To lower this we now create a new V1 containing the low half of both sources and a new V2 containing the upper half of both sources. Then we created a repeated lane shuffle of those new sources to create the final result.
This fixes PR35833
Differential Revison: https://reviews.llvm.org/D41794
llvm-svn: 339818
As discussed on D41794, we have many cases where we fail to combine shuffles as the input operands have other uses.
This patch permits these shuffles to be combined as long as they don't introduce additional variable shuffle masks, which should reduce instruction dependencies and allow the total number of shuffles to still drop without increasing the constant pool.
However, this may mean that some memory folds may no longer occur, and on pre-AVX require the occasional extra register move.
This also exposes some poor PMULDQ/PMULUDQ codegen which was doing unnecessary upper/lower calculations which will in fact fold to zero/undef - the fix will be added in a followup commit.
Differential Revision: https://reviews.llvm.org/D50328
llvm-svn: 339335
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.
Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.
Differential Revision: https://reviews.llvm.org/D50157
llvm-svn: 338735
Re-enable commit r323991 now that r325931 has been committed to make
MachineOperand::isRenamable() check more conservative w.r.t. code
changes and opt-in on a per-target basis.
llvm-svn: 326208
This reverts commit r323991.
This commit breaks target that don't model all the register constraints
in TableGen. So far the workaround was to set the
hasExtraXXXRegAllocReq, but it proves that it doesn't cover all the
cases.
For instance, when mutating an instruction (like in the lowering of
COPYs) the isRenamable flag is not properly updated. The same problem
will happen when attaching machine operand from one instruction to
another.
Geoff Berry is working on a fix in https://reviews.llvm.org/D43042.
llvm-svn: 325421
Summary:
This change extends MachineCopyPropagation to do COPY source forwarding
and adds an additional run of the pass to the default pass pipeline just
after register allocation.
This version of this patch uses the newly added
MachineOperand::isRenamable bit to avoid forwarding registers is such a
way as to violate constraints that aren't captured in the
Machine IR (e.g. ABI or ISA constraints).
This change is a continuation of the work started in D30751.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa, tstellar
Subscribers: tpr, mgorny, mcrosier, nhaehnle, nemanjai, jyknight, hfinkel, arsenm, inouehrs, eraman, sdardis, guyblank, fedor.sergeev, aheejin, dschuff, jfb, myatsina, llvm-commits
Differential Revision: https://reviews.llvm.org/D41835
llvm-svn: 323991
Add support for custom execution domain fixing and implement support for BLENDPD/BLENDPS/PBLENDD/PBLENDW.
Differential Revision: https://reviews.llvm.org/D42042
llvm-svn: 322524
Summary:
Added the FastVariableShuffle feature to cases that resembled processors
for which this fearure is on.
For AVX2 there are processors with and w/o this fearue enable.
For AVX512 only KNL does enable this feature so cases which only have
+avx512f were left without the FastVariableShuffle enabled.
Reviewers: RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41851
llvm-svn: 322090
I noticed this pattern in D38316 / D38388. We failed to combine a shuffle that is either
repeating a scalar insertion at the same position in a vector or translated to a different
element index.
Like the earlier patch, this could be an instcombine too, but since we opted to make this
a DAG transform earlier, I've made this one a DAG patch too.
We do not need any legality checking because the new insert is identical to the existing
insert except that it may have a different constant insertion operand.
The constant insertion test in test/CodeGen/X86/vector-shuffle-combining.ll was the
motivation for D38756.
Differential Revision: https://reviews.llvm.org/D40209
llvm-svn: 320050
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Issues addressed since original review:
- Avoid bug in regalloc greedy/machine verifier when forwarding to use
in an instruction that re-defines the same virtual register.
- Fixed bug when forwarding to use in EarlyClobber instruction slot.
- Fixed incorrect forwarding to register definitions that showed up in
explicit_uses() iterator (e.g. in INLINEASM).
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 314729
The shuffle combining and lowerVectorShuffleAsLanePermuteAndBlend were both still trying to use VPERM2XF128 for unary shuffles when AVX2 is enabled. VPERM2X128 takes two inputs meaning when we use it for a unary shuffle one of those inputs is left undefined creating a false dependency on whatever register gets allocated there.
If we have VPERMQ/PD we should prefer those since they only have a single input.
Differential Revision: https://reviews.llvm.org/D37947
llvm-svn: 313542
Issues addressed since original review:
- Moved removal of dead instructions found by
LiveIntervals::shrinkToUses() outside of loop iterating over
instructions to avoid instructions being deleted while pointed to by
iterator.
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 312328
It caused PR34387: Assertion failed: (RegNo < NumRegs && "Attempting to access record for invalid register number!")
> Issues identified by buildbots addressed since original review:
> - Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
> - The pass no longer forwards COPYs to physical register uses, since
> doing so can break code that implicitly relies on the physical
> register number of the use.
> - The pass no longer forwards COPYs to undef uses, since doing so
> can break the machine verifier by creating LiveRanges that don't
> end on a use (since the undef operand is not considered a use).
>
> [MachineCopyPropagation] Extend pass to do COPY source forwarding
>
> This change extends MachineCopyPropagation to do COPY source forwarding.
>
> This change also extends the MachineCopyPropagation pass to be able to
> be run during register allocation, after physical registers have been
> assigned, but before the virtual registers have been re-written, which
> allows it to remove virtual register COPY LiveIntervals that become dead
> through the forwarding of all of their uses.
llvm-svn: 312178
Issues identified by buildbots addressed since original review:
- Fixed ARMLoadStoreOptimizer bug exposed by this change in r311907.
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
llvm-svn: 312154
Two issues identified by buildbots were addressed:
- The pass no longer forwards COPYs to physical register uses, since
doing so can break code that implicitly relies on the physical
register number of the use.
- The pass no longer forwards COPYs to undef uses, since doing so
can break the machine verifier by creating LiveRanges that don't
end on a use (since the undef operand is not considered a use).
[MachineCopyPropagation] Extend pass to do COPY source forwarding
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa
Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny
Differential Revision: https://reviews.llvm.org/D30751
llvm-svn: 311135
This reverts commit r311038.
Several buildbots are breaking, and at least one appears to be due to
the forwarding of physical regs enabled by this change. Reverting while
I investigate further.
llvm-svn: 311062
This change extends MachineCopyPropagation to do COPY source forwarding.
This change also extends the MachineCopyPropagation pass to be able to
be run during register allocation, after physical registers have been
assigned, but before the virtual registers have been re-written, which
allows it to remove virtual register COPY LiveIntervals that become dead
through the forwarding of all of their uses.
Reviewers: qcolombet, javed.absar, MatzeB, jonpa
Subscribers: jyknight, nemanjai, llvm-commits, nhaehnle, mcrosier, mgorny
Differential Revision: https://reviews.llvm.org/D30751
llvm-svn: 311038
This is a tiny patch with a big pile of test changes.
This partially fixes PR27885:
https://llvm.org/bugs/show_bug.cgi?id=27885
My motivating case looks like this:
- vpshufd {{.*#+}} xmm1 = xmm1[0,1,0,2]
- vpshufd {{.*#+}} xmm0 = xmm0[0,2,2,3]
- vpblendw {{.*#+}} xmm0 = xmm0[0,1,2,3],xmm1[4,5,6,7]
+ vshufps {{.*#+}} xmm0 = xmm0[0,2],xmm1[0,2]
And this happens several times in the diffs. For chips with domain-crossing penalties,
the instruction count and size reduction should usually overcome any potential
domain-crossing penalty due to using an FP op in a sequence of int ops. For chips such
as recent Intel big cores and Atom, there is no domain-crossing penalty for shufps, so
using shufps is a pure win.
So the test case diffs all appear to be improvements except one test in
vector-shuffle-combining.ll where we miss an opportunity to use a shift to generate
zero elements and one test in combine-sra.ll where multiple uses prevent the expected
shuffle combining.
Differential Revision: https://reviews.llvm.org/D27692
llvm-svn: 289837
Add the missing domain equivalences for movss, movsd, movd and movq zero extending loading instructions.
Differential Revision: https://reviews.llvm.org/D27684
llvm-svn: 289825
Summary:
Do *not* perform combines such as:
vector_shuffle<4,1,2,3>(build_vector(Ud, C0, C1 C2), scalar_to_vector(X))
->
build_vector(X, C0, C1, C2)
Keeping the shuffle allows lowering the constant build_vector to a materialized
constant vector (such as a vector-load from the constant-pool or some other idiom).
Reviewers: delena, igorb, spatel, mkuper, andreadb, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25524
llvm-svn: 285063
Includes adding more general support for the pattern: VZEXT_MOVL(VZEXT_LOAD(ptr)) -> VZEXT_LOAD(ptr)
This has unearthed a couple of latent poor codegen issues (MINSS/MAXSS scalar load folding and MOVDDUP/BROADCAST load folding patterns), which will be fixed shortly.
Its also reduced a couple of tests so that they no longer reach the instruction threshold necessary to be combined to PSHUFB (see PR26183).
llvm-svn: 279646
Assuming SSE2 is available then we can safely commute between these, removing some unnecessary register moves and improving memory folding opportunities.
VEX encoded versions don't benefit so I haven't added support to them.
llvm-svn: 277930
We currently only support combining target shuffles that consist of a single source input (plus elements known to be undef/zero).
This patch generalizes the recursive combining of the target shuffle to collect all the inputs, merging any duplicates along the way, into a full set of src ops and its shuffle mask.
We uncover a number of cases where we have failed to combine a unary shuffle because the input has been duplicated and separated during lowering.
This will allow us to combine to 2-input shuffles in a future patch.
Differential Revision: https://reviews.llvm.org/D22859
llvm-svn: 277631
This patch allows target shuffles to be combined to single input immediate permute instructions - (V)PSHUFD/VPERMILPD/VPERMILPS - allowing more general pattern matching than what we current do and improves the likelihood of memory folding compared to existing patterns which tend to reuse the input in multiple arguments.
Further permute instructions (V)PSHUFLW/(V)PSHUFHW/(V)PERMQ/(V)PERMPD may be added in the future but its proven tricky to create tests cases for them so far. (V)PSHUFLW/(V)PSHUFHW is already handled quite well in combineTargetShuffle so it may be that removing some of that code may allow us to perform more of the combining in one place without duplication.
Differential Revision: http://reviews.llvm.org/D21148
llvm-svn: 273999
We were being too aggressive in trying to combine a shuffle into a blend-with-zero pattern, often resulting in a endless loop of contrasting combines
This patch stops the combine if we already have a blend in place (means we miss some domain corrections)
llvm-svn: 263717
This patch attempts to represent a shuffle as a repeating shuffle (recognisable by is128BitLaneRepeatedShuffleMask) with the source input(s) in their original lanes, followed by a single permutation of the 128-bit lanes to their final destinations.
On AVX2 we can additionally attempt to match using 64-bit sub-lane permutation. AVX2 can also now match a similar 'broadcasted' repeating shuffle.
This patch has several benefits:
* Avoids prematurely matching with lowerVectorShuffleByMerging128BitLanes which can require both inputs to have their input lanes permuted before shuffling.
* Can replace PERMPS/PERMD instructions - although these are useful for cross-lane unary shuffling, they require their shuffle mask to be pre-loaded (and increase register pressure).
* Matching the repeating shuffle makes use of a lot of existing shuffle lowering.
There is an outstanding minor AVX1 regression (combine_unneeded_subvector1 in vector-shuffle-combining.ll) of a previously 128-bit shuffle + subvector splat being converted to a subvector splat + (2 instruction) 256-bit shuffle, I intend to fix this in a followup patch for review.
Differential Revision: http://reviews.llvm.org/D16537
llvm-svn: 260834
autogenerated.
Also update existing test cases which appear to be generated by it and
weren't modified (other than addition of the header) by rerunning it.
llvm-svn: 253917
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
is going well, remove the flag and the code for the old legality tests.
This is the first step toward removing the entire old vector shuffle
lowering. *Much* more code to delete coming up next.
llvm-svn: 229963
addition to lowering to trees rooted in an unpack.
This saves shuffles and or registers in many various ways, lets us
handle another class of v4i32 shuffles pre SSE4.1 without domain
crosses, etc.
llvm-svn: 229856
This allows it to match still more places where previously we would have
to fall back on floating point shuffles or other more complex lowering
strategies.
I'm hoping to replace some of the hand-rolled unpack matching with this
routine is it gets more and more clever.
llvm-svn: 229463
to generically lower blends and is particularly nice because it is
available frome SSE2 onward. This removes a lot of the remaining domain
crossing blends in SSE2 code.
I'm hoping to replace some of the "interleaved" lowering hacks with
something closer to this which should be more principled. First, this
needs to learn how to detect and use other interleavings besides that of
the natural type provided. That will be a follow-up patch though.
llvm-svn: 229378
advantage of the existence of a reasonable blend instruction.
The 256-bit vector shuffle lowering has leveraged the general technique
of decomposed shuffles and blends for quite some time, but this never
made it back into the 128-bit code, and there are a large number of
patterns where this is substantially better. For example, this removes
almost all domain crossing in vector shuffles that involve some blend
and some permutation with SSE4.1 and later. See the massive reduction
in 'shufps' for integer test cases in this commit.
This isn't perfect yet for a few reasons:
1) The v8i16 shuffle lowering continues to plague me. We don't always
form an unpack-based blend when that would be better. But the wins
pretty drastically outstrip the losses here.
2) The v16i8 shuffle lowering is just a disaster here. I never went and
implemented blend support here for some terrible reason. I'll do
that next probably. I've not updated it for now.
More variations on this technique are coming as well -- we don't
shuffle-into-unpack or shuffle-into-palignr, both of which would also be
profitable.
Note that some test cases grow significantly in the number of
instructions, but I expect to actually be faster. We use
pshufd+pshufd+blendw instead of a single shufps, but the pshufd's are
very likely to pipeline well (two ports on most modern intel chips) and
the blend is a *very* fast instruction. The domain switch penalty will
essentially always be more than a blend instruction, which is the only
increase in tree height.
llvm-svn: 229350