D87921 was reverted in commit b89059a313
as it was causing an unknown llvm PPC bot failure. Reapplying the patch
after confirming that this is not responsible. Build bot failure:
https://reviews.llvm.org/D87921#2286644 which caused the revert.
The wrong placement of add pass with optimizations led to
-funique-internal-linkage-names being disabled.
Fixed the placement of the MPM.addpass for UniqueInternalLinkageNames to make it
work correctly with -O2 and new pass manager. Updated the tests to explicitly
check O0 and O1.
Differential Revision: https://reviews.llvm.org/D87921
A static device variable may be accessed in host code through
cudaMemCpyFromSymbol etc. Currently clang does not
emit the static device variable if it is only referenced by
host code, which causes host code to fail at run time.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D88115
This completes the circle, complementing -lto-embed-bitcode
(specifically, post-merge-pre-opt). Using -thinlto-assume-merged skips
function importing. The index file is still needed for the other data it
contains.
Differential Revision: https://reviews.llvm.org/D87949
This updates the C++ ABI argument classification code to use the logic
from D72114, fixing an ABI incompatibility with MSVC.
Part of PR44395.
Differential Revision: https://reviews.llvm.org/D87923
Fixed the placement of the MPM.addpass for UniqueInternalLinkageNames to make
it work correctly with -O2 and new pass manager. Updated the tests to
explicitly check O0 and O2.
Previously, the addPass was placed before BackendUtil.cpp#L1373 which is wrong
as MPM gets assigned at this point and any additions to the pass vector before
this is wrong. This change just moves it after MPM is assigned and places it at
a point where O0 and O0+ can share it.
Differential Revision: https://reviews.llvm.org/D87921
This patch fixes the problem that user-defined mapper array is not correctly privatized inside a task. This problem causes openmp/libomptarget/test/offloading/target_depend_nowait.cpp fails.
Differential Revision: https://reviews.llvm.org/D84470
- After loading builtin bitcode for linking, skip adding default
function attributes on LLVM intrinsics as their attributes are
well-defined and retrieved directly from internal definitions. Adding
extra attributes on intrinsics results in inconsistent result when
`-save-temps` is present. Also, that makes few optimizations
conservative.
Differential Revision: https://reviews.llvm.org/D87761
This will embed bitcode after (Thin)LTO merge, but before optimizations.
In the case the thinlto backend is called from clang, the .llvmcmd
section is also produced. Doing so in the case where the caller is the
linker doesn't yet have a motivation, and would require plumbing through
command line args.
Differential Revision: https://reviews.llvm.org/D87636
Need to map the component as TO instead of the literal, because need to
pass a reference to a component if the pointer is overaligned.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D84887
This patch adds a command line flag for the machine function splitter
(added in rG94faadaca4e1).
-fsplit-machine-functions
Split machine functions using profile information (x86 ELF). On
other targets an error is emitted. If profile information is not
provided a warning is emitted notifying the user that profile
information is required.
Differential Revision: https://reviews.llvm.org/D87047
Local vars, marked with pragma allocate, mustbe allocate by the call of
the runtime function and cannot be allocated as other local variables.
Instead, we allocate a space for the pointer in private record and store
the address, returned by kmpc_alloc call in this pointer.
So, for untied tasks
```
#pragma omp task untied
{
S s;
#pragma omp allocate(s) allocator(allocator)
s = x;
}
```
compiler generates something like this:
```
struct task_with_privates {
S *ptr;
};
void entry(task_with_privates *p) {
S *s = p->s;
switch(partid) {
case 1:
p->s = (S*)kmpc_alloc();
kmpc_omp_task();
br exit;
case 2:
*s = x;
kmpc_omp_task();
br exit;
case 2:
~S(s);
kmpc_free((void*)s);
br exit;
}
exit:
}
```
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86558
We're now getting close to having the necessary analysis/combines etc. for the new generic llvm smax/smin/umax/umin intrinsics.
This patch updates the SSE/AVX integer MINMAX intrinsics to emit the generic equivalents instead of the icmp+select code pattern.
Differential Revision: https://reviews.llvm.org/D87603
This is consistent with the clang option added in
7ed8124d46, and the comments on the
runtime patch in D87120.
Differential Revision: https://reviews.llvm.org/D87622
This is recommit of 6c8041aa0f, reverted in de044f7562 because of some
fails. Original commit message is below.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
After the recent discussion on cfe-dev 'Can indirect class parameters be
noalias?' [1], it seems like using using noalias is problematic for
current C++, but should be allowed for C-only code.
This patch introduces a new option to let the user indicate that it is
safe to mark indirect class parameters as noalias. Note that this also
applies to external callers, e.g. it might not be safe to use this flag
for C functions that are called by C++ functions.
In targets that allocate indirect arguments in the called function, this
enables more agressive optimizations with respect to memory operations
and brings a ~1% - 2% codesize reduction for some programs.
[1] : http://lists.llvm.org/pipermail/cfe-dev/2020-July/066353.html
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D85473
NOTE: There is a mailing list discussion on this: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
Complemantary to the assumption outliner prototype in D71692, this patch
shows how we could simplify the code emitted for an alignemnt
assumption. The generated code is smaller, less fragile, and it makes it
easier to recognize the additional use as a "assumption use".
As mentioned in D71692 and on the mailing list, we could adopt this
scheme, and similar schemes for other patterns, without adopting the
assumption outlining.
This change allow a CastExpr to have optional FPOptionsOverride object,
stored in trailing storage. Of all cast nodes only ImplicitCastExpr,
CStyleCastExpr, CXXFunctionalCastExpr and CXXStaticCastExpr are allowed
to have FPOptions.
Differential Revision: https://reviews.llvm.org/D85960
This is the initial part of the implementation of the C++20 likelihood
attributes. It handles the attributes in an if statement.
Differential Revision: https://reviews.llvm.org/D85091
In standard C library, both rint and nearbyint returns rounding result
in current rounding mode. But nearbyint never raises inexact exception.
On PowerPC, x(v|s)r(d|s)pic may modify FPSCR XX, raising inexact
exception. So we can't select constrained fnearbyint into xvrdpic.
One exception here is xsrqpi, which will not raise inexact exception, so
fnearbyint f128 is okay here.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D87220
This patch resumes the work of D16586.
According to the AAPCS, volatile bit-fields should
be accessed using containers of the widht of their
declarative type. In such case:
```
struct S1 {
short a : 1;
}
```
should be accessed using load and stores of the width
(sizeof(short)), where now the compiler does only load
the minimum required width (char in this case).
However, as discussed in D16586,
that could overwrite non-volatile bit-fields, which
conflicted with C and C++ object models by creating
data race conditions that are not part of the bit-field,
e.g.
```
struct S2 {
short a;
int b : 16;
}
```
Accessing `S2.b` would also access `S2.a`.
The AAPCS Release 2020Q2
(https://documentation-service.arm.com/static/5efb7fbedbdee951c1ccf186?token=)
section 8.1 Data Types, page 36, "Volatile bit-fields -
preserving number and width of container accesses" has been
updated to avoid conflict with the C++ Memory Model.
Now it reads in the note:
```
This ABI does not place any restrictions on the access widths of bit-fields where the container
overlaps with a non-bit-field member or where the container overlaps with any zero length bit-field
placed between two other bit-fields. This is because the C/C++ memory model defines these as being
separate memory locations, which can be accessed by two threads simultaneously. For this reason,
compilers must be permitted to use a narrower memory access width (including splitting the access into
multiple instructions) to avoid writing to a different memory location. For example, in
struct S { int a:24; char b; }; a write to a must not also write to the location occupied by b, this requires at least two
memory accesses in all current Arm architectures. In the same way, in struct S { int a:24; int:0; int b:8; };,
writes to a or b must not overwrite each other.
```
Patch D16586 was updated to follow such behavior by verifying that we
only change volatile bit-field access when:
- it won't overlap with any other non-bit-field member
- we only access memory inside the bounds of the record
- avoid overlapping zero-length bit-fields.
Regarding the number of memory accesses, that should be preserved, that will
be implemented by D67399.
Differential Revision: https://reviews.llvm.org/D72932
The following people contributed to this patch:
- Diogo Sampaio
- Ties Stuij
Fixes issue noticed by static analysis where we have a copy+paste typo, testing ScheduleKind.M1 twice instead of ScheduleKind.M2.
Differential Revision: https://reviews.llvm.org/D87250
We're now getting close to having the necessary analysis/combines etc. for the new generic llvm.abs.* intrinsics.
This patch updates the SSE/AVX ABS vector intrinsics to emit the generic equivalents instead of the icmp+sub+select code pattern.
Differential Revision: https://reviews.llvm.org/D87101
This change groups
* Rename: `ignoreParenBaseCasts` -> `IgnoreParenBaseCasts` for uniformity
* Rename: `IgnoreConversionOperator` -> `IgnoreConversionOperatorSingleStep` for uniformity
* Inline `IgnoreNoopCastsSingleStep` into a lambda inside `IgnoreNoopCasts`
* Refactor `IgnoreUnlessSpelledInSource` to make adequate use of `IgnoreExprNodes`
Differential Revision: https://reviews.llvm.org/D86880
This adds the size to forward declared class DITypes, if the size is known.
Fixes an issue where we determine whether to emit fragments based on the
type size, so fragments would sometimes be incorrectly emitted if there
was no size.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47338
Differential Revision: https://reviews.llvm.org/D87062
Temporarily revert commit 04abbb3a78
due to regressions in some HIP apps due backend issues revealed by
this change.
Will re-commit it when backend issues are fixed.
This assert doesn't really make sense for functions in general, since they
start life as declarations, and there isn't really any reason to require them
to be defined before attributes are applied to them.
rdar://67895846
Previously, clang was crashing on the attached test because the EH cleanup for
the block capture was incorrectly emitted under the assumption that the
expression wasn't conditionally evaluated. This was because before 9a52de00260,
pushLifetimeExtendedDestroy was mainly used with C++ automatic lifetime
extension, where a conditionally evaluated expression wasn't possible. Now that
we're using this path for block captures, we need to handle this case.
rdar://66250047
Differential revision: https://reviews.llvm.org/D86854
This relands D85743 with a fix for test
CodeGen/attr-arm-sve-vector-bits-call.c that disables the new pass
manager with '-fno-experimental-new-pass-manager'. Test was failing due
to IR differences with the new pass manager which broke the Fuchsia
builder [1]. Reverted in 2e7041f.
[1] http://lab.llvm.org:8011/builders/fuchsia-x86_64-linux/builds/10375
Original summary:
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
It's not undefined behavior for an unsigned left shift to overflow (i.e. to
shift bits out), but it has been the source of bugs and exploits in certain
codebases in the past. As we do in other parts of UBSan, this patch adds a
dynamic checker which acts beyond UBSan and checks other sources of errors. The
option is enabled as part of -fsanitize=integer.
The flag is named: -fsanitize=unsigned-shift-base
This matches shift-base and shift-exponent flags.
<rdar://problem/46129047>
Differential Revision: https://reviews.llvm.org/D86000
This patch adjusts the following ARM/AArch64 LLVM IR intrinsics:
- neon_bfmmla
- neon_bfmlalb
- neon_bfmlalt
so that they take and return bf16 and float types. Previously these
intrinsics used <8 x i8> and <4 x i8> vectors (a rudiment from
implementation lacking bf16 IR type).
The neon_vbfdot[q] intrinsics are adjusted similarly. This change
required some additional selection patterns for vbfdot itself and
also for vector shuffles (in a previous patch) because of SelectionDAG
transformations kicking in and mangling the original code.
This patch makes the generated IR cleaner (less useless bitcasts are
produced), but it does not affect the final assembly.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D86146
See RFC for background:
http://lists.llvm.org/pipermail/llvm-dev/2020-June/142744.html
Note that the runtime changes will be sent separately (hopefully this
week, need to add some tests).
This patch includes the LLVM pass to instrument memory accesses with
either inline sequences to increment the access count in the shadow
location, or alternatively to call into the runtime. It also changes
calls to memset/memcpy/memmove to the equivalent runtime version.
The pass is modeled on the address sanitizer pass.
The clang changes add the driver option to invoke the new pass, and to
link with the upcoming heap profiling runtime libraries.
Currently there is no attempt to optimize the instrumentation, e.g. to
aggregate updates to the same memory allocation. That will be
implemented as follow on work.
Differential Revision: https://reviews.llvm.org/D85948
This patch implements codegen for the 'arm_sve_vector_bits' type
attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1].
The purpose of this attribute is to define vector-length-specific (VLS)
versions of existing vector-length-agnostic (VLA) types.
VLSTs are represented as VectorType in the AST and fixed-length vectors
in the IR everywhere except in function args/return. Implemented in this
patch is codegen support for the following:
* Implicit casting between VLA <-> VLS types.
* Coercion of VLS types in function args/return.
* Mangling of VLS types.
Casting is handled by the CK_BitCast operation, which has been extended
to support the two new vector kinds for fixed-length SVE predicate and
data vectors, where the cast is implemented through memory rather than a
bitcast which is unsupported. Implementing this as a normal bitcast
would require relaxing checks in LLVM to allow bitcasting between
scalable and fixed types. Another option was adding target-specific
intrinsics, although codegen support would need to be added for these
intrinsics. Given this, casting through memory seemed like the best
approach as it's supported today and existing optimisations may remove
unnecessary loads/stores, although there is room for improvement here.
Coercion of VLSTs in function args/return from fixed to scalable is
implemented through the AArch64 ABI in TargetInfo.
The VLA and VLS types are defined by the ACLE to map to the same
machine-level SVE vectors. VLS types are mangled in the same way as:
__SVE_VLS<typename, unsigned>
where the first argument is the underlying variable-length type and the
second argument is the SVE vector length in bits. For example:
#if __ARM_FEATURE_SVE_BITS==512
// Mangled as 9__SVE_VLSIu11__SVInt32_tLj512EE
typedef svint32_t vec __attribute__((arm_sve_vector_bits(512)));
// Mangled as 9__SVE_VLSIu10__SVBool_tLj512EE
typedef svbool_t pred __attribute__((arm_sve_vector_bits(512)));
#endif
The latest ACLE specification (00bet5) does not contain details of this
mangling scheme, it will be specified in the next revision. The
mangling scheme is otherwise defined in the appendices to the Procedure
Call Standard for the Arm Architecture, see [2] for more information.
[1] https://developer.arm.com/documentation/100987/latest
[2] https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#appendix-c-mangling
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85743
This patch adds type information for SVE ACLE vector types,
by describing them as vectors, with a lower bound of 0, and
an upper bound described by a DWARF expression using the
AArch64 Vector Granule register (VG), which contains the
runtime multiple of 64bit granules in an SVE vector.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86101