Commit Graph

373 Commits

Author SHA1 Message Date
Simon Pilgrim 95ca3aacf0 BTFDebug.h - reduce MachineInstr.h include to forward declaration. NFCI. 2020-09-07 17:51:13 +01:00
Craig Topper c7a0b2684f [X86][MC][Target] Initial backend support a tune CPU to support -mtune
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.

This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.

One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.

I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.

Differential Revision: https://reviews.llvm.org/D85165
2020-08-14 15:31:50 -07:00
Yonghong Song c50f5dece9 BPF: fix libLLVMBPFCodeGen.so build failure
Buildbot reported a build failure when building shared
library libLLVMBPFCodeGen.so with unknown reference to
"createCFGSimplificationPass".

Commit 87cba43402 ("BPF: add a SimplifyCFG IR pass during
generic Scalar/IPO optimization") added an IR pass SimplifyCFG
by BPF target. The commit called function
createCFGSimplificationPass() defined in "Scalar" library.
Add this library in Target/BPF/LLVMBuild.txt so
shared library build can succeed.
2020-08-06 15:27:15 -07:00
Yonghong Song 87cba43402 BPF: add a SimplifyCFG IR pass during generic Scalar/IPO optimization
The following bpf linux kernel selftest failed with latest
llvm:
  $ ./test_progs -n 7/10
  ...
  The sequence of 8193 jumps is too complex.
  verification time 126272 usec
  stack depth 320
  processed 114799 insns (limit 1000000)
  ...
  libbpf: failed to load object 'pyperf600_nounroll.o'
  test_bpf_verif_scale:FAIL:110
  #7/10 pyperf600_nounroll.o:FAIL
  #7 bpf_verif_scale:FAIL

After some investigation, I found the following llvm patch
  https://reviews.llvm.org/D84108
is responsible. The patch disabled hoisting common instructions
in SimplifyCFG by default. Later on, the code changes and a
SimplifyCFG phase with hoisting on cannot do the work any more.

A test is provided to demonstrate the problem.
The IR before simplifyCFG looks like:
  for.cond:
    %i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
    %cmp = icmp ult i32 %i.0, 6
    br i1 %cmp, label %for.body, label %for.cond.cleanup

  for.cond.cleanup:
    %2 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
    %cmp2 = icmp eq i8* %2, null
    %conv = zext i1 %cmp2 to i32
    call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %1) #3
    call void @llvm.lifetime.end.p0i8(i64 8, i8* nonnull %0) #3
    ret i32 %conv

  for.body:
    %3 = load i8*, i8** %frame_ptr, align 8, !tbaa !2
    %tobool.not = icmp eq i8* %3, null
    br i1 %tobool.not, label %for.inc, label %land.lhs.true

The first two insns of `for.cond.cleanup` and `for.body`, load and
icmp, can be hoisted to `for.cond` block. With Patch D84108, the
optimization is delayed. But unfortunately, later on loop rotation
added addition phi nodes to `for.body` and hoisting cannot
be done any more.

Note such a hoisting is beneficial to bpf programs as
bpf verifier does path sensitive analysis and verification.
The hoisting preverts reloading from stack which will assume
conservative value and increase exploited insns. In this case,
it caused verifier failure.

To fix this problem, I added an IR pass from bpf target
to performance additional simplifycfg with hoisting common inst
enabled.

Differential Revision: https://reviews.llvm.org/D85434
2020-08-06 13:16:00 -07:00
Yonghong Song 00602ee7ef BPF: simplify IR generation for __builtin_btf_type_id()
This patch simplified IR generation for __builtin_btf_type_id().
For __builtin_btf_type_id(obj, flag), previously IR builtin
looks like
   if (obj is a lvalue)
     llvm.bpf.btf.type.id(obj.ptr, 1, flag)  !type
   else
     llvm.bpf.btf.type.id(obj, 0, flag)  !type
The purpose of the 2nd argument is to differentiate
   __builtin_btf_type_id(obj, flag) where obj is a lvalue
vs.
   __builtin_btf_type_id(obj.ptr, flag)

Note that obj or obj.ptr is never used by the backend
and the `obj` argument is only used to derive the type.
This code sequence is subject to potential llvm CSE when
  - obj is the same .e.g., nullptr
  - flag is the same
  - metadata type is different, e.g., typedef of struct "s"
    and strust "s".
In the above, we don't want CSE since their metadata is different.

This patch change IR builtin to
   llvm.bpf.btf.type.id(seq_num, flag)  !type
and seq_num is always increasing. This will prevent potential
llvm CSE.

Also report an error if the type name is empty for
remote relocation since remote relocation needs non-empty
type name to do relocation against vmlinux.

Differential Revision: https://reviews.llvm.org/D85174
2020-08-04 16:29:42 -07:00
Yonghong Song 6d218b4adb BPF: support type exist/size and enum exist/value relocations
Four new CO-RE relocations are introduced:
  - TYPE_EXISTENCE: whether a typedef/record/enum type exists
  - TYPE_SIZE: the size of a typedef/record/enum type
  - ENUM_VALUE_EXISTENCE: whether an enum value of an enum type exists
  - ENUM_VALUE: the enum value of an enum type

These additional relocations will make CO-RE bpf programs
more adaptive for potential kernel internal data structure
changes.

Differential Revision: https://reviews.llvm.org/D83878
2020-08-04 12:35:39 -07:00
Fangrui Song 40da58a04b [MC] Default MCAsmBackend::mayNeedRelaxation() to false 2020-08-02 22:13:59 -07:00
Kazu Hirata 902cbcd59e Use llvm::is_contained where appropriate (NFC)
Summary:
This patch replaces std::find with llvm::is_contained where
appropriate.

Reviewers: efriedma, nhaehnle

Reviewed By: nhaehnle

Subscribers: arsenm, jvesely, nhaehnle, hiraditya, rogfer01, kerbowa, llvm-commits, vkmr

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D84489
2020-07-27 10:20:44 -07:00
Simon Pilgrim 0128b9505c Revert rG5dd566b7c7b78bd- "PassManager.h - remove unnecessary Function.h/Module.h includes. NFCI."
This reverts commit 5dd566b7c7.

Causing some buildbot failures that I'm not seeing on MSVC builds.
2020-07-24 13:02:33 +01:00
Simon Pilgrim 5dd566b7c7 PassManager.h - remove unnecessary Function.h/Module.h includes. NFCI.
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.

This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
2020-07-24 12:40:50 +01:00
Yuanfang Chen ca1e69a675 [NFC] remove unused includes of SelectionDAGISel.h 2020-07-20 10:43:29 -07:00
Simon Pilgrim 017e5c949b MCFixup.h - remove unnecessary MCExpr.h include. NFCI.
Move the include down to files that actually depend on MCExpr definitions.

Also exposes an implicit dependency on MCContext in AVRAsmBackend.h
2020-07-20 15:17:19 +01:00
Yonghong Song 0e347c0ff0 BPF: generate .rodata BTF datasec for certain initialized local var's
Currently, BTF datasec type for .rodata is generated only if there are
user-defined readonly global variables which have debuginfo generated.

Certain readonly global variables may be generated from initialized
local variables. For example,
  void foo(const void *);
  int test() {
    const struct {
      unsigned a[4];
      char b;
    } val = { .a = {2, 3, 4, 5}, .b = 6 };
    foo(&val);
    return 0;
  }

The clang will create a private linkage const global to store
the initialized value:
  @__const.test.val = private unnamed_addr constant %struct.anon
      { [4 x i32] [i32 2, i32 3, i32 4, i32 5], i8 6 }, align 4

This global variable eventually is put in .rodata ELF section.

If there is .rodata ELF section, libbpf expects a BTF .rodata
datasec as well even though it may be empty meaning there are no
global readonly variables with proper debuginfo. Martin reported
a bug where without this empty BTF .rodata datasec, the bpftool
gen will exit with an error.

This patch fixed the issue by generating .rodata BTF datasec
if there exists local var intial data which will result in
.rodata ELF section.

Differential Revision: https://reviews.llvm.org/D84002
2020-07-17 09:45:57 -07:00
Logan Smith a19461d9e1 [NFC] Add 'override' keyword where missing in include/ and lib/.
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.

Differential Revision: https://reviews.llvm.org/D83709
2020-07-14 09:47:29 -07:00
Yonghong Song 152a9fef1b BPF: permit .maps section variables with typedef type
Currently, llvm when see a global variable in .maps section,
it ensures its type must be a struct type. Then pointee
will be further evaluated for the structure members.
In normal cases, the pointee type will be skipped.

Although this is what current all bpf programs are doing,
but it is a little bit restrictive. For example, it is legitimate
for users to have:
typedef struct { int key_size; int value_size; } __map_t;
__map_t map __attribute__((section(".maps")));

This patch lifts this restriction and typedef of
a struct type is also allowed for .maps section variables.
To avoid create unnecessary fixup entries when traversal
started with typedef/struct type, the new implementation
first traverse all map struct members and then traverse
the typedef/struct type. This way, in internal BTFDebug
implementation, no fixup entries are generated.

Two new unit tests are added for typedef and const
struct in .maps section. Also tested with kernel bpf selftests.

Differential Revision: https://reviews.llvm.org/D83638
2020-07-12 09:42:25 -07:00
Yonghong Song 3eacfdc72f [BPF] Fix a BTF gen bug related to a pointer struct member
Currently, BTF generation stops at pointer struct members
if the pointee type is a struct. This is to avoid bloating
generated BTF size. The following is the process to
correctly record types for these pointee struct types.
  - During type traversal stage, when a struct member, which
    is a pointer to another struct, is encountered,
    the pointee struct type, keyed with its name, is
    remembered in a Fixup map.
  - Later, when all type traversal is done, the Fixup map
    is scanned, based on struct name matching, to either
    resolve as pointing to a real already generated type
    or as a forward declaration.

Andrii discovered a bug if the struct member pointee struct
is anonymous. In this case, a struct with empty name is
recorded in Fixup map, and later it happens another anonymous
struct with empty name is defined in BTF. So wrong type
resolution happens.

To fix the problem, if the struct member pointee struct
is anonymous, pointee struct type will be generated in
stead of being put in Fixup map.

Differential Revision: https://reviews.llvm.org/D82976
2020-07-01 09:55:01 -07:00
Guillaume Chatelet 0f9d623b63 [Alignment][NFC] Use Align for BPFAbstractMemberAccess::RecordAlignment
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82962
2020-07-01 16:23:52 +00:00
Yonghong Song 7f6bc84a97 [BPF] Fix a bug for __builtin_preserve_field_info() processing
Andrii discovered a problem where a simple case similar to below
will generate wrong relocation kind:
  enum { FIELD_EXISTENCE = 2, };
  struct s1 { int a1; };
  int test() {
    struct s1 *v = 0;
    return __builtin_preserve_field_info(v[0], FIELD_EXISTENCE);
  }
The expected relocation kind should be FIELD_EXISTENCE, but
recorded reloc kind in the final object file is FIELD_BYTE_OFFSET,
which is incorrect.

This exposed a bug in generating access strings from intrinsics.
The current access string generation has two steps:
  step 1: find the base struct/union type,
  step 2: traverse members in the base type.

The current implementation relies on at lease one member access
in step 2 to get the correct relocation kind, which is true
in typical cases. But if there is no member accesses, the current
implementation falls to the default info kind FIELD_BYTE_OFFSET.
This is incorrect, we should still record the reloc kind
based on the user input. This patch fixed this issue by properly
recording the reloc kind in such cases.

Differential Revision: https://reviews.llvm.org/D82932
2020-06-30 23:45:37 -07:00
Guillaume Chatelet c1cd61e02a [Alignment][NFC] Migrate SelectionDAGTargetInfo::EmitTargetCodeForMemcpy to Align
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790

Differential Revision: https://reviews.llvm.org/D82849
2020-06-30 13:12:31 +00:00
Yonghong Song 89648eb16d [BPF] fix a bug for BTF pointee type pruning
In BTF, pointee type pruning is used to reduce cluttering
too many unused types into prog BTF. For example,
   struct task_struct {
      ...
      struct mm_struct *mm;
      ...
   }
If bpf program does not access members of "struct mm_struct",
there is no need to bring types for "struct mm_struct" to BTF.

This patch fixed a bug where an incorrect pruning happened.
The test case like below:
    struct t;
    typedef struct t _t;
    struct s1 { _t *c; };
    int test1(struct s1 *arg) { ... }

    struct t { int a; int b; };
    struct s2 { _t c; }
    int test2(struct s2 *arg) { ... }

After processing test1(), among others, BPF backend generates BTF types for
    "struct s1", "_t" and a placeholder for "struct t".
Note that "struct t" is not really generated. If later a direct access
to "struct t" member happened, "struct t" BTF type will be generated
properly.

During processing test2(), when processing member type "_t c",
BPF backend sees type "_t" already generated, so returned.
This caused the problem that "struct t" BTF type is never generated and
eventually causing incorrect type definition for "struct s2".

To fix the issue, during DebugInfo type traversal, even if a
typedef/const/volatile/restrict derived type has been recorded in BTF,
if it is not a type pruning candidate, type traversal of its base type continues.

Differential Revision: https://reviews.llvm.org/D82041
2020-06-17 15:13:46 -07:00
Benjamin Kramer df9a51dab3 Remove global std::strings. NFCI. 2020-06-17 14:29:42 +02:00
Yonghong Song 4db1878158 [BPF] fix incorrect type in BPFISelDAGToDAG readonly load optimization
In BPF Instruction Selection DAGToDAG transformation phase,
BPF backend had an optimization to turn load from readonly data
section to direct load of the values. This phase is implemented
before libbpf has readonly section support and before alu32
is supported.

This phase however may generate incorrect type when alu32 is
enabled. The following is an example,
  -bash-4.4$ cat ~/tmp2/t.c
  struct t {
    unsigned char a;
    unsigned char b;
    unsigned char c;
  };
  extern void foo(void *);
  int test() {
    struct t v = {
      .b = 2,
    };
    foo(&v);
    return 0;
  }

The compiler will turn local variable "v" into a readonly section.
During instruction selection phase, the compiler generates two
loads from readonly section, one 2 byte load or 1 byte load, e.g., for 2 loads,
  t8: i32,ch = load<(dereferenceable load 2 from `i8* getelementptr inbounds
       (%struct.t, %struct.t* @__const.test.v, i64 0, i32 0)`, align 1),
       anyext from i16> t3, GlobalAddress:i64<%struct.t* @__const.test.v> 0, undef:i64
  t9: ch = store<(store 2 into %ir.v1.sub1), trunc to i16> t3, t8,
    FrameIndex:i64<0>, undef:i64

BPF backend changed t8 to i64 = Constant<2> and eventually the generated machine IR:
  t10: i64 = MOV_ri TargetConstant:i64<2>
  t40: i32 = SLL_ri_32 t10, TargetConstant:i32<8>
  t41: i32 = OR_ri_32 t40, TargetConstant:i64<0>
  t9: ch = STH32<Mem:(store 2 into %ir.v1.sub1)> t41, TargetFrameIndex:i64<0>,
      TargetConstant:i64<0>, t3

Note that t10 in the above is not correct. The type should be i32 and instruction
should be MOV_ri_32. The reason for incorrect insn selection is BPF insn selection
generated an i64 constant instead of an i32 constant as specified in the original
load instruction. Such incorrect insn sequence eventually caused the following
fatal error when a COPY insn tries to copy a 64bit register to a 32bit subregister.
  Impossible reg-to-reg copy
  UNREACHABLE executed at ../lib/Target/BPF/BPFInstrInfo.cpp:42!

This patch fixed the issue by using the load result type instead of always i64
when doing readonly load optimization.

Differential Revision: https://reviews.llvm.org/D81630
2020-06-11 19:31:06 -07:00
Yonghong Song 3659559cf3 [BPF] Remove unnecessary MOV_32_64 instructions
Commit 13f6c81c5d ("[BPF] simplify zero extension
with MOV_32_64") tried to use MOV_32_64 instructions
instead of lshift/rshift instructions for zero extension.
This has the benefit to remove the number of instructions
and may help verifier too.

But the same commit also removed the old MOV_32_64
pruning as it deems unsafe as MOV_32_64 does have the
side effect, zeroing out the top 32bit in the register.
This caused the following failure in kernel selftest
test_cls_redirect.o. In linux kernel, we have
     struct __sk_buff {
        __u32 data;
        __u32 data_end;
     };
The compiler will generate 32bit load for __sk_buff->data
and __sk_buff->data_end. But kernel verifier will actually
loads an address (64bit address on 64bit kernel) to the
result register. In this particular example, the explicit zext
was not optimized away and destroyed top 32bit
address and the verifier rejected the program :
     w2 = *(u32 *)(r1 + 76)
     ...
     r2 = w2  /* MOV_32_64: this will clear top 32bit */

Currently, if the load and the zext are next to each other, the
instruction pattern match can actually capture this to
avoid MOV_32_64, e.g., in BPFInstrInfo.td, we have
  def : Pat<(i64 (zextloadi32 ADDRri:$src)),
            (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;

However, if they are not next to each other, LDW32 and
MOV_32_64 are generated, which may cause the above mentioned
problem.

BPF Backend already tried to optimize away pattern
   mov_32_64 + lshift + rshift

Commit 13f6c81c5d may generate mov_32_64 not followed by shifts.
This patch added optimization for only mov_32_64 too.

Differential Revision: https://reviews.llvm.org/D81048
2020-06-03 08:14:54 -07:00
John Fastabend 13f6c81c5d [BPF] simplify zero extension with MOV_32_64
The current pattern matching for zext results in the following code snippet
being produced,

  w1 = w0
  r1 <<= 32
  r1 >>= 32

Because BPF implementations require zero extension on 32bit loads this
both adds a few extra unneeded instructions but also makes it a bit
harder for the verifier to track the r1 register bounds. For example in
this verifier trace we see at the end of the snippet R2 offset is unknown.
However, if we track this correctly we see w1 should have the same bounds
as r8. R8 smax is less than U32 max value so a zero extend load should keep
the same value. Adding a max value of 800 (R8=inv(id=0,smax_value=800)) to
an off=0, as seen in R7 should create a max offset of 800. However at the
end of the snippet we note the R2 max offset is 0xffffFFFF.

  R0=inv(id=0,smax_value=800)
  R1_w=inv(id=0,umax_value=2147483647,var_off=(0x0; 0x7fffffff))
  R6=ctx(id=0,off=0,imm=0) R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
  R8_w=inv(id=0,smax_value=800,umax_value=4294967295,var_off=(0x0; 0xffffffff))
  R9=inv800 R10=fp0 fp-8=mmmm????
 58: (1c) w9 -= w8
 59: (bc) w1 = w8
 60: (67) r1 <<= 32
 61: (77) r1 >>= 32
 62: (bf) r2 = r7
 63: (0f) r2 += r1
 64: (bf) r1 = r6
 65: (bc) w3 = w9
 66: (b7) r4 = 0
 67: (85) call bpf_get_stack#67
  R0=inv(id=0,smax_value=800)
  R1_w=ctx(id=0,off=0,imm=0)
  R2_w=map_value(id=0,off=0,ks=4,vs=1600,umax_value=4294967295,var_off=(0x0; 0xffffffff))
  R3_w=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff))
  R4_w=inv0 R6=ctx(id=0,off=0,imm=0)
  R7=map_value(id=0,off=0,ks=4,vs=1600,imm=0)
  R8_w=inv(id=0,smax_value=800,umax_value=4294967295,var_off=(0x0; 0xffffffff))
  R9_w=inv(id=0,umax_value=800,var_off=(0x0; 0x3ff))
  R10=fp0 fp-8=mmmm????

After this patch R1 bounds are not smashed by the <<=32 >>=32 shift and we
get correct bounds on R2 umax_value=800.

Further it reduces 3 insns to 1.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>

Differential Revision: https://reviews.llvm.org/D73985
2020-05-27 11:26:39 -07:00
Yonghong Song eec758825d [BPF] fix an asan issue when disassemble an illegal instruction
Commit 8e8f1bd75a ("[BPF] Return fail if disassembled insn registers
out of range") tried to fix a segfault when an illegal instruction
is decoded. A test case is added to emulate such an illegal instruction.

The llvm buildbot reported an asan issue with this test case.
  ERROR: AddressSanitizer: global-buffer-overflow on address ...
  decodeMemoryOpValue(llvm::MCInst&, unsigned int, ...)
  llvm::MCDisassembler::DecodeStatus llvm::decodeToMCInst<unsigned long>(...)
  llvm::MCDisassembler::DecodeStatus llvm::decodeInstruction<unsigned long>(...)
  in (anonymous namespace)::BPFDisassembler::getInstruction(...)
  ...

Basically, the fix in Commit 8e8f1bd75a is too later to prevent
the asan. The fix in this patch moved the register number check earlier
during decodeInstruction(). It will return fail for decodeInstruction()
if the register number is out of range.

Note that DecodeGPRRegisterClass() and DecodeGPR32RegisterClass()
already have register number checking, so here we only check
decodeMemoryOpValue().
2020-05-18 22:33:34 -07:00
Yonghong Song 8e8f1bd75a [BPF] Return fail if disassembled insn registers out of range
Daniel reported a llvm-objdump segfault like below:
  $ llvm-objdump -D bpf_xdp.o
  ...
  0000000000000000 <.strtab>:
       0:       00 63 69 6c 69 75 6d 5f <unknown>
       1:       6c 62 36 5f 61 66 66 69 w2 <<= w6
  ...
  (llvm-objdump: lib/Target/BPF/BPFGenAsmWriter.inc:1087: static const char*
   llvm::BPFInstPrinter::getRegisterName(unsigned int): Assertion
   `RegNo && RegNo < 25 && "Invalid register number!"' failed.
   Stack dump:
   0.      Program arguments: llvm-objdump -D bpf_xdp.o
    ...
    abort
    ...
    llvm::BPFInstPrinter::getRegisterName(unsigned int)
    llvm::BPFInstPrinter::printMemOperand(llvm::MCInst const*,
                          int, llvm::raw_ostream&, char const*)
    llvm::BPFInstPrinter::printInstruction(llvm::MCInst const*,
                          unsigned long, llvm::raw_ostream&)
    llvm::BPFInstPrinter::printInst(llvm::MCInst const*,
                          unsigned long, llvm::StringRef, llvm::MCSubtargetInfo const&,
                          llvm::raw_ostream&)
   ...

Basically, since -D enables disassembly for all sections, .strtab is also disassembled,
but some strings are decoded as legal instructions but with illegal register numbers.
When llvm-objdump tries to print register name for these illegal register numbers,
assertion and segfault happens.

The patch fixed the issue by returning fail for a disassembled insn if
that insn contains a reg operand with illegal reg number.
The insn will be printed as "<unknown>" instead of causing an assertion.
2020-05-18 18:53:23 -07:00
Yonghong Song ddff9799d2 [BPF] Prevent disassembly segfault for NOP insn
For a simple program like below:
  -bash-4.4$ cat t.c
  int test() {
    asm volatile("r0 = r0" ::);
    return 0;
  }
compiled with
  clang -target bpf -O2 -c t.c
the following llvm-objdump command will segfault.
  llvm-objdump -d t.o

  0:       bf 00 00 00 00 00 00 00 nop
  llvm-objdump: ../include/llvm/ADT/SmallVector.h:180
  ...
  Assertion `idx < size()' failed
  ...
  abort
  ...
  llvm::BPFInstPrinter::printOperand
  llvm::BPFInstPrinter::printInstruction
  ...

The reason is both NOP and MOV_rr (r0 = r0) having the same encoding.
The disassembly getInstruction() decodes to be a NOP instruciton but
during printInstruction() the same encoding is interpreted as
a MOV_rr instruction. Such a mismatcch caused the segfault.

The fix is to make NOP instruction as CodeGen only so disassembler
will skip NOP insn for disassembling.

Note that instruction "r0 = r0" should not appear in non inline
asm codes since BPF Machine Instruction Peephole optimization will
remove it.

Differential Revision: https://reviews.llvm.org/D80156
2020-05-18 17:40:18 -07:00
Yonghong Song 6b01b46538 [BPF] preserve debuginfo types for builtin __builtin__btf_type_id()
The builtin function
  u32 btf_type_id = __builtin_btf_type_id(param, 0)
can help preserve type info for the following use case:
  extern void foo(..., void *data, int size);
  int test(...) {
    struct t { int a; int b; int c; } d;
    d.a = ...; d.b = ...; d.c = ...;
    foo(..., &d, sizeof(d));
  }

The function "foo" in the above only see raw data and does not
know what type of the data is. In certain cases, e.g., logging,
the additional type information will help pretty print.

This patch handles the builtin in BPF backend. It includes
an IR pass to translate the IR intrinsic to a load of
a global variable which carries the metadata, and an MI
pass to remove the intermediate load of the global variable.
Finally, in AsmPrinter pass, proper instruction are generated.

In the above example, the second argument for __builtin_btf_type_id()
is 0, which means a relocation for local adjustment,
i.e., w.r.t. bpf program BTF change,  will be generated.
The value 1 for the second argument means
a relocation for remote adjustment, e.g., against vmlinux.

Differential Revision: https://reviews.llvm.org/D74572
2020-05-15 08:00:44 -07:00
Craig Topper a58b62b4a2 [IR] Replace all uses of CallBase::getCalledValue() with getCalledOperand().
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().

I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.

Differential Revision: https://reviews.llvm.org/D78882
2020-04-27 22:17:03 -07:00
Simon Pilgrim fa6b68a404 BPFMCTargetDesc.h - remove unused raw_ostream forward declaration. NFC. 2020-04-22 18:26:50 +01:00
Simon Pilgrim 54b3f91d20 [BPF] Remove unused forward declarations. NFC. 2020-04-22 15:07:18 +01:00
Shengchen Kan 8bb059ab63 [MC][Bugfix] Remove redundant parameter for relaxInstruction
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
  1) The first argument's type is `const MCInst &`, the third
  argument's type is `MCInst &`, but they may be aliased to the same
  variable
  2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
  argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
  may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
  loop.

In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.

Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain

Reviewed By: Razer6, MaskRay, bcain

Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78364
2020-04-21 11:06:55 +08:00
Yonghong Song 3cb7e7bf95 BPF: fix a CORE optimization bug
For the test case in this patch like below
  struct t { int a; } __attribute__((preserve_access_index));
  int foo(void *);
  int test(struct t *arg) {
      long param[1];
      param[0] = (long)&arg->a;
      return foo(param);
  }

The IR right before BPF SimplifyPatchable phase:
  %1:gpr = LD_imm64 @"llvm.t:0:0$0:0"
  %2:gpr = LDD killed %1:gpr, 0
  %3:gpr = ADD_rr %0:gpr(tied-def 0), killed %2:gpr
  STD killed %3:gpr, %stack.0.param, 0
After SimplifyPatchable phase, the incorrect IR is generated:
  %1:gpr = LD_imm64 @"llvm.t:0:0$0:0"
  %3:gpr = ADD_rr %0:gpr(tied-def 0), killed %1:gpr
  CORE_MEM killed %3:gpr, 306, %0:gpr, @"llvm.t:0:0$0:0"

Note that CORE_MEM pseudo op is introduced to encode
memory operations related to CORE. In the above, we intend
to check whether we have a store like
   *(%3:gpr + 0) = ...
and if this is the case, we could replace it with
   *(%0:gpr + @"llvm.t:0:0$0:0"_ = ...

Unfortunately, in the above, IR for the store is
   *(%stack.0.param + 0) = %3:gpr
and transformation should not happen.

Note that we won't have problem if the actual CORE
dereference (arg->a) happens.

This patch fixed the problem by skip CORE optimization if
the use of ADD_rr result is not the base address of the store
operation.

Differential Revision: https://reviews.llvm.org/D78466
2020-04-20 19:54:51 -07:00
Simon Pilgrim cbd790a443 DebugHandlerBase.h - reduce MachineInstr.h include to DebugLoc.h include.
We were only including MachineInstr.h for DebugLoc.h. This exposes an implicit include dependency in BTFDebug.h where I've had to add the MachineInstr.h include.
2020-04-19 11:14:01 +01:00
LemonBoy aad3d578da [DebugInfo] Change DIEnumerator payload type from int64_t to APInt
This allows the representation of arbitrarily large enumeration values.
See https://lists.llvm.org/pipermail/llvm-dev/2017-December/119475.html for context.

Reviewed By: andrewrk, aprantl, MaskRay

Differential Revision: https://reviews.llvm.org/D62475
2020-04-18 12:49:31 -07:00
Fangrui Song 7d1ff446b6 [MC] Rename MCSection*::getSectionName() to getName(). NFC
A pending change will merge MCSection*::getName() to MCSection::getName().
2020-04-15 16:48:14 -07:00
Fangrui Song d2e5157c1f [MC] Add UseIntegratedAssembler = false. NFC 2020-04-11 10:13:49 -07:00
Simon Pilgrim a88cc20456 ProfileSummaryInfo.h - remove unnecessary includes. NFC
Remove a number of includes that aren't necessary (nor are we relying on the remaining includes to provide the declarations), we just needed a llvm::Instruction forward declaration.

This exposed a couple of source files that were implicitly replying on the includes for their use of llvm::SmallSet or std::set, requiring local includes to be added there instead.
2020-04-10 16:25:48 +01:00
Eli Friedman 565b56a72c [NFC] Clean up uses of LoadInst constructor. 2020-04-07 16:28:53 -07:00
Yonghong Song ced0d1f42b [BPF] support 128bit int explicitly in layout spec
Currently, bpf does not specify 128bit alignment in its
layout spec. So for a structure like
  struct ipv6_key_t {
    unsigned pid;
    unsigned __int128 saddr;
    unsigned short lport;
  };
clang will generate IR type
  %struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }
Additional padding is to ensure later IR->MIR can generate correct
stack layout with target layout spec.

But it is common practice for a tracing program to be
first compiled with target flag (e.g., x86_64 or aarch64) through
clang to generate IR and then go through llc to generate bpf
byte code. Tracing program often refers to kernel internal
data structures which needs to be compiled with non-bpf target.

But such a compilation model may cause a problem on aarch64.
The bcc issue https://github.com/iovisor/bcc/issues/2827
reported such a problem.

For the above structure, since aarch64 has "i128:128" in its
layout string, the generated IR will have
  %struct.ipv6_key_t = type { i32, i128, i16 }

Since bpf does not have "i128:128" in its spec string,
the selectionDAG assumes alignment 8 for i128 and
computes the stack storage size for the above is 32 bytes,
which leads incorrect code later.

The x86_64 does not have this issue as it does not have
"i128:128" in its layout spec as it does permits i128 to
be alignmented at 8 bytes at stack. Its IR type looks like
  %struct.ipv6_key_t = type { i32, [12 x i8], i128, i16, [14 x i8] }

The fix here is add i128 support in layout spec, the same as
aarch64. The only downside is we may have less optimal stack
allocation in certain cases since we require 16byte alignment
for i128 instead of 8. But this is probably fine as i128 is
not used widely and in most cases users should already
have proper alignment.

Differential Revision: https://reviews.llvm.org/D76587
2020-03-28 11:46:29 -07:00
Fangrui Song 692e0c9648 [MC] Add MCStreamer::emitInt{8,16,32,64}
Similar to AsmPrinter::emitInt{8,16,32,64}.
2020-02-29 09:40:21 -08:00
Fangrui Song 774971030d [MCStreamer] De-capitalize EmitValue EmitIntValue{,InHex} 2020-02-14 23:08:40 -08:00
Fangrui Song 6d2d589b06 [MC] De-capitalize another set of MCStreamer::Emit* functions
Emit{ValueTo,Code}Alignment Emit{DTP,TP,GP}* EmitSymbolValue etc
2020-02-14 19:26:52 -08:00
Fangrui Song a55daa1461 [MC] De-capitalize some MCStreamer::Emit* functions 2020-02-14 19:11:53 -08:00
Fangrui Song bcd24b2d43 [AsmPrinter][MCStreamer] De-capitalize EmitInstruction and EmitCFI* 2020-02-13 22:08:55 -08:00
Fangrui Song 0bc77a0f0d [AsmPrinter] De-capitalize some AsmPrinter::Emit* functions
Similar to rL328848.
2020-02-13 13:38:33 -08:00
Yonghong Song 61bd33e37b [BPF] explicit warning of not supporting dynamic stack allocation
Currently, BPF does not support dynamic static allocation.
For a program like below:
  extern void bar(int *);
  void foo(int n) {
    int a[n];
    bar(a);
  }

The current error message looks like:
  unimplemented operand
  UNREACHABLE executed at /.../llvm/lib/Target/BPF/BPFISelLowering.cpp:199!

Let us make error message explicit so it will be clear to the user
what is the problem. With this patch, the error message looks like:
  fatal error: error in backend: Unsupported dynamic stack allocation
  ...

Differential Revision: https://reviews.llvm.org/D74521
2020-02-12 20:43:06 -08:00
Yonghong Song 29bc5dd194 [BPF] implement isTruncateFree and isZExtFree in BPFTargetLowering
Currently, isTruncateFree() and isZExtFree() callbacks return false
as they are not implemented in BPF backend. This may cause suboptimal
code generation. For example, if the load in the context of zero extension
has more than one use, the pattern zextload{i8,i16,i32} will
not be generated. Rather, the load will be matched first and
then the result is zero extended.

For example, in the test together with this commit, we have
   I1: %0 = load i32, i32* %data_end1, align 4, !tbaa !2
   I2: %conv = zext i32 %0 to i64
   ...
   I3: %2 = load i32, i32* %data, align 4, !tbaa !7
   I4: %conv2 = zext i32 %2 to i64
   ...
   I5: %4 = trunc i64 %sub.ptr.lhs.cast to i32
   I6: %conv13 = sub i32 %4, %2
   ...

The I1 and I2 will match to one zextloadi32 DAG node, where SUBREG_TO_REG is
used to convert a 32bit register to 64bit one. During code generation,
SUBREG_TO_REG is a noop.

The %2 in I3 is used in both I4 and I6. If isTruncateFree() is false,
the current implementation will generate a SLL_ri and SRL_ri
for the zext part during lowering.

This patch implement isTruncateFree() in the BPF backend, so for the
above example, I3 and I4 will generate a zextloadi32 DAG node with
SUBREG_TO_REG is generated during lowering to Machine IR.

isZExtFree() is also implemented as it should help code gen as well.

This patch also enables the change in https://reviews.llvm.org/D73985
since it won't kick in generates MOV_32_64 machine instruction.

Differential Revision: https://reviews.llvm.org/D74101
2020-02-11 09:59:19 -08:00
Eric Astor 8d5bf0422b [ms] [llvm-ml] Add support for attempted register parsing
Summary:
Add a new method (tryParseRegister) that attempts to parse a register specification.

MASM allows the use of IFDEF <register>, as well as IFDEF <symbol>. To accommodate this, we make it possible to check whether a register specification can be parsed at the current location, without failing the entire parse if it can't.

Reviewers: thakis

Reviewed By: thakis

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73486
2020-02-11 10:45:33 -05:00
Yonghong Song d96c1bbaa0 [BPF] disable ReduceLoadWidth during SelectionDag phase
The compiler may transform the following code
  ctx = ctx + reloc_offset
  ... (*(u32 *)ctx) & 0x8000 ...
to
  ctx = ctx + reloc_offset
  ... (*(u8 *)(ctx + 1)) & 0x80 ...
where reloc_offset will be replaced with a constant during
AsmPrinter phase.

The above transformed code will be rejected the kernel verifier
as it does not allow
  *(type *)((ctx + non_zero_offset1) + non_zero_offset2)
style access pattern.

It is hard at SelectionDag phase to identify whether a load
is related to context or not. Sometime, interprocedure analysis
may be needed. So let us simply prevent such optimization
from happening.

Differential Revision: https://reviews.llvm.org/D73997
2020-02-04 18:37:43 -08:00