We may meet Invalid CTR loop crash when there's constrained ops inside.
This patch adds constrained FP intrinsics to the list so that CTR loop
verification doesn't complain about it.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D81924
This patch makes these operations legal, and add necessary codegen
patterns.
There's still some issue similar to D77033 for conversion from v1i128
type. But normal type tests synced in vector-constrained-fp-intrinsic
are passed successfully.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D83654
This patch adds support for constrained scalar int to fp operations on
PowerPC. Besides, this also fixes the FP exception bit of FCFID*
instructions.
Reviewed By: steven.zhang, uweigand
Differential Revision: https://reviews.llvm.org/D81669
This patch is the initial support for the Intial Exec Thread Local
Local Storage model to produce code sequence and relocations correct
to the ABI for the model when using PC relative memory operations.
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D81947
This patch is the initial support for the General Dynamic Thread Local
Local Storage model to produce code sequence and relocations correct
to the ABI for the model when using PC relative memory operations.
Patch by: NeHuang
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D82315
This patch adds support for constrained scalar fp to int operations on
PowerPC. Besides, this fixes the FP exception bit of quad-precision
convert & truncate instructions.
Reviewed By: steven.zhang, uweigand
Differential Revision: https://reviews.llvm.org/D81537
Summary:
This is a follow up for D82481. For .lcomm directive, although it's
not necessary to have .rename emitted, it's still desirable to do
it so that we do not see internal 'Rename..' gets print out in
symbol table. And we could have consistent naming between TC entry
and .lcomm. And also have consistent naming between IR and final
object file.
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D86075
This patch implements the vec_extractm function prototypes in altivec.h in
order to utilize the vector extract with mask instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82675
This patch implements initial backend support for a -mtune CPU controlled by a "tune-cpu" function attribute. If the attribute is not present X86 will use the resolved CPU from target-cpu attribute or command line.
This patch adds MC layer support a tune CPU. Each CPU now has two sets of features stored in their GenSubtargetInfo.inc tables . These features lists are passed separately to the Processor and ProcessorModel classes in tablegen. The tune list defaults to an empty list to avoid changes to non-X86. This annoyingly increases the size of static tables on all target as we now store 24 more bytes per CPU. I haven't quantified the overall impact, but I can if we're concerned.
One new test is added to X86 to show a few tuning features with mismatched tune-cpu and target-cpu/target-feature attributes to demonstrate independent control. Another new test is added to demonstrate that the scheduler model follows the tune CPU.
I have not added a -mtune to llc/opt or MC layer command line yet. With no attributes we'll just use the -mcpu for both. MC layer tools will always follow the normal CPU for tuning.
Differential Revision: https://reviews.llvm.org/D85165
A unique module id, which is a part of sinit and sterm function names, is
necessary to be unique. However, `getUniqueModuleId` will fail if there is
no strong external symbol within a module. We turn to use Pid and timestamp
when this happens.
Differential Revision: https://reviews.llvm.org/D85527
This patch implements the builtins for the vector shifts (shl, srl, sra), and
adds the appropriate test cases for these builtins. The builtins utilize the
vector shift instructions introduced within ISA 3.1.
Differential Revision: https://reviews.llvm.org/D83338
SUMMARY:
1. in the patch , remove setting storageclass in function .getXCOFFSection and construct function of class MCSectionXCOFF
there are
XCOFF::StorageMappingClass MappingClass;
XCOFF::SymbolType Type;
XCOFF::StorageClass StorageClass;
in the MCSectionXCOFF class,
these attribute only used in the XCOFFObjectWriter, (asm path do not need the StorageClass)
we need get the value of StorageClass, Type,MappingClass before we invoke the getXCOFFSection every time.
actually , we can get the StorageClass of the MCSectionXCOFF from it's delegated symbol.
2. we also change the oprand of branch instruction from symbol name to qualify symbol name.
for example change
bl .foo
extern .foo
to
bl .foo[PR]
extern .foo[PR]
3. and if there is reference indirect call a function bar.
we also add
extern .bar[PR]
Reviewers: Jason liu, Xiangling Liao
Differential Revision: https://reviews.llvm.org/D84765
Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220
Summary:
Use TE SMC instead of TC SMC in large code model mode,
so that large code model TOC entries could get placed after all
the small code model TOC entries, which reduces the chance of TOC overflow.
Reviewed By: Xiangling_L
Differential Revision: https://reviews.llvm.org/D85455
Summary:
AIX assembler does not generate correct relocation when .rename
appear between tc entry label and .tc directive.
So only emit .rename after .tc/.comm or other linkage is emitted.
Reviewed By: daltenty, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D85317
On the frontend side, this patch recovers AIX static init implementation to
use the linkage type and function names Clang chooses for sinit related function.
On the backend side, this patch sets correct linkage and function names on aliases
created for sinit/sterm functions.
Differential Revision: https://reviews.llvm.org/D84534
Add a hidden option to the compiler to control a the PC Relative GOT indirect
linker optimization.
If this option is set to false the compiler will no loger produce the
relocations required by the linker to perform the optimization.
Reviewed By: nemanjai, NeHuang, #powerpc
Differential Revision: https://reviews.llvm.org/D85377
This patch introduces two intrinsics: llvm.ppc.setflm and
llvm.ppc.readflm. They read from or write to FPSCR register
(floating-point status & control) which contains rounding mode and
exception status.
To ensure correctness of program, we need to prevent FP operations from
being moved across these intrinsics (mffs/mtfsf instruction), so here I
set them as scheduling boundaries. We can relax such restriction if
FPSCR is modeled well in the future.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D84914
This patch adds the instruction definitions and assembly/disassembly tests for
the following set of instructions:
Vector Extract [byte | half | word | doubleword | quad] with mask
Vector Expand [byte | half | word | doubleword | quad] with mask
Move to VSR [byte | byte immediate | half | word | doubleword | quad] with mask
Vector Count Mask Bits [byte | half | word | doubleword]
Differential Revision: https://reviews.llvm.org/D83724
Introduce a fatal error if any thread local storage code is compiled
using pc relative memory operations as well as a hidden override
option `-enable-ppc-pcrel-tls` so that this support can be incrementally
added if possible.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D85448
This patch implements the function prototypes vec_extractl and vec_extracth in altivec.h to utilize the vector extract double element instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D84622
The swap removal pass looks to remove swaps when a loaded value is swapped, some
number of lane-insensitive operations are performed and then the value is
swapped again and stored.
However, in a situation where we load the value, swap it and then store it
without swapping again, the pass erroneously removes the single swap. The
reason is that both checks in the same equivalence class:
- load feeds a swap
- swap feeds a store
pass. However, there is no check that the two swaps are actually a single swap.
This patch just fixes that.
Differential revision: https://reviews.llvm.org/D84785
The custom lowering saves an instruction over the generic expansion, by
taking advantage of the fact that PowerPC shift instructions are well
defined in the shift-by-bitwidth case.
Differential Revision: https://reviews.llvm.org/D83948
For FP_TO_INT and INT_TO_FP lowering, we have direct-move and
non-direct-move methods. But they share some conversion logic, so we can
reduce redundant code by introducing new methods.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D81818
This is a refactor patch to prepare for adding the support for strict-fsetcc
in PowerPC backend. We want to move their definition into a uniform way so that,
we could add the strict node easier.
Reviewed By: shchenz
Differential Revision: https://reviews.llvm.org/D81712
SPE doesn't have a fsel instruction, so don't try to lower to it.
This fixes a "Cannot select: tN: f64 = PPCISD::FSEL tX, tY, tZ" error.
Reviewed By: #powerpc, lkail
Differential Revision: https://reviews.llvm.org/D77773
The patterns were incorrect copies from the FPU code, and are
unnecessary, since there's no extended load for SPE. Just let LLVM
itself do the work by marking it expand.
Reviewed By: #powerpc, lkail
Differential Revision: https://reviews.llvm.org/D78670
This patch implements the instruction definition and MC tests for the vector
string isolate instructions.
Differential Revision: https://reviews.llvm.org/D84197
Scheduler will try to retrieve the offset and base addr to determine if two
loads/stores are disjoint memory access. PowerPC failed to handle this for
frame index which will bring extra memory dependency for loads/stores.
Reviewed By: jji
Differential Revision: https://reviews.llvm.org/D84308
Summary:
This patch implements -ffunction-sections on AIX.
This patch focuses on assembly generation.
Follow-on patch needs to handle:
1. -ffunction-sections implication for jump table.
2. Object file generation path and associated testing.
Differential Revision: https://reviews.llvm.org/D83875
Summary:
Some instructions have set the wrong [RM] flag, this patch is to fix it.
Instructions x(v|s)r(d|s)pi[zmp]? and fri[npzm] use fixed rounding
directions without referencing current rounding mode.
Also, the SETRNDi, SETRND, BCLRn, MTFSFI, MTFSB0, MTFSB1, MTFSFb,
MTFSFI, MTFSFI_rec, MTFSF, MTFSF_rec should also fix the RM flag.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D81360
Adds frontend and backend options to enable and disable the
PowerPC paired vector memory operations added in ISA 3.1.
Instructions using these options will be added in subsequent patches.
Differential Revision: https://reviews.llvm.org/D83722
Summary:
PPC only supports the instruction selection for v16i8, v8i16, v4i32,
v2i64, v4f32 and v2f64 for ISD::SETCC, don't support the v1i128, so
v1i128 for ISD::SETCC will crash.
This patch is to set v1i128 to expand to avoid crash.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D84238
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
Currently the instruction paddi always takes s34imm as the type for the
34 bit immediate. However, the PC Relative form of the instruction should
not produce the same fixup as the non PC Relative form.
This patch splits the s34imm type into s34imm and s34imm_pcrel so that two
different fixups can be emitted.
Reviewed By: nemanjai, #powerpc, kamaub
Differential Revision: https://reviews.llvm.org/D83255
For now, just return and do nothing when we see llvm.used and
llvm.compiler.used global array.
Hopefully, we could come up with a good solution later to prevent
linker from eliminating symbols in llvm.used array.
Reviewed By: DiggerLin, daltenty
Differential Revision: https://reviews.llvm.org/D84363
This patch adds the td definitions and asm/disasm tests for the following instructions:
Vector Extract Double Left Index - vextdubvlx, vextduhvlx, vextduwvlx, vextddvlx
Vector Extract Double Right Index - vextdubvrx, vextduhvrx, vextduwvrx, vextddvrx
Differential Revision: https://reviews.llvm.org/D84384
I mixed up the precedence of operators in the assert and thought I
had it right since there was no compiler warning. This just
adds the parentheses in the expression as needed.
This patch implements the `vec_xst_trunc` function in altivec.h in order to
utilize the Store VSX Vector Rightmost [byte | half | word | doubleword] Indexed
instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D82467
Unfortunately this is another regression from my canonicalization patch
(1fed131660). The patch contained two implicit assumptions:
1. That we would have a permuted load only if we are loading a partial vector
2. That a partial vector load would necessarily be as wide as the splat
However, assumption 2 is not correct since it is possible to do a wider
load and only splat a half of it. This patch corrects this assumption by
simply checking if the load is permuted and adjusting the offset if it is.
This patch aims to implement the low order vector multiply, divide and modulo
instructions available on Power10.
The patch involves legalizing the ISD nodes MUL, UDIV, SDIV, UREM and SREM for
v2i64 and v4i32 vector types in order to utilize the following instructions:
- Vector Multiply Low Doubleword: vmulld
- Vector Modulus Word/Doubleword: vmodsw, vmoduw, vmodsd, vmodud
- Vector Divide Word/Doubleword: vdivsw, vdivsd, vdivuw, vdivud
Differential Revision: https://reviews.llvm.org/D82510
Previously, the vins*vlx instructions were incorrectly defined with i64 as the
second argument. This patches fixes this issue by correcting the second argument
of the vins*vlx instructions/intrinsics to be i32.
Differential Revision: https://reviews.llvm.org/D84277
The implementation of the xvtlsbb builtins/intrinsics were not correct as the
intrinsics previously used i1 as an argument type. This patch changes the i1
argument type used in these intrinsics to be i32 instead, as having the second
as an i1 can lead to issues in the backend.
Differential Revision: https://reviews.llvm.org/D84291
A linker optimization is available on PowerPC for GOT indirect PCRelative loads.
The idea is that we can mark a usual GOT indirect load:
pld 3, vec@got@pcrel(0), 1
lwa 3, 4(3)
With a relocation to say that if we don't need to go through the GOT we can let
the linker further optimize this and replace a load with a nop.
pld 3, vec@got@pcrel(0), 1
.Lpcrel1:
.reloc .Lpcrel1-8,R_PPC64_PCREL_OPT,.-(.Lpcrel1-8)
lwa 3, 4(3)
This patch adds the logic that allows the compiler to add the R_PPC64_PCREL_OPT.
Reviewers: nemanjai, lei, hfinkel, sfertile, efriedma, tstellar, grosbach
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D79864
Summary:
AIX assembly's .set directive is not usable for aliasing purpose.
We need to use extra-label-at-defintion strategy to generate symbol
aliasing on AIX.
Reviewed By: DiggerLin, Xiangling_L
Differential Revision: https://reviews.llvm.org/D83252
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
In fixupIsDeadOrKill, we assume StartMI and EndMI not exist in same
basic block, so we add an assertion in that function. This is wrong
before RA, as before RA the true definition may exist in another
block through copy like instructions.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D83365
Current powerpc backend generates wrong code sequence if stack pointer
has to realign if `-fstack-clash-protection` enabled. When probing
dynamic stack allocation, current `PREPARE_PROBED_ALLOCA` takes
`NegSizeReg` as input and returns
`FinalStackPtr`. `FinalStackPtr=StackPtr+ActualNegSize` is calculated
correctly, however code following `PREPARE_PROBED_ALLOCA` still uses
value of `NegSizeReg`, which does not contain `ActualNegSize` if
`MaxAlign > TargetAlign`, to calculate loop trip count and residual
number of bytes.
This patch is part of fix of
https://bugs.llvm.org/show_bug.cgi?id=46759.
Differential Revision: https://reviews.llvm.org/D84152
Current powerpc backend generates wrong code sequence if stack pointer
has to realign if -fstack-clash-protection enabled. When probing in
prologue, backend should generate a subtraction instruction rather
than a `stux` instruction to realign the stack pointer.
This patch is part of fix of
https://bugs.llvm.org/show_bug.cgi?id=46759.
Differential Revision: https://reviews.llvm.org/D84218
Summary:
In the function `PPCInstrInfo::PredicateInstruction()`, we will replace
non-Predicate Instructions to Predicate Instruction. But we forget add
the new implicit operands the new Predicate Instruction needed. This
patch is to fix this.
Reviewed By: jsji, efriedma
Differential Revision: https://reviews.llvm.org/D82390
store (load float*) can be optimized to store(load i32*) in InstCombine pass.
Add store (load float*) to isProfitableToHoist to make sure we don't break
the opt in InstCombine pass.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D82341
SUMMARY:
when we call memset, memcopy,memmove etc(this are llvm intrinsic function) in the c source code. the llvm will generate IR
like call call void @llvm.memset.p0i8.i32(i8* align 4 bitcast (%struct.S* @s to i8*), i8 %1, i32 %2, i1 false)
for c source code
bash> cat test_memset.call
struct S{
int a;
int b;
};
extern struct S s;
void bar() {
memset(&s, s.b, s.b);
}
like
%struct.S = type { i32, i32 }
@s = external global %struct.S, align 4
; Function Attrs: noinline nounwind optnone
define void @bar() #0 {
entry:
%0 = load i32, i32* getelementptr inbounds (%struct.S, %struct.S* @s, i32 0, i32 1), align 4
%1 = trunc i32 %0 to i8
%2 = load i32, i32* getelementptr inbounds (%struct.S, %struct.S* @s, i32 0, i32 1), align 4
call void @llvm.memset.p0i8.i32(i8* align 4 bitcast (%struct.S* @s to i8*), i8 %1, i32 %2, i1 false)
ret void
}
declare void @llvm.memset.p0i8.i32(i8* nocapture writeonly, i8, i32, i1 immarg) #1
If we want to let the aix as assembly compile pass without -u
it need to has following assembly code.
.extern .memset
(we do not output extern linkage for llvm instrinsic function.
even if we output the extern linkage for llvm intrinsic function, we should not out .extern llvm.memset.p0i8.i32,
instead of we should emit .extern memset)
for other llvm buildin function floatdidf . even if we do not call these function floatdidf in the c source code(the generated IR also do not the call __floatdidf . the function call
was generated in the LLVM optimized.
the function is not in the functions list of Module, but we still need to emit extern .__floatdidf
The solution for it as :
We record all the lllvm intrinsic extern symbol when transformCallee(), and emit all these symbol in the AsmPrinter::doFinalization(Module &M)
Reviewers: jasonliu, Sean Fertile, hubert.reinterpretcast,
Differential Revision: https://reviews.llvm.org/D78929
Summary:
In the `ppc-early-ret` pass, we have use `BuildMI` and `copyImplicitOps` when the branch instructions can do the early return. But the two functions will add implicit operands twice, this is not correct.
This patch is to remove the redundant implicit operands in `ppc-early-ret pass`.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D76042
This patch adds the instruction definitions and MC tests for the 128-bit Binary
Integer Operation instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D83516
Previously, the vins* intrinsic was incorrectly defined to have its second and
third argument arguments as an i64. This patch fixes the second and third
argument of the vins* instruction and intrinsic to have i32s instead.
Differential Revision: https://reviews.llvm.org/D83497
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
This patch adds support for constrained int/fp conversion between
signed/unsigned i32 and f32/f64.
Reviewed By: jhibbits
Differential Revision: https://reviews.llvm.org/D82747
P9 is the only one with InstrSchedModel, but we may have more in the
future, we should not hardcoded it to P9, check hasInstrSchedModel
instead.
Reviewed By: hfinkel
Differential Revision: https://reviews.llvm.org/D83590
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580
This patch adds the instruction definitions and the assembly/disassembly
tests for the Load/Store VSX Vector Rightmose instructions.
Differential Revision: https://reviews.llvm.org/D83364
Currently the instruction paddi always takes s34imm as the type for the
34 bit immediate. However, the PC Relative form of the instruction should
not produce the same fixup as the non PC Relative form.
This patch splits the s34imm type into s34imm and s34imm_pcrel so that two
different fixups can be emitted.
Reviewed By: kamaub, nemanjai
Differential Revision: https://reviews.llvm.org/D83255
On PPC64, for a variadic function, if va_start is not called, it won't
access any variadic argument on stack, thus we can save stores of
registers used to pass arguments.
Differential Revision: https://reviews.llvm.org/D82361
Provide the LLVM intrinsics needed to implement vector replace element
builtins in altivec.h which will be added in a subsequent patch.
Differential Revision: https://reviews.llvm.org/D83308
When legalizing shuffles, we make an attempt to combine it into
a PPC specific canonical form that avoids a need for a swap. If the
combine is successful, we RAUW the node and the custom legalization
replaces the now dead node instead of the one it should replace.
Remove that erroneous call to RAUW.
This patch aims to exploit the xxsplti32dx XT, IX, IMM32 instruction when lowering VECTOR_SHUFFLEs.
We implement lowerToXXSPLTI32DX when lowering vector shuffles to check if:
- Element size is 4 bytes
- The RHS is a constant vector (and constant splat of 4-bytes)
- The shuffle mask is a suitable mask for the XXSPLTI32DX instruction where it is one of the 32 masks:
<0, 4-7, 2, 4-7>
<4-7, 1, 4-7, 3>
Differential Revision: https://reviews.llvm.org/D83245
Summary:
When a desired symbol name contains invalid character that the
system assembler could not process, we need to emit .rename
directive in assembly path in order for that desired symbol name
to appear in the symbol table.
Reviewed By: hubert.reinterpretcast, DiggerLin, daltenty, Xiangling_L
Differential Revision: https://reviews.llvm.org/D82481
Summary: As Bugzilla-35090 reported, the rationale for using custom lowering SREM/UREM should no longer be true. At the IR level, the div-rem-pairs pass performs the transformation where the remainder is computed from the result of the division when both a required. We should now be able to lower these directly on P9. And the pass also fixed the problem that divide is in a different block than the remainder. This is a patch to remove redundant code and make SREM/UREM legal directly on P9.
Reviewed By: lkail
Differential Revision: https://reviews.llvm.org/D82145
This patch is part of supporting `-fstack-clash-protection`. Implemented
probing when emitting prologue.
Differential Revision: https://reviews.llvm.org/D81460
This patch is part of supporting `-fstack-clash-protection`. Mainly do
such things compared to existing `lowerDynamicAlloc`
- Added a new pseudo instruction PPC::PREPARE_PROBED_ALLOC to get
actual frame pointer and final stack pointer.
- Synthesize a loop to probe by blocks.
- Use DYNAREAOFFSET to get MaxCallFrameSize which is calculated in
prologepilog.
Differential Revision: https://reviews.llvm.org/D81358