The scalar elements of the vXi1 build_vector will have been type legalized to i8 by padding with 0s. So we can't check for all ones. Instead we should just look at bit 0 of the constant.
Differential Revision: https://reviews.llvm.org/D87863
It should be possible to make this generic, but we're not great at checking legality of *_EXTEND_VECTOR_INREG ops so I'm conservatively putting this inside X86ISelLowering.cpp
It should be possible to make this generic, but we're not great at checking legality of *_EXTEND_VECTOR_INREG ops so I'm conservatively putting this inside X86ISelLowering.cpp
After moving WidenedMask is in an undefined state, so reduce scope of the variable so its reinitialized every iteration - we should still retain any memory allocation savings.
We were breaking out of the switch which falls into the default
implementation of SimplifyDemandedBitsForTargetNode which is a
wrapper around computeKnownBits. So we end up doing the recursion
and known bits calculation all over again. Instead we should return
with the known bits we calculated in the switch.
We already handle the the cases where we have a 'zero extended splat' build vector (a, 0, 0, 0, a, 0, 0, 0, ...) but were missing the case where the 'a' scalar was zero-extended as well - such as i64 -> vXi64 splat cases on 32-bit targets.
The register class picked will be the RFP80 register class which has a f80 VT. The code in SelectionDAGBuilder that generates copies around inline assembly doesn't know how to handle an integer and floating point type of different bit widths.
The test case is derived from this https://godbolt.org/z/sEa659 which gcc accepts but clang crashes on. This patch just gives a more graceful error. I'm not sure if the single element struct case is special in gcc. Adding another field to the struct makes gcc reject it. If we want to support this correctly I think we need a change in the frontend to give us the true element type. Right now the frontend just realizes the constraint can take a memory argument so creates an integer type of the same size and bitcasts.
Differential Revision: https://reviews.llvm.org/D87485
Now that we're getting better at combining shuffles of different vector widths, this can now be performed as part of the standard target shuffle combines and isn't required for cleanup.
Exposed a minor issue in combineX86ShufflesRecursively where we failed to check if a shuffle's src ops were simple types.
PR47534 exposes a case where calling lowerShuffleWithSHUFPS directly from a derived repeated mask (found by is128BitLaneRepeatedShuffleMask) results in us using an non-canonicalized mask.
The missed canonicalization in this case is trivial - just commute the mask so we have more (swapped) LHS than RHS references so lowerShuffleWithSHUFPS can handle it.
Drop the pow2 vector limitation for AVG generation by padding the vector to the next pow2, creating the PAVG nodes and then extracting the final subvector.
Fixes some poor codegen that has been annoying me for years.....
The versions that take 'unsigned' will be removed in the future.
I tried to use getOriginalAlign instead of getAlign in some
places. getAlign factors in the minimum alignment implied by
the offset in the pointer info. Since we're also passing the
pointer info we can use the original alignment.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D87592
Clang emits (and (ctpop X), 1) for __builtin_parity. If ctpop
isn't natively supported by the target, this leads to poor codegen
due to the expansion of ctpop being more complex than what is needed
for parity.
This adds a DAG combine to convert the pattern to ISD::PARITY
before operation legalization. Type legalization is updated
to handled Expanding and Promoting this operation. If after type
legalization, CTPOP is supported for this type, LegalizeDAG will
turn it back into CTPOP+AND. Otherwise LegalizeDAG will emit a
series of shifts and xors followed by an AND with 1.
I've avoided vectors in this patch to avoid more legalization
complexity for this patch.
X86 previously had a custom DAG combiner for this. This is now
moved to Custom lowering for the new opcode. There is a minor
regression in vector-reduce-xor-bool.ll, but a follow up patch
can easily fix that.
Fixes PR47433
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87209
Follow up to D86429 to handle the remaining regressions.
This patch generalizes lowerShuffleAsDecomposedShuffleBlend to lowerShuffleAsDecomposedShuffleMerge, and attempts to use an UNPCKL shuffle mask instead of a blend for the cases where the inputs are coming from alternating vXi8/vXi16 sources. Technically they don't have to be alternating (just as long as they can fit into a lower lane half for the unpack) but I didn't find as many general cases and it needed a lot more of the function to be altered.
For vXi32/vXi64 cases this could still be beneficial but in most cases the existing permute+blend approach was better.
Differential Revision: https://reviews.llvm.org/D87405
lowerShuffleAsSplitOrBlend always returns a target shuffle result (and is the default operation for lowering some shuffle types), so we don't need to check for null.
This removes the after the fact FMF handling from D46854 in favor of passing fast math flags to getNode. This should be a superset of D87130.
This required adding a SDNodeFlags to SelectionDAG::getSetCC.
Now we manage to contant fold some stuff undefs during the
initial getNode that we don't do in later DAG combines.
Differential Revision: https://reviews.llvm.org/D87200
Rather than using SELECT instructions, use SRA, UADDO/ADDCARRY and
XORs to expand ABS. This is the multi-part version of the sequence
we use in LegalizeDAG.
It's also the same as the Custom sequence uses for i64 on 32-bit
and i128 on 64-bit. So we can remove the X86 customization.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D87215
We already simplify the unsigned comparisons if we've found the operands are non-negative, but we were still calling LowerVSETCCWithSUBUS which resulted in the PR47448 regressions.
lowerShuffleWithPERMV allows us to use the ZMM variants for 128/256-bit variable shuffles on non-VLX AVX512 targets.
This is another step towards shuffle combining through between vector widths - we still end up with an annoying regression (combine_vpermilvar_vperm2f128_zero_8f32) but we're going in the right direction....
rGabd33bf5eff2 enabled us to pad 128/256-bit shuffles to 512-bit on non-VLX targets, but wasn't updating binary shuffles to account for the new vector width.
This can cause an infinite loop if SimplifiedDemandedElts asks
for the node to replace itself.
A similar protection exists in other places in shuffle combining.
Fixes ISPC https://github.com/ispc/ispc/issues/1864
Extends lowerShuffleAsLanePermuteAndPermute to search for opportunities to use vpermq (64-bit cross-lane shuffle) and vpermd (32-bit cross-lane shuffle) to get elements into the correct lane, in addition to the 128-bit full-lane permutes it previously searched for.
This is especially helpful in cross-lane byte shuffles, where the alternative tends to be "vpshufb both lanes separately and blend them with a vpblendvb", which is very expensive, especially on Haswell where vpblendvb uses the same execution port as all the shuffles.
Addresses PR47262
Patch By: @TellowKrinkle (TellowKrinkle)
Differential Revision: https://reviews.llvm.org/D86429
If the PSHUFBs have no other uses, then we can force the unselected elements to zero to OR them instead, avoiding both an extra mask load and a costly variable blend.
Eventually we should try to bring this into shuffle combining, once we can more easily convert between shuffles + select patterns.
This patch uses partial DemandedElts masks to further simplify target shuffle chains and finally starts making target shuffle combining part of SimplifyDemandedBits/SimplifyDemandedVectorElts.
We already manage this for Depth == 0 cases, where combineX86ShuffleChain would early-out if the shuffle combined to the same op, but the patch generalizes this by manipulating the depth handling of combineX86ShufflesRecursively - calling with a new Depth = 0 and reducing the maximum shuffle combine depth accordingly.
Differential Revision: https://reviews.llvm.org/D66004
pointer.
mwaitx uses EBX as one of its argument.
Using this instruction clobbers RBX as it is defined to hold one of the
input. When the backend uses dynamically allocated stack, RBX is used as
a reserved register for the base pointer.
This patch is adapted from @qcolombet patch for cmpxchg at r263325.
This fixes PR43528.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D73475
The IsExtractedElement already called getOperand(0) so Extract
here is the source vector. We shouldn't call getOperand(0). This
worked for the original test cases because the result was a
bitcast so the getOperand(0) accidently peeked through the bitcast
which is what we wanted.
In the failing case here, the operand turns out to be undef so
the getOperand(0) asserts because undef has no operands.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=25184
Differential Revision: https://reviews.llvm.org/D86428
Add handling for storing the extracted lower (truncated bits) element from a X86ISD::VTRUNC node - this can be lowered to a generic truncated store directly.
Differential Revision: https://reviews.llvm.org/D86158