For example a v4f16 argument is scalarized to 4 i32 values. So
the values are spread out instead of being packed tightly like
in the original vector.
Fixes PR47000.
We've had issues in the past where isHorizontalBinOp calls would affect later combines as the LHS/RHS references had been commuted but still failed to match.
Now that rG47cea9e82dda941e lets us aggressively decode multi-use shuffles for the OR(SHUFFLE(),SHUFFLE()) case we don't need the computeKnownBits variant any more.
Permit lane-crossing post shuffles on AVX1 targets as long as every element comes from the same source lane, which for v8f32/v4f64 cases can be efficiently lowered with the LowerShuffleAsLanePermuteAnd* style methods.
[X86][SSE] Shuffle combine blends to OR(X,Y) if the relevant elements are known zero (REAPPLIED)
This allows us to remove the (depth violating) code in getFauxShuffleMask where we were combining the OR(SHUFFLE,SHUFFLE) shuffle inputs as well, and not just the OR().
This is a minor step toward being able to shuffle combine from/to SELECT/BLENDV as a faux shuffle.
Reapplied with fixed signed/unsigned comparisons.
Test function mask_cmp_128 failed during ISEL
LLVM ERROR: Cannot select: t37: v8i1 = X86ISD::KSHIFTL t48, TargetConstant:i8<4>
due to v8i1 only available under AVX512DQ.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D84922
Instructions should not be scheduled across ENDBR instructions, as this would result in the ENDBR being displaced, breaking the parity needed for the Indirect Branch Tracking feature of CET.
Currently, the X86IndirectBranchTracking pass is later than the instruction scheduling in the pipeline, what causes the bug to be unnoticeable and very hard (if not unfeasible) to be triggered while compiling C files with the standard LLVM setup. Yet, for correctness and to prevent issues in future changes, the compiler should prevent the such scheduling.
Differential Revision: https://reviews.llvm.org/D84862
This allows us to remove the (depth violating) code in getFauxShuffleMask where we were combining the OR(SHUFFLE,SHUFFLE) shuffle inputs as well, and not just the OR().
This is a minor step toward being able to shuffle combine from/to SELECT/BLENDV as a faux shuffle.
This adds an isel pattern and special XOR8rr_NOREX instruction
to enable the use of h-registers for __builtin_parity. This avoids
a copy and a shift instruction. The NOREX instruction is in case
register allocation doesn't use the matching l-register for some
reason. If a R8-R15 register gets picked instead, we won't be
able to encode the instruction since an h-register can't be used
with a REX prefix.
Fixes PR46954
We already do this on AVX (+ for ZERO_EXTEND_VECTOR_INREG), but this enables it for all SSE targets - we attempted something similar back at rL357057 but hit issues with the ZERO_EXTEND_VECTOR_INREG handling (PR41249).
I'm still looking at the vector-mul.ll regression - which is due to 32-bit targets performing the load as a f64, resulting in the shuffle combiner thinking it has to create a shuffle in the float domain.
If the upper bits of the __builtin_parity idiom are known to be
0 we were previously emitting an xor with 0 to get the parity flag.
But we can use cmp/test instead which may expose opportunities for
load folding or combining an AND.
These prefixes should override the default behavior and force a larger immediate size. I don't believe gas issues any warning if you use {disp8} when a 32-bit displacement is already required. And this patch doesn't either.
This completes the {disp8} and {disp32} support from PR46650.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D84793
Noticed while investigating combining from concatenated shuffle vectors, we weren't checking that PSHUFLW/PSHUFHW was legal - we were depending on lowering splitting to subvectors.
Now we try to load and broadcast together for operand 1. Followed
by load and broadcast for operand 1. Previously we tried load
operand 1, load operand 1, broadcast operand 0, broadcast operand 1.
Now we have a single helper that tries load and broadcast for
one operand that we can just call twice.
Rather than hardcoding immediate values for 12 different combinations
in a nested pair of switches, we can perform the matched logic
operation on 3 magic constants to calculate the immediate.
Special thanks to this tweet https://twitter.com/rygorous/status/1187034321992871936
for making me realize I could do this.
Similar to what was recently done to ParseATTOperand. Make
ParseIntelOperand directly responsible for adding to the operand
vector instead of returning the operand. Return a bool for error.
Remove ErrorOperand since it is no longer used.
Fix for the issue raised in https://github.com/rust-lang/rust/issues/74632.
The current heuristic for inserting LFENCEs uses a quadratic-time algorithm. This can apparently cause substantial compilation slowdowns for building Rust projects, where functions > 5000 LoC are apparently common.
The updated heuristic in this patch implements a linear-time algorithm. On a set of benchmarks, the slowdown factor for the generated code was comparable (2.55x geo mean for the quadratic-time heuristic, vs. 2.58x for the linear-time heuristic). Both heuristics offer the same security properties, namely, mitigating LVI.
This patch also includes some formatting fixes.
Differential Revision: https://reviews.llvm.org/D84471
After the recent change to the tuning settings for pentium4 to improve our default 32-bit behavior, I've decided to see about implementing -mtune support. This way we could have a default architecture CPU of "pentium4" or "x86-64" and a default tuning cpu of "generic". And we could change our "pentium4" tuning settings back to what they were before.
As a step to supporting this, this patch separates all of the features lists for the CPUs into 2 lists. I'm using the Proc class and a new ProcModel class to concat the 2 lists before passing to the target independent ProcessorModel. Future work to truly support mtune would change ProcessorModel to take 2 lists separately. I've diffed the X86GenSubtargetInfo.inc file before and after this patch to ensure that the final feature list for the CPUs isn't changed.
Differential Revision: https://reviews.llvm.org/D84879
We parse .arch so that some `.arch i386; .code32` code can assemble. It seems
that X86AsmParser does not do a good job tracking what features are needed to
assemble instructions. GNU as's x86 port supports a very wide range of .arch
operands. Ignore the operand for now.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D84900
As long as we can extract the lowest 128-bit subvector from the pre-truncated source vector, then we don't care what size it is.
The next stage will be to support non-zero extraction indices, as long as its still coming from the lowest 128-bit subvector.
Continue the change made to ParseATTOperand to take the vector by
reference. Let ParseMemOperand add its memory operand to the
vector and just return true/false to indicate error.
A '*' after the segment is equivalent to a '*' before the segment register. To make the AsmMatcher table work we need to place the '*' token into the operand vector before the full memory operand. To accomplish this I've modified some portions of operand parsing to expose the operand vector to ParseATTOperand so that the token can be pushed to the vector after parsing the segment register and before creating the memory operand using that segment register.
Fixes PR46879
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D84895
I still think it's highly questionable that we have two intrinsics
with identical behavior and only vary by the name of the libcall used
if it happens to be lowered that way, but try to reduce the feature
delta between SDAG and GlobalISel for recently added intrinsics. I'm
not sure which opcode should be considered the canonical one, but
lower roundeven back to round.
Instead of never accepting v8f32/v4f64 FHADD/FHSUB if the input shuffle masks cross lanes, perform the matching and determine if the post shuffle mask simplifies to a 'whole lane shuffle' mask - in which case we are guaranteed to cheaply perform this as a VPERM2F128 shuffle.
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
If the mask input to getV4X86ShuffleImm8 only refers to a single source element (+ undefs) then canonicalize to a full broadcast.
getV4X86ShuffleImm8 defaults to inline values for undefs, which can be useful for shuffle widening/narrowing but does leave SimplifyDemanded* calls thinking the shuffle depends on unnecessary elements.
I'm still investigating what we should do more generally to avoid these undemanded elements, but broadcast cases was a simpler win.
We already had CMPXCH8B feature on this CPU for the frontend so
this doesn't have much effect.
The FeatureSlowUAMem16 only matters if someone compiles with
-march=lakemont -msse which doesn't make sense, but is consistent
with all our pre-sse4.2 CPUs. Maybe the feature flag should be
FeatureFastUAMem16 and set on the newer CPUs instead.
As briefly discussed in IRC with @craig.topper,
the pass is disabled basically since it's original introduction (nov 2018)
due to known correctness issues (miscompilations),
and there hasn't been much work done to fix that.
While i won't promise that i will "fix" the pass,
i have looked at it previously, and i'm sure i won't try to fix it
if that requires actually fixing this existing code.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D84775
By repeating the Disp.isImm() check in a couple spots we can
make the normal case for immediate and for expression the same.
And then always rely on the ForceDisp32 flag to remove a later
non-zero immediate check.
This should make {disp32} pseudo prefix handling
slightly easier as we need the normal disp32 handler to handle a
immediate of 0.
We currently handle EVEX and non-EVEX separately in two places. By sinking the EVEX
check into the existing helper for CDisp8 we can simplify these two places.
Differential Revision: https://reviews.llvm.org/D84730
An initial backend patch towards fixing the various poor HADD combines (PR34724, PR41813, PR45747 etc.).
This extends isHorizontalBinOp to check if we have per-element horizontal ops (odd+even element pairs), but not in the expected serial order - in which case we build a "post shuffle mask" that we can apply to the HOP result, assuming we have fast-hops/optsize etc.
The next step will be to extend the SHUFFLE(HOP(X,Y)) combines as suggested on PR41813 - accepting more post-shuffle masks even on slow-hop targets if we can fold it into another shuffle.
Differential Revision: https://reviews.llvm.org/D83789
XBEGIN causes several based blocks to be inserted. If flags are live across it we need to make eflags live in the new basic blocks to avoid machine verifier errors.
Fixes PR46827
Reviewed By: ivanbaev
Differential Revision: https://reviews.llvm.org/D84479
By default we pick a 1 byte displacement and let relaxation enlarge it if necessary. The GNU assembler supports a pseudo prefix to basically pre-relax the instruction the larger size.
I plan to add {disp8} and {disp32} support for memory operands in another patch which is why I've included the parsing code and enum for {disp8} pseudo prefix as well.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D84709
In 16-bit mode we can encode a 32-bit address using 0x67 prefix.
We were failing to do this when the index register was a 32-bit
register, the base register was not present, and the displacement
fit in 16-bits.
Fixes PR46866.
Previously we just matched the logic ops and replaced with an
X86ISD::VPTERNLOG node that we would send through the normal
pattern match. But that approach couldn't handle a bitcast
between the logic ops. Extending that approach would require us
to peek through the bitcasts and emit new bitcasts to match
the types. Those new bitcasts would then have to be properly
topologically sorted.
This patch instead switches to directly emitting the
MachineSDNode and skips the normal tablegen pattern matching.
We do have to handle load folding and broadcast load folding
ourselves now. Which also means commuting the immediate control.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83630
These cost methods don't make much sense in X86Subtarget. Make
them methods in X86's TTI and move the feature checks from the
X86Subtarget constructor into these methods.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D84594
If we lower a v2i64 shuffle to PSHUFD, we currently clamp undef elements to 0, (elements 0,1 of the v4i32) which can result in the shuffle referencing more elements of the source vector than expected, affecting later shuffle combines and KnownBits/SimplifyDemanded calls.
By ensuring we widen the undef mask element we allow getV4X86ShuffleImm8 to use inline elements as the default, which are more likely to fold.
The switch in emitNop uses 64-bit registers for nops exceeding
2 bytes. This isn't valid outside 64-bit mode. We could fix this
easily enough, but there are no users that ask for more than 2
bytes outside 64-bit mode.
Inlining the method to make the coupling between the two methods
more explicit.
If we don't care about an entire LHS/RHS of the PACK op, then can just treat it the same as undef (we don't care if it saturates) and is safe to treat as a shuffle.
This can happen if we attempt to decode as a faux shuffle before SimplifyDemandedVectorElts has been called on the PACK which should replace the source with UNDEF entirely.
ParseX86Triple already checks for 64-bit mode and produces a
static string. We can just add +sse2 to the end of that static
string. This avoids a potential reallocation when appending it
to the std::string at runtime.
This is a slight change to the behavior of tools that only use
MC layer which weren't implicitly enabling sse2 before, but will
now. I don't think we check for sse2 explicitly in any MC layer
components so this shouldn't matter in practice. And if it did
matter the new behavior is more correct.
Remove mode flags from constructor and remove calls to
ToggleFeature for the mode bits.
By adding them to the feature string we handle initializing the
mode member variables in X86Subtarget and the feature bits in
MCSubtargetInfo in one shot.
Feature64Bit is only used by a check in the X86Subtarget
constructor to ensure that the CPU selected supports 64-bit mode
when the triple is for 64-bit mode.
'generic' is the default CPU in llc and so needs to be able to
pass this check. Previously we did this by detecting the name and
adding the feature to the feature string. But there doesn't seem
to be any reason we can't just add the feature to the CPU directly.
We deprecated mpx feature in 10.0. I left this feature flag
in case someone still had IR files containing the feature
in a target-feature attribute. At the time I think I thought it
would fail the test if the feature couldn't be found. Further
review suggests that at worst it prints a message to
stderr about ignoring the feature.
SAHF/LAHF instructions are always available in 32-bit mode. Early
64-bit capable CPUs made the undefined opcodes in 64-bit mode. This
was changed on later CPUs.
We have a feature flag to control our usage of these instructions.
This feature flag is hooked up to a clang command line option
-msahf/-mno-sahf specifically to give control of the 64-bit mode
behavior.
In the backend X86Subtarget constructor we were explicitly forcing
+sahf into the feature flag string if we were not compiling for
64-bit mode. This was intended to make the predicates always allow
the instructions outside of 64-bit mode. Unfortunately, the way
it was placed into the string allowed -mno-sahf from clang to disable
SAHF instructions in 32-bit mode. This causes an assertion to fire
if you compile a floating point comparison with something like
"-march=pentium -mno-sahf" as our floating point comparison
handling on CPUs that don't support FCOMI/FUCOMI instructions
requires SAHF.
To fix this, this commit restricts the feature flag to only apply to
64-bit mode by ignoring the flag outside 64-bit mode in
X86Subtarget::hasLAHFSAHF(). This way we don't need to mess with
the feature string at all.
The input to these functions is a StringRef. We then convert it
to a std::string. Then maybe replace with "generic". I think we
can just overwrite the incoming StringRef with "generic" if needed
and then pass it along without creating any std::string.
There's no reason to involve the hassle of a virtual method targets
have to override for a simple boolean.
Not sure exactly what's going on with Mips, but it seems to define its
own totally separate handler classes.
For a long time, the InstCombine pass handled target specific
intrinsics. Having target specific code in general passes was noted as
an area for improvement for a long time.
D81728 moves most target specific code out of the InstCombine pass.
Applying the target specific combinations in an extra pass would
probably result in inferior optimizations compared to the current
fixed-point iteration, therefore the InstCombine pass resorts to newly
introduced functions in the TargetTransformInfo when it encounters
unknown intrinsics.
The patch should not have any effect on generated code (under the
assumption that code never uses intrinsics from a foreign target).
This introduces three new functions:
TargetTransformInfo::instCombineIntrinsic
TargetTransformInfo::simplifyDemandedUseBitsIntrinsic
TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic
A few target specific parts are left in the InstCombine folder, where
it makes sense to share code. The largest left-over part in
InstCombineCalls.cpp is the code shared between arm and aarch64.
This allows to move about 3000 lines out from InstCombine to the targets.
Differential Revision: https://reviews.llvm.org/D81728
getTargetShuffleMask is used by the various "SimplifyDemanded" folds so we can't assume that the bypassed extract_subvector can be safely simplified - getFauxShuffleMask performs a more general decode that allows us to more safely catch many of these cases so the impact is minimal.
fma reassoc A, B, C --> fadd (fmul A, B), C (when target has no FMA hardware)
C/C++ code may use explicit fma() calls (which become LLVM fma
intrinsics in IR) but then gets compiled with -ffast-math or similar.
For targets that do not have FMA hardware, we don't want to go out to
the math library for a precise but slow FMA result.
I tried this as a generic DAGCombine, but it caused infinite looping
on more than 1 other target, so there's likely some over-reaching fma
formation happening.
There's also a potential intersection of strict FP with fast-math here.
Deferring to current behavior for that case (assuming that strict-ness
overrides fast-ness).
Differential Revision: https://reviews.llvm.org/D83981
I meant to do this in D83913, but missed it while updating the
feature list.
Interestingly I think this is disabling the postRA scheduler. But
it does match our default 64-bit behavior.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D83996
We use a SmallString<512> and attempted to reserve enough space
for CPU plus Features, but that doesn't account for all the things
that get added to the string.
Reorder the string so the shortest things go first which shouldn't
exceed the small size. Finally add the feature string at the end
which might be long. This should ensure at most one heap allocation
without needing to use reserve.
I don't know if this matters much in practice, but I was looking
into something else that will require more code here and noticed
the odd reserve call.
There was a lot of duplicate code here for checking the VT and
subtarget. Moving it into a helper avoids that.
It also fixes a bug that combineAdd reused Op0/Op1 after a call
to isHorizontalBinOp may have changed it. The new helper function
has its own local version of Op0/Op1 that aren't shared by other
code.
Fixes PR46455.
Reviewed By: spatel, bkramer
Differential Revision: https://reviews.llvm.org/D83971
Alternative to D83897. I believe the big change here is that I removed slow unaligned memory 16
Down side that it may adversely effect tuning if someone explicitly targets -march=pentium4 and expects pentium4 tuned code. Of course pentium4 is so old our default behavior with the previous settings may not have been the best either.
Reviewed By: echristo, RKSimon
Differential Revision: https://reviews.llvm.org/D83913
Previously we only accepted a 32-bit source with a 64-bit dest.
Accepting 64-bit as well is more consistent with gas behavior. I
think maybe we should accept 16 bit register as well, but I'm not
sure.
This patch handles CFI with basic block sections, which unlike DebugInfo does
not support ranges. The DWARF standard explicitly requires emitting separate
CFI Frame Descriptor Entries for each contiguous fragment of a function. Thus,
the CFI information for all callee-saved registers (possibly including the
frame pointer, if necessary) have to be emitted along with redefining the
Call Frame Address (CFA), viz. where the current frame starts.
CFI directives are emitted in FDE’s in the object file with a low_pc, high_pc
specification. So, a single FDE must point to a contiguous code region unlike
debug info which has the support for ranges. This is what complicates CFI for
basic block sections.
Now, what happens when we start placing individual basic blocks in unique
sections:
* Basic block sections allow the linker to randomly reorder basic blocks in the
address space such that a given basic block can become non-contiguous with the
original function.
* The different basic block sections can no longer share the cfi_startproc and
cfi_endproc directives. So, each basic block section should emit this
independently.
* Each (cfi_startproc, cfi_endproc) directive will result in a new FDE that
caters to that basic block section.
* Now, this basic block section needs to duplicate the information from the
entry block to compute the CFA as it is an independent entity. It cannot refer
to the FDE of the original function and hence must duplicate all the stuff that
is needed to compute the CFA on its own.
* We are working on a de-duplication patch that can share common information in
FDEs in a CIE (Common Information Entry) and we will present this as a follow up
patch. This can significantly reduce the duplication overhead and is
particularly useful when several basic block sections are created.
* The CFI directives are emitted similarly for registers that are pushed onto
the stack, like callee saved registers in the prologue. There are cfi
directives that emit how to retrieve the value of the register at that point
when the push happened. This has to be duplicated too in a basic block that is
floated as a separate section.
Differential Revision: https://reviews.llvm.org/D79978
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
Summary:
Add support for MASM STRUCT casting field accessors: (<TYPE> PTR <value>).<field>
Since these are operands, we add them to X86AsmParser. If/when we extend MASM support to other architectures (e.g., ARM), we will need similar changes there as well.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D83346
Bit 7 of the index controls zeroing, the other bits are ignored when bit 7 is set. Shuffle lowering was using 128 and shuffle combining was using 255. Seems like we should be consistent.
This patch changes shuffle combining to use 128 to match lowering.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83587
peekThroughOneUseBitcasts checks the use count of the operand of the bitcast. Not the bitcast itself. So I think that means we need to do any outside haseOneUse checks before calling the function not after.
I was working on another patch where I misused the function and did a very quick audit to see if I there were other similar mistakes.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83598
Truncations lowered as shuffles of multiple (concatenated) vectors often leave us with lane-crossing shuffles that feed a PACKSS/PACKUS, if both shuffles are fed from the same 2 vector sources, then we can PACK the sources directly and shuffle the result instead.
This is currently limited to whole i128 lanes in a 256-bit vector, but we can extend this if the need arises (but I'm not seeing many examples in real world code).
If we don't immediately lower the vector shift, the splat
constant vector we created may get turned into a constant pool
load before we get around to lowering the shift. This makes it
a lot more difficult to create a shift by constant. Sometimes we
fail to see through the constant pool at all and end up trying
to lower as if it was a variable shift. This requires custom
handling and may create an unsupported vselect on pre-sse-4.1
targets. Since we're after LegalizeVectorOps we are unable to
legalize the unsupported vselect as that code is in LegalizeVectorOps
rather than LegalizeDAG.
So calling LowerShift immediately ensures that we get see the
splat constant.
Fixes PR46527.
Differential Revision: https://reviews.llvm.org/D83455
Technically a VSELECT expects a vector of all 1s or 0s elements
for its condition. But we aren't guaranteeing that the sign bit
and the non sign bits match in these locations. So we should use
BLENDV which is more relaxed.
Differential Revision: https://reviews.llvm.org/D83447
If we're extracting a subvector from a shuffle that is shuffling entire subvectors we can peek through and extract the subvector from the shuffle source instead.
This helps remove some cases where concat_vectors(extract_subvector(),extract_subvector()) legalizations has resulted in BLEND/VPERM2F128 shuffles of the subvectors.
Summary:
Almost all uses of these iterators, including implicit ones, really
only need the const variant (as it should be). The only exception is
in NewGVN, which changes the order of dominator tree child nodes.
Change-Id: I4b5bd71e32d71b0c67b03d4927d93fe9413726d4
Reviewers: arsenm, RKSimon, mehdi_amini, courbet, rriddle, aartbik
Subscribers: wdng, Prazek, hiraditya, kuhar, rogfer01, rriddle, jpienaar, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, stephenneuendorffer, Joonsoo, grosul1, vkmr, Kayjukh, jurahul, msifontes, cfe-commits, llvm-commits
Tags: #clang, #mlir, #llvm
Differential Revision: https://reviews.llvm.org/D83087
vselect ((X & Pow2C) == 0), LHS, RHS --> vselect ((shl X, C') < 0), RHS, LHS
Follow-up to D83073 - the non-splat mask cases where we actually see an
improvement are quite limited from what I can tell. AVX1 needs multiply
and blend capabilities and AVX2 needs vector shift and blend capabilities.
The intersection of those 2 constraints is only vectors with 32-bit or
64-bit elements.
XOP is/was better.
Differential Revision: https://reviews.llvm.org/D83181
Summary:
Add support for user-defined types to MasmParser, including initialization and field access.
Known issues:
- Omitted entry initializers (e.g., <,0>) do not work consistently for nested structs/arrays.
- Size checking/inference for values with known types is not yet implemented.
- Some ml64.exe syntaxes for accessing STRUCT fields are not recognized.
- `[<register>.<struct name>].<field>`
- `[<register>[<struct name>.<field>]]`
- `(<struct name> PTR [<register>]).<field>`
- `[<variable>.<struct name>].<field>`
- `(<struct name> PTR <variable>).<field>`
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D75306
This patch creates a clang flag to enable SESES. This flag also ensures that
lvi-cfi is on when using seses via clang.
SESES should use lvi-cfi to mitigate returns and indirect branches.
The flag to enable the SESES functionality only without lvi-cfi is now
-x86-seses-enable-without-lvi-cfi to warn users part of the mitigation is not
enabled if they use this flag. This is useful in case folks want to see the
cost of SESES separate from the LVI-CFI.
Reviewed By: sconstab
Differential Revision: https://reviews.llvm.org/D79910
We were checking the VBROADCAST_LOAD element size against the extraction destination size instead of the extracted vector element size - PEXTRW/PEXTB have implicit zext'ing so have i32 destination sizes for v8i16/v16i8 vectors, resulting in us extracting from the wrong part of a load.
This patch bails from the fold if the vector element sizes don't match, and we now use the target constant extraction code later on like the pre-AVX2 targets, fixing the test case.
Found by internal fuzzing tests.
Use SESES as the fallback at O0 where the optimized LVI pass isn't desired due
to its effect on build times at O0.
I updated the LVI tests since this changes the code gen for the tests touched in the parent revision.
This is a follow up to the comments I made here: https://reviews.llvm.org/D80964
Hopefully we can continue the discussion here.
Also updated SESES to handle LFENCE instructions properly instead of adding
redundant LFENCEs. In particular, 1) no longer add LFENCE if the current
instruction being processed is an LFENCE and 2) no longer add LFENCE if the
instruction right before the instruction being processed is an LFENCE
Reviewed By: sconstab
Differential Revision: https://reviews.llvm.org/D82037
In the test based on PR46586:
https://bugs.llvm.org/show_bug.cgi?id=46586
...we are inserting 16-bits into the high element of the vector, shuffling it
to element 0, and extracting 32-bits. But xmm1 was never initialized, so the
top 16-bits of the extract are undef without this patch.
(It seems like we could do better than this by recognizing that we only demand
a subsection of the build vector, but I want to make sure we fix the
miscompile 1st.)
This path is only used for pre-SSE4.1, and simpler patterns get squashed
somewhere along the way, so the test still includes a 'urem' as it did in the
original test from the bug report.
Differential Revision: https://reviews.llvm.org/D83319
When an argument has 'byval' attribute and should be
passed on the stack according calling convention,
a stack copy would be emitted twice. This will cause
the real value will be put into stack where the pointer
should be passed.
Differential Revision: https://reviews.llvm.org/D83175
Probably not super important since there are no real CPUs with
avx512vl and not avx512bw. But vpternlog should be better than
vblendvb.
I do wonder if we should use vpternlog even with BWI. We
currently use vblendmb or vpblendmw by putting the mask into a GPR
and moving it to a k-register. But I don't think we hoist the
GPR to k-register copy in machine LICM. Using VPTERNLOG would use
a constant pool load, but has the advantage that we're pretty good
at hoisting and rematerializing those.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83156
VPBLENDVB is multiple uops while VPTERNLOG is a single uop. So
we should use that instead.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D83155
Using PACK for truncations leaves us with intermediate shuffles that can be tricky to remove while the truncation tree is being formed.
This fold helps pull out the PERMQ case which is one of the most common, avoiding some costly lane-crossing shuffles.
A future patch will begin adding more general shuffle folding, which we should be able to use for HADD/HSUB as well.
We canonicalize patterns like:
%s = lshr i32 %a0, 1
%t = trunc i32 %s to i1
to:
%a = and i32 %a0, 2
%c = icmp ne i32 %a, 0
...in IR, but the bit-shifting original sequence may be better for x86 vector codegen.
I tried several variants of the transform, and it's tricky to not induce regressions.
In particular, I did not find a way to cleanly handle non-splat constants, so I've left
that as a TODO item here (currently negative tests for those are included). AVX512
resulted in some diffs, but didn't look meaningful, so I left that out too. Some of
the 256-bit AVX1 diffs are questionable, but close enough that they are probably
insignificant.
Differential Revision: https://reviews.llvm.org/D83073.
I think this mostly looks ok. The only weird thing I noticed was
a couple rotate vXi8 tests picked up an extra logic op where we have
(and (or (and), (andn)), X). Previously we matched the (or (and), (andn))
to vpternlog, but now we match the (and (or), X) and leave the and/andn
unmatched.
We consider v32i16/v64i8 to be legal types on avx512f, but we
don't have most operations until avx512bw. But we can use
and/or/xor operations. So try those before splitting.
This is especially helpful since we turn some ands with constant
masks into shuffles in early DAG combines. So we should make sure
we recover those back to AND.
The comments here indicate that we prefer to promote the shifts
instead of allowing rotate to be pattern matched. But we weren't
taking into account whether 512-bit registers are enabled or
whethever we have vpsllvw/vpsrlvw instructions.
splatvar_rotate_v32i8 is a slight regrssion, but the other cases
are neutral or improved.
Summary:
When parsing 64-bit MASM, treat memory operands with unspecified base register as RIP-based.
Documented in several places, including https://software.intel.com/en-us/articles/introduction-to-x64-assembly: "Unfortunately, MASM does not allow this form of opcode, but other assemblers like FASM and YASM do. Instead, MASM embeds RIP-relative addressing implicitly."
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D73227
D82257/rG3521ecf1f8a3 was incorrectly sign-extending a constant vector from the lsb, this is fine if all the constant elements are 'allsignbits' in the active bits, but if only some of the elements are, then we are corrupting the constant values for those elements.
This fix ensures we sign extend from the msb of the active/demanded bits instead.
This function picks X86 opcode name based on type, masking,
and whether not a load or broadcast has been folded using multiple
switch statements. The contents of the switches mostly just vary in
a few characters in the instruction name. So use some macros to
build the instruction names to reduce the repetiveness.
If we're masking the result of an OR-reduction before comparing against zero, we can fold this into the PTEST() / MOVMSK(CMPEQ()) codegen by pre-masking the source value.
This works particularly well on PTEST which performs the AND as part of its operation, but the MOVMSK variant also benefits for non-V2I64 cases.
Fixes PR44781
If the shuffle is a blend and one input is a 0 vector, we should prefer AND over PSHUFB since its available on more execution ports.
Differential Revision: https://reviews.llvm.org/D82798
This was producing reg = xor undef reg, undef reg. This looks similar
to a use of a value to define itself, and I want to disallow undef
uses for SSA virtual registers. If this were to use implicit_def,
there's no guarantee the two operands end up using the same register
(I think no guarantee exists even if the two operands start out as the
same register, but this was violated when I switched this to use an
explicit implicit_def). The MOV32r0 pseudo evidently exists to handle
this case, so use it instead. This was more work than I expected for
the 64-bit case, but I didn't see any helper for materializing a
64-bit 0.
If a constant is only allsignbits in the demanded/active bits, then sign extend it to an allsignbits bool pattern for OR/XOR ops.
This also requires SimplifyDemandedBits XOR handling to be modified to call ShrinkDemandedConstant on any (non-NOT) XOR pattern to account for non-splat cases.
Next step towards fixing PR45808 - with this patch we now get a <-1,-1,0,0> v4i64 constant instead of <1,1,0,0>.
Differential Revision: https://reviews.llvm.org/D82257
Pre-commit for D82257, this adds a DemandedElts arg to ShrinkDemandedConstant/targetShrinkDemandedConstant which will allow future patches to (optionally) add vector support.
We already fold (v2i64 scalar_to_vector(aext)) -> (v2i64 bitcast(v4i32 scalar_to_vector(x))), this adds support for similar aextload cases and also handles v2f64 cases that wrap the i64 extension behind bitcasts.
Fixes the remaining issue with PR39016
Generalize the vector operand extraction code for shuffle/pack ops - we can assume that the vector operands are the same width as the result, and any non-vector values can be reused directly in the smaller width op.
Summary:
A while ago I implemented the functionality to lower Microsoft __ptr32
and __ptr64 pointers, which are stored as 32-bit and 64-bit pointer
and are extended/truncated to the appropriate pointer size when
dereferenced.
This patch adds an addrspacecast to cast from the __ptr32/__ptr64
pointer to a default address space when dereferencing.
Bug: https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: hans, arsenm, RKSimon
Subscribers: wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81517
These features implicitly enabled XSAVE in the frontend, but not
the backend. Disabling XSAVE in the frontend disabled XSAVEOPT, but
not the other 2. Nothing happened in the backend.
The PREFETCHW instruction was originally part of the 3DNow. But
it was given its own CPUID bit on later CPUs just before 3DNow
was deprecated.
We were setting the -mprfchw flag if -m3dnow was passed or the CPU
supported 3dnow unless -mno-prfchw was passed. But -march=native
on a CPU without the PRFCHW CPUID bit set will pass -mno-prfchw.
So -march=k8 will behave differently than -march=native on a K8
for example.
So remove this implicit setting from the frontend and instead
enable the backend to use PREFETCHW if 3dnow OR prfchw is enabled.
Also enable PRFCHW flag on amdfam10/barcelona which seems to be
where this CPUID bit was introduced. That CPU also supported
3dnow.
The PREFETCHW instruction was originally part of the 3DNow. But
it was given its own CPUID bit on later CPUs just before 3DNow
was deprecated.
We were setting the -mprfchw flag if -m3dnow was passed or the CPU
supported 3dnow unless -mno-prfchw was passed. But -march=native
on a CPU without the PRFCHW CPUID bit set will pass -mno-prfchw.
So -march=k8 will behave differently than -march=native on a K8
for example.
So remove this implicit setting from the frontend and instead
enable the backend to use PREFETCHW if 3dnow OR prfchw is enabled.
Also enable PRFCHW flag on amdfam10/barcelona which seems to be
where this CPUID bit was introduced. That CPU also supported
3dnow.
The main interface has been migrated to Align already but a few backends where broadening the type from Align to MaybeAlign.
This patch makes sure all implementations conform to the public API.
Differential Revision: https://reviews.llvm.org/D82465
Previously we just updated a map and moved on. But it possible
we cached known bits information with the vreg that can be used by
another basic block. If the other basic block has a different view
of the VT these known bits won't make sense.
By emitting a copy we ensure we have different vregs before and
after the bitcast. This prevents the known bits from being used
with the wrong type.
Differential Revision: https://reviews.llvm.org/D82517
Summary:
Get back `const` partially lost in one of recent changes.
Additionally specify explicit qualifiers in few places.
Reviewers: samparker
Reviewed By: samparker
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82383
Eric Christopher informed me that FastISel memcpy handling creates
load/store instructions without mem operands. We should fix that,
but I doubt that's the only case of missed mem operands so seems
better to be defensive here.
I don't have a test case yet, but I'll try to add one if i get a
test from Eric.
This caused a Chromium test to miscompile. See discussion on the Phabricator
review.
> This patch extends MatchVectorAllZeroTest to handle OR vector reduction patterns where the result is compared against zero.
>
> Fixes PR45378
>
> Differential Revision: https://reviews.llvm.org/D81547
This reverts 057c9c7ee0
Following on from this RFC[0] from a while back, this is the first patch towards
implementing variadic debug values.
This patch specifically adds a set of functions to MachineInstr for performing
operations specific to debug values, and replacing uses of the more general
functions where appropriate. The most prevalent of these is replacing
getOperand(0) with getDebugOperand(0) for debug-value-specific code, as the
operands corresponding to values will no longer be at index 0, but index 2 and
upwards: getDebugOperand(x) == getOperand(x+2). Similar replacements have been
added for the other operands, along with some helper functions to replace
oft-repeated code and operate on a variable number of value operands.
[0] http://lists.llvm.org/pipermail/llvm-dev/2020-February/139376.html<Paste>
Differential Revision: https://reviews.llvm.org/D81852
We have many cases where we call SimplifyMultipleUseDemandedBits and demand specific vector elements, but all the bits from them - this adds a helper wrapper to handle this.
If a collection of interconnected phi nodes is only ever loaded, stored
or bitcast then we can convert the whole set to the bitcast type,
potentially helping to reduce the number of register moves needed as the
phi's are passed across basic block boundaries. This has to be done in
CodegenPrepare as it naturally straddles basic blocks.
The alorithm just looks from phi nodes, looking at uses and operands for
a collection of nodes that all together are bitcast between float and
integer types. We record visited phi nodes to not have to process them
more than once. The whole subgraph is then replaced with a new type.
Loads and Stores are bitcast to the correct type, which should then be
folded into the load/store, changing it's type.
This comes up in the biquad testcase due to the way MVE needs to keep
values in integer registers. I have also seen it come up from aarch64
partner example code, where a complicated set of sroa/inlining produced
integer phis, where float would have been a better choice.
I also added undef and extract element handling which increased the
potency in some cases.
This adds it with an option that defaults to off, and disabled for 32bit
X86 due to potential issues around canonicalizing NaNs.
Differential Revision: https://reviews.llvm.org/D81827
Pulled out from the ongoing work on D66004, currently we don't do a good job of simplifying variable shuffle masks that have already lowered to constant pool entries.
This patch adds SimplifyDemandedVectorEltsForTargetShuffle (a custom x86 helper) to first try SimplifyDemandedVectorElts (which we already do) and then constant pool simplification to help mark undefined elements.
To prevent lowering/combines infinite loops, we only handle basic constant pool loads instead of creating new BUILD_VECTOR nodes for lowering - e.g. we don't try to convert them to broadcast/vzext_load - there might be some benefit to this but if so I'd rather we come up with some way to reuse existing code than reimplement a lot of BUILD_VECTOR code.
Differential Revision: https://reviews.llvm.org/D81791
We were missing the modrm byte this instruction has according
to current Intel SDM. Experiments with gcc indicate that different
modrm values are chosen based on 2 operands so I've added those
as well.
I think our previous implementation was based on an older behavior of
binutils that has since been changed.
These are documented as using modrm byte of 0xe8, 0xf0, and 0xf8
respectively. But hardware ignore bits 2:0. So 0xe9-0xef is treated
the same as 0xe8. Similar for the other two.
Fixing this required adding 8 new formats to the X86 instructions
to convey this information. Could have gotten away with 3, but
adding all 8 made for a more logical conversion from format to
modrm encoding.
I renumbered the format encodings to keep the register modrm
formats grouped together.
Without SSE41 we don't have the PCMPEQQ instruction, making cmp-with-zero reductions more complicated than necessary. We can compare as vXi32 (PCMPEQD) and tweak the MOVMSK comparison to test upper/lower DWORD comparisons.
This pre-fixes something that occurs with null tests for vectors of (64-bit) pointers such as in PR35129.
This was passing in all the parameters needed to construct a
LegalizerHelper in the custom legalization, when it's simpler to just
pass in the existing helper.
This is slightly more annoying to use in the common case where you
don't need the legalizer helper, but we could add back the common
parameters back in addition to the helper.
I didn't propagate this to all the internal target changes that this
logically implies, but did update a sample one for
legalizeMinNumMaxNum.
This is in preparation for moving AMDGPU load/store legalization
entirely into custom lowering. The current set of legalization actions
is really constraining and not really capable of expressing all the
actions needed to legalize loads/stores. In particular there's no way
to express when the memory access itself needs to change size vs. the
result type. There's also a lot of redundancy since the same
split/widen actions need to be applied in both vector and scalar
cases. All of the sub-cases logically belong as steps in the legalizer
helper, but it will be easier to consider everything at once in custom
lowering.
This also enables running the AArch64 SLSHardening pass with GlobalISel,
so add a test for that.
Differential Revision: https://reviews.llvm.org/D81403
In order to support hot-patching, we need to make sure the first emitted instruction in a function is a two-byte+ op. This is already the case on x86_64, which seems to always emit two-byte+ ops. However on 32-bit targets this wasn't the case.
PATCHABLE_OP now lowers to a XCHG AX, AX, (66 90) like MSVC does. However when targetting pentium3 (/arch:SSE) or i386 (/arch:IA32) targets, we generate MOV EDI,EDI (8B FF) like MSVC does. This is for compatiblity reasons with older tools that rely on this two byte pattern.
Differential Revision: https://reviews.llvm.org/D81301
This patch extends MatchVectorAllZeroTest to handle OR vector reduction patterns where the result is compared against zero.
Fixes PR45378
Differential Revision: https://reviews.llvm.org/D81547