llvm-svn: 334506
2018-06-12 14:47:13 +00:00
Simon Pilgrim 8a8ff4f6d4 [CostModel][X86] Regenerate vector reduction cost tests with update_analyze_test_checks.py
NOTE: We're only really interested in the extractelement cost (which represents the entire reduction).
llvm-svn: 329504
2018-04-07 14:20:10 +00:00
Sanjay Patel e6143904b9 revert r325515: [TTI CostModel] change default cost of FP ops to 1 (PR36280)
There are too many perf regressions resulting from this, so we need to 
investigate (and add tests for) targets like ARM and AArch64 before 
trying to reinstate.

llvm-svn: 325658
2018-02-21 01:42:52 +00:00
Sanjay Patel 3e8a76abfd [TTI CostModel] change default cost of FP ops to 1 (PR36280)
This change was mentioned at least as far back as:
https://bugs.llvm.org/show_bug.cgi?id=26837#c26
...and I found a real program that is harmed by this: 
Himeno running on AMD Jaguar gets 6% slower with SLP vectorization:
https://bugs.llvm.org/show_bug.cgi?id=36280
...but the change here appears to solve that bug only accidentally.

The div/rem costs for x86 look very wrong in some cases, but that's already true, 
so we can fix those in follow-up patches. There's also evidence that more cost model
changes are needed to solve SLP problems as shown in D42981, but that's an independent 
problem (though the solution may be adjusted after this change is made).

Differential Revision: https://reviews.llvm.org/D43079

llvm-svn: 325515
2018-02-19 16:11:44 +00:00
Alexey Bataev 62af7252f1 [SLP] Fixed cost model for horizontal reduction.
Currently when cost of scalar operations is evaluated the vector type is
used for scalar operations. Patch fixes this issue and fixes evaluation
of the vector operations cost.
Several test showed that vector cost model is too optimistic. It
allowed vectorization of 8 or less add/fadd operations, though scalar
code is faster. Actually, only for 16 or more operations vector code
provides better performance.

Differential Revision: https://reviews.llvm.org/D26277

llvm-svn: 288398
2016-12-01 18:42:42 +00:00
Alexey Bataev fc617690ab [SLP] Additional tests with the cost of vector operations.
llvm-svn: 288377
2016-12-01 17:26:54 +00:00
Alexey Bataev e59a8351d0 Revert "[SLP] Additional tests with the cost of vector operations."
This reverts commit a61718435fc4118c82f8aa6133fd81f803789c1e.

llvm-svn: 288371
2016-12-01 16:45:04 +00:00
Alexey Bataev 2ff768475d [SLP] Additional tests with the cost of vector operations.
llvm-svn: 288369
2016-12-01 16:11:48 +00:00
Cong Hou 94620278a4 Don't punish vectorized arithmetic instruction whose type will be split to multiple registers
Currently in LLVM's cost model, a vectorized arithmetic instruction will have
high cost if its type is split into multiple registers. However, this
punishment is too heavy and unnecessary. The overhead of the split should not
be on arithmetic instructions but instructions that implement the split. Note
that during vectorization we have calculated the register pressure, and we
only choose proper interleaving factor (and also vectorization factor) so
that we don't use more registers than the maximum number.

Here is a very simple example: if a vadd has the cost 1, and if we double VF
so that we need two registers to perform it, then its cost will become 4 with
the current implementation, which will prevent us to use larger VF.


Differential revision: http://reviews.llvm.org/D15159

llvm-svn: 254671
2015-12-04 00:36:58 +00:00
Yi Jiang 5c343de8d3 X86 horizontal vector reduction cost model
llvm-svn: 191021
2013-09-19 17:48:48 +00:00
Arnold Schwaighofer cae8735a54 Costmodel: Add support for horizontal vector reductions
Upcoming SLP vectorization improvements will want to be able to estimate costs
of horizontal reductions. Add infrastructure to support this.

We model reductions as a series of (shufflevector,add) tuples ultimately
followed by an extractelement. For example, for an add-reduction of <4 x float>
we could generate the following sequence:

 (v0, v1, v2, v3)
   \   \  /  /
     \  \  /
       +  +

 (v0+v2, v1+v3, undef, undef)
    \      /
 ((v0+v2) + (v1+v3), undef, undef)

 %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
 %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
 %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
 %r = extractelement <4 x float> %bin.rdx8, i32 0

This commit adds a cost model interface "getReductionCost(Opcode, Ty, Pairwise)"
that will allow clients to ask for the cost of such a reduction (as backends
might generate more efficient code than the cost of the individual instructions
summed up). This interface is excercised by the CostModel analysis pass which
looks for reduction patterns like the one above - starting at extractelements -
and if it sees a matching sequence will call the cost model interface.

We will also support a second form of pairwise reduction that is well supported
on common architectures (haddps, vpadd, faddp).

 (v0, v1, v2, v3)
  \   /    \  /
 (v0+v1, v2+v3, undef, undef)
    \     /
 ((v0+v1)+(v2+v3), undef, undef, undef)

  %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
        <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
  %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
        <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
  %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
  %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
        <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
  %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
        <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
  %bin.rdx.1 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
  %r = extractelement <4 x float> %bin.rdx.1, i32 0

llvm-svn: 190876
2013-09-17 18:06:50 +00:00