Add an ability to specify custom documentation block comment commands via a new
class CommentOptions. The intention is that this class will hold future
customizations for comment parsing, including defining documentation comments
with specific numbers of parameters, etc.
CommentOptions instance is a member of LangOptions.
CommentOptions is controlled by a new command-line parameter
-fcomment-block-commands=Foo,Bar,Baz.
llvm-svn: 175892
for the data specific to a macro definition (e.g. what the tokens are), and
MacroDirective class which encapsulates the changes to the "macro namespace"
(e.g. the location where the macro name became active, the location where it was undefined, etc.)
(A MacroDirective always points to a MacroInfo object.)
Usually a macro definition (MacroInfo) is where a macro name becomes active (MacroDirective) but
splitting the concepts allows us to better model the effect of modules to the macro namespace
(also as a bonus it allows better modeling of push_macro/pop_macro #pragmas).
Modules can have their own macro history, separate from the local (current translation unit)
macro history; MacroDirectives will be used to model the macro history (changes to macro namespace).
For example, if "@import A;" imports macro FOO, there will be a new local MacroDirective created
to indicate that "FOO" became active at the import location. Module "A" itself will contain another
MacroDirective in its macro history (at the point of the definition of FOO) and both MacroDirectives
will point to the same MacroInfo object.
Introducing the separation of macro concepts is the first part towards better modeling of module macros.
llvm-svn: 175585
This commit introduces a set of related changes to ensure that the
declaration that shows up in the identifier chain after deserializing
declarations with a given identifier is, in fact, the most recent
declaration. The primary change involves waiting until after we
deserialize and wire up redeclaration chains before updating the
identifier chains. There is a minor optimization in here to avoid
recursively deserializing names as part of looking to see whether
top-level declarations for a given name exist.
A related change that became suddenly more urgent is to property
record a merged declaration when an entity first declared in the
current translation unit is later deserialized from a module (that had
not been loaded at the time of the original declaration). Since we key
off the canonical declaration (which is parsed, not from an AST file)
for emitted redeclarations, we simply record this as a merged
declaration during AST writing and let the readers merge them.
Re-fixes <rdar://problem/13189985>, presumably for good this time.
llvm-svn: 175447
until recursive loading is finished.
Otherwise we may end up with a template trying to deserialize a template
parameter that is in the process of getting loaded.
rdar://13135282
llvm-svn: 175329
These two related tweaks to keep the information associated with a
given identifier correct when the identifier has been given some
top-level information (say, a top-level declaration) and more
information is then loaded from a module. The first ensures that an
identifier that was "interesting" before being loaded from an AST is
considered to be different from its on-disk counterpart. Otherwise, we
lose such changes when writing the current translation unit as a
module.
Second, teach the code that injects AST-loaded names into the
identifier chain for name lookup to keep the most recent declaration,
so that we don't end up confusing our declaration chains by having a
different declaration in there.
llvm-svn: 174895
if it found any decls, rather than returning a list of found decls. This
removes a returning-ArrayRef-to-deleted-storage bug from
MultiplexExternalSemaSource (in code not exercised by any of the clang
binaries), reduces the work required in the found-no-decls case with PCH, and
importantly removes the need for DeclContext::lookup to be reentrant.
No functionality change intended!
llvm-svn: 174576
This can happen when one abuses precompiled headers by passing more -D
options when using a precompiled hedaer than when it was built. This
is intentionally permitted by precompiled headers (and is exploited by
some build environments), but causes problems for modules.
First part of <rdar://problem/13165109>, detecting when something when
horribly wrong.
llvm-svn: 174554
Different modules may have different views of the various "special"
types in the AST, such as the redefinition type for "id". Merge those
types rather than only considering the redefinition types for the
first AST file loaded.
llvm-svn: 174234
- The only group where it makes sense for the "ExternC" bit is System, so this
simplifies having to have the extra isCXXAware (or ImplicitExternC, depending
on what code you talk to) bit caried around.
llvm-svn: 173859
index, optimizing the operation that skips lookup in modules where we
know the identifier will not be found. This makes the global module
index optimization actually useful, providing an 8.5% speedup over
modules without the global module index for -fsyntax-only.
llvm-svn: 173529
AST reader.
The global module index tracks all of the identifiers known to a set
of module files. Lookup of those identifiers looks first in the global
module index, which returns the set of module files in which that
identifier can be found. The AST reader only needs to look into those
module files and any module files not known to the global index (e.g.,
because they were (re)built after the global index), reducing the
number of on-disk hash tables to visit. For an example source I'm
looking at, we go from 237844 total identifier lookups into on-disk
hash tables down to 126817.
Unfortunately, this does not translate into a performance advantage.
At best, it's a wash once the global module index has been built, but
that's ignore the cost of building the global module index (which
is itself fairly large). Profiles show that the global module index
code is far less efficient than it should be; optimizing it might give
enough of an advantage to justify its continued inclusion.
llvm-svn: 173405
The global module index is a "global" index for all of the module
files within a particular subdirectory in the module cache, which
keeps track of all of the "interesting" identifiers and selectors
known in each of the module files. One can perform a fast lookup in
the index to determine which module files will have more information
about entities with a particular name/selector. This information can
help eliminate redundant lookups into module files (a serious
performance problem) and help with creating auto-import/auto-include
Fix-Its.
The global module index is created or updated at the end of a
translation unit that has triggered a (re)build of a module by
scraping all of the .pcm files out of the module cache subdirectory,
so it catches everything. As with module rebuilds, we use the file
system's atomicity to synchronize.
llvm-svn: 173301
identifiers into two parts: the part that involves dealing with the
key (which can be re-used) and the ASTReader-specific part that
creates the IdentifierInfos. While I'm at it, StringRef'ify this code,
which was using pair<const char*, unsigned>. No functionality change.
llvm-svn: 173283
This change also makes the serialisation store the required semantics,
fixing an issue where PPC128 was always assumed when re-reading a
128-bit value.
llvm-svn: 173139
in a StringRef to bind to them forces them to be unpacked into the Record as individual
bytes. This is wasteful, but not likely to be measurable in this instance.
llvm-svn: 173066
forming the identifier, e.g., as part of a selector or a declaration
name, don't actually deserialize any information about the
identifier. Instead, simply mark it "out-of-date" and we'll load the
the information on demand. 2% speedup on the modules testcase I'm
looking at; should also help PCH.
llvm-svn: 173056
DeclContext. When the DeclContext is of a kind that can only be
defined once and never updated, we limit the search to the module file
that conatins the lookup table. Provides a 15% speedup in one
modules-heavy source file.
llvm-svn: 173050
Makes sure that a deserialized macro is only added to the preprocessor macro definitions only once.
Unfortunately I couldn't get a reduced test case.
rdar://13016031
llvm-svn: 172843
Previously we would serialize the macro redefinitions as a list, part of
the identifier, and try to chain them together across modules individually
without having the info that they were already chained at definition time.
Change this by serializing the macro redefinition chain and then try
to synthesize the chain parts across modules. This allows us to correctly
pinpoint when 2 different definitions are ambiguous because they came from
unrelated modules.
Fixes bogus "ambiguous expansion of macro" warning when a macro in a PCH
is redefined without undef'ing it first.
rdar://13016031
llvm-svn: 172620
metadata for linking against the libraries/frameworks for imported
modules.
The module map language is extended with a new "link" directive that
specifies what library or framework to link against when a module is
imported, e.g.,
link "clangAST"
or
link framework "MyFramework"
Importing the corresponding module (or any of its submodules) will
eventually link against the named library/framework.
For now, I've added some placeholder global metadata that encodes the
imported libraries/frameworks, so that we can test that this
information gets through to the IR. The format of the data is still
under discussion.
llvm-svn: 172437
which a particular declaration resides. Use this information to
customize the "definition of 'blah' must be imported from another
module" diagnostic with the module the user actually has to
import. Additionally, recover by importing that module, so we don't
complain about other names in that module.
Still TODO: coming up with decent Fix-Its for these cases, and expand
this recovery approach for other name lookup failures.
llvm-svn: 172290
modules when getting the decls for a namespace or translation unit.
Otherwise the code-completion results will not be complete.
rdar://12889089
llvm-svn: 170596
don't crash when loading a PCH with the older format.
The introduction of the control block broke compatibility with PCHs from
older versions. This patch allows loading (and rejecting) PCHs from an older
version and allows newer PCHs to be rejected from older clang versions as well.
rdar://12821386
llvm-svn: 170150
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
PreprocessingRecord and into its own class, PPConditionalDirectiveRecord.
Decoupling allows a client to use the functionality of PPConditionalDirectiveRecord
without needing a PreprocessingRecord.
llvm-svn: 169229
module, provide a module import stack similar to what we would get for
an include stack, e.g.,
In module 'DependsOnModule' imported from build-fail-notes.m:4:
In module 'Module' imported from DependsOnModule.framework/Headers/DependsOnModule.h:1:
Inputs/Module.framework/Headers/Module.h:15:12: note: previous definition is here
@interface Module
<rdar://problem/12696425>
llvm-svn: 169042
allocated using the allocator associated with an ASTContext.
Use this inside CXXRecordDecl::DefinitionData instead of an UnresolvedSet to
avoid a potential memory leak.
rdar://12761275
llvm-svn: 168771
the related comma pasting extension.
In certain cases, we used to get two diagnostics for what is essentially one
extension. This change suppresses the first diagnostic in certain cases
where we know we're going to print the second diagnostic. The
diagnostic is redundant, and it can't be suppressed in the definition
of the macro because it points at the use of the macro, so we want to
avoid printing it if possible.
The implementation works by detecting constructs which look like comma
pasting at the time of the definition of the macro; this information
is then used when the macro is used. (We can't actually detect
whether we're using the comma pasting extension until the macro is
actually used, but we can detecting constructs which will be comma
pasting if the varargs argument is elided.)
<rdar://problem/12292192>
llvm-svn: 167907
The stat cache became essentially useless ever since we started
validating all file entries in the PCH.
But the motivating reason for removing it now is that it also affected
correctness in this situation:
-You have a header without include guards (using "#pragma once" or #import)
-When creating the PCH:
-The same header is referenced in an #include with different filename cases.
-In the PCH, of course, we record only one file entry for the header file
-But we cache in the PCH file the stat info for both filename cases
-Then the source files are updated and the header file is updated in a way that
its size and modification time are the same but its inode changes
-When using the PCH:
-We validate the headers, we check that header file and we create a file entry with its current inode
-There's another #include with a filename with different case than the previously created file entry
-In order to get its stat info we go through the cached stat info of the PCH and we receive the old inode
-because of the different inodes, we think they are different files so we go ahead and include its contents.
Removing the stat cache will potentially break clients that are attempting to use the stat cache
as a way of avoiding having the actual input files available. If that use case is important, patches are welcome
to bring it back in a way that will actually work correctly (i.e., emit a PCH that is self-contained, coping with
literal strings, line/column computations, etc.).
This fixes rdar://5502805
llvm-svn: 167172
diagnostic states; make sure the ASTReader sets the diagnostic state
properly instead of always recreating it.
Fixes rdar://12581618 & http://llvm.org/PR14181
llvm-svn: 166987
the macros that are #define'd or #undef'd on the command line. This
checking happens much earlier than the current macro-definition
checking and is far cleaner, because it does a direct comparison
rather than a diff of the predefines buffers. Moreover, it allows us
to use the result of this check to skip over PCH files within a
directory that have non-matching -D's or -U's on the command
line. Finally, it improves the diagnostics a bit for mismatches,
fixing <rdar://problem/8612222>.
The old predefines-buffer diff'ing will go away in a subsequent commit.
llvm-svn: 166641
check each of the files within that directory to determine if any of
them is an AST file that matches the language and target options. If
so, the first matching AST file is loaded. This fixes a longstanding
discrepency with GCC's precompiled header implementation.
llvm-svn: 166469
failures they know how to tolerate, e.g., out-of-date input files or
configuration/version mismatches. Suppress the corresponding
diagnostics if the client can handle it.
No clients actually use this functionality, yet.
llvm-svn: 166449
manager block and input-file information in the control block. The
source manager entries now point back into the control block. Input
files are now lazily deserialized (if validation is disabled). Reduces
Cocoa's PCH by the ~70k I added when I introduced the redundancy in
r166251.
llvm-svn: 166429
block, so the input files are validated early on, before we've
committed to loading the AST file. This (accidentally) fixed a but
wherein the main file used to generate the AST file would *not* be
validated by the existing validation logic.
At the moment, this leads to some duplication of filenames between the
source manager block and input-file blocks, as well as validation
logic. This will be handled via an upcoming patch.
llvm-svn: 166251
block, which stores information about how the AST file to generated,
from the AST block, which stores the actual serialized AST. The
information in the control block should be enough to determine whether
the AST file is up-to-date and compatible with the current translation
unit, and reading it should not cause any side effects that aren't
easy to undo. That way, we can back out from an attempt to read an
incompatible or out-of-date AST file.
Note that there is still more factoring to do. In particular,
information about the source files used to generate the AST file
(along with their time stamps, sizes, etc.) still resides in the
source manager block.
llvm-svn: 166166