This also adds a second intrinsic name for the 16-bit mask versions.
These intrinsics match gcc and icc. They just aren't published in the Intel Intrinsics Guide so I only recently found they existed.
llvm-svn: 340719
EmitX86BuiltinExpr() emits all args into Ops at the beginning, so don't do that
work again.
This changes behavior: If e.g. ++a was passed as an arg, we incremented a twice
previously. This change fixes that bug.
https://reviews.llvm.org/D50979
llvm-svn: 340348
This is a partial retry of rL340137 (reverted at rL340138 because of gcc host compiler crashing)
with 1 change:
Remove the changes to make microsoft builtins also use the LLVM intrinsics.
This exposes the LLVM funnel shift intrinsics as more familiar bit rotation functions in clang
(when both halves of a funnel shift are the same value, it's a rotate).
We're free to name these as we want because we're not copying gcc, but if there's some other
existing art (eg, the microsoft ops) that we want to replicate, we can change the names.
The funnel shift intrinsics were added here:
https://reviews.llvm.org/D49242
With improved codegen in:
https://reviews.llvm.org/rL337966https://reviews.llvm.org/rL339359
And basic IR optimization added in:
https://reviews.llvm.org/rL338218https://reviews.llvm.org/rL340022
...so these are expected to produce asm output that's equal or better to the multi-instruction
alternatives using primitive C/IR ops.
In the motivating loop example from PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387#c7
...we get the expected 'rolq' x86 instructions if we substitute the rotate builtin into the source.
Differential Revision: https://reviews.llvm.org/D50924
llvm-svn: 340141
This is a retry of rL340135 (reverted at rL340136 because of gcc host compiler crashing)
with 2 changes:
1. Move the code into a helper to reduce code duplication (and hopefully work-around the crash).
2. The original commit had a formatting bug in the docs (missing an underscore).
Original commit message:
This exposes the LLVM funnel shift intrinsics as more familiar bit rotation functions in clang
(when both halves of a funnel shift are the same value, it's a rotate).
We're free to name these as we want because we're not copying gcc, but if there's some other
existing art (eg, the microsoft ops that are modified in this patch) that we want to replicate,
we can change the names.
The funnel shift intrinsics were added here:
https://reviews.llvm.org/D49242
With improved codegen in:
https://reviews.llvm.org/rL337966https://reviews.llvm.org/rL339359
And basic IR optimization added in:
https://reviews.llvm.org/rL338218https://reviews.llvm.org/rL340022
...so these are expected to produce asm output that's equal or better to the multi-instruction
alternatives using primitive C/IR ops.
In the motivating loop example from PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387#c7
...we get the expected 'rolq' x86 instructions if we substitute the rotate builtin into the source.
Differential Revision: https://reviews.llvm.org/D50924
llvm-svn: 340137
This exposes the LLVM funnel shift intrinsics as more familiar bit rotation functions in clang
(when both halves of a funnel shift are the same value, it's a rotate).
We're free to name these as we want because we're not copying gcc, but if there's some other
existing art (eg, the microsoft ops that are modified in this patch) that we want to replicate,
we can change the names.
The funnel shift intrinsics were added here:
D49242
With improved codegen in:
rL337966
rL339359
And basic IR optimization added in:
rL338218
rL340022
...so these are expected to produce asm output that's equal or better to the multi-instruction
alternatives using primitive C/IR ops.
In the motivating loop example from PR37387:
https://bugs.llvm.org/show_bug.cgi?id=37387#c7
...we get the expected 'rolq' x86 instructions if we substitute the rotate builtin into the source.
Differential Revision: https://reviews.llvm.org/D50924
llvm-svn: 340135
r337619 added __shiftleft128 / __shiftright128 as functions in intrin.h.
Microsoft's STL plans on using these functions, and they're using intrin0.h
which just has declarations of built-ins to not pull in the huge intrin.h
header in the standard library headers. That requires that these functions are
real built-ins.
https://reviews.llvm.org/D50907
llvm-svn: 340048
Summary: This is the patch that lowers x86 intrinsics to native IR in order to enable optimizations.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D46892
llvm-svn: 339651
gcc defines an intrinsic called __builtin_clrsb which counts the number of extra sign bits on a number. This is equivalent to counting the number of leading zeros on a positive number or the number of leading ones on a negative number and subtracting one from the result. Since we can't count leading ones we need to invert negative numbers to count zeros.
This patch will cause the builtin to be expanded inline while gcc uses a call to a function like clrsbdi2 that is implemented in libgcc. But this is similar to what we already do for popcnt. And I don't think compiler-rt supports clrsbdi2.
Differential Revision: https://reviews.llvm.org/D50168
llvm-svn: 339282
Always emit alloca in entry block for enqueue_kernel builtin.
Ensures the statically sized alloca is not converted to DYNAMIC_STACKALLOC
later because it is not in the entry block.
llvm-svn: 339150
Ensures the statically sized alloca is not converted to DYNAMIC_STACKALLOC
later because it is not in the entry block.
Differential Revision: https://reviews.llvm.org/D50104
llvm-svn: 338899
The way address space declarations for builtins currently work
is nearly useless. The code assumes the address spaces used for
builtins is a confusingly named "target address space" from user
code using __attribute__((address_space(N))) that matches
the builtin declaration. There's no way to use this to declare
a builtin that returns a language specific address space.
The terminology used is highly cofusing since it has nothing
to do with the the address space selected by the target to use
for a language address space.
This feature is essentially unused as-is. AMDGPU and NVPTX
are the only in-tree targets attempting to use this. The AMDGPU
builtins certainly do not behave as intended (i.e. all of the
builtins returning pointers can never compile because the numbered
address space never matches the expected named address space).
The NVPTX builtins are missing tests for some, and the others
seem to rely on an implicit addrspacecast.
Change the used address space for builtins based on a target
hook to allow using a language address space for a builtin.
This allows the same builtin declaration to be used for multiple
languages with similarly purposed address spaces (e.g. the same
AMDGPU builtin can be used in OpenCL and CUDA even though the
constant address spaces are arbitarily different).
This breaks the possibility of using arbitrary numbered
address spaces alongside the named address spaces for builtins.
If this is an issue we probably need to introduce another builtin
declaration character to distinguish language address spaces from
so-called "target address spaces".
llvm-svn: 338707
This patch adds support for vrndi_f32() and vrndiq_f32()
intrinsics in AArch32 mode and for vrndns_f32() intrinsic in
AArch64 mode.
Differential Revision: https://reviews.llvm.org/D48829
llvm-svn: 337690
As documented here: https://software.intel.com/en-us/node/682969 and
https://software.intel.com/en-us/node/523346. cpu_dispatch multiversioning
is an ICC feature that provides for function multiversioning.
This feature is implemented with two attributes: First, cpu_specific,
which specifies the individual function versions. Second, cpu_dispatch,
which specifies the location of the resolver function and the list of
resolvable functions.
This is valuable since it provides a mechanism where the resolver's TU
can be specified in one location, and the individual implementions
each in their own translation units.
The goal of this patch is to be source-compatible with ICC, so this
implementation diverges from the ICC implementation in a few ways:
1- Linux x86/64 only: This implementation uses ifuncs in order to
properly dispatch functions. This is is a valuable performance benefit
over the ICC implementation. A future patch will be provided to enable
this feature on Windows, but it will obviously more closely fit ICC's
implementation.
2- CPU Identification functions: ICC uses a set of custom functions to identify
the feature list of the host processor. This patch uses the cpu_supports
functionality in order to better align with 'target' multiversioning.
1- cpu_dispatch function def/decl: ICC's cpu_dispatch requires that the function
marked cpu_dispatch be an empty definition. This patch supports that as well,
however declarations are also permitted, since the linker will solve the
issue of multiple emissions.
Differential Revision: https://reviews.llvm.org/D47474
llvm-svn: 337552
The codegen for this builtin was initially implemented to match GCC.
However, due to interest from users GCC changed behaviour to account for the
big endian bias of the instruction and correct it. This patch brings the
handling inline with GCC.
Fixes https://bugs.llvm.org/show_bug.cgi?id=38192
Differential Revision: https://reviews.llvm.org/D49424
llvm-svn: 337449
This will convert the i8 mask argument to <8 x i1> and extract an i1 and then emit a select instruction. This replaces the '(__U & 1)" and ternary operator used in some of intrinsics. The old sequence was lowered to a scalar and and compare. The new sequence uses an i1 vector that will interoperate better with other mask intrinsics.
This removes the need to handle div_ss/sd specially in CGBuiltin.cpp. A follow up patch will add the GCCBuiltin name back in llvm and remove the custom handling.
I made some adjustments to legacy move_ss/sd intrinsics which we reused here to do a simpler extract and insert instead of 2 extracts and two inserts or a shuffle.
llvm-svn: 336622
This is part of an ongoing attempt at making 512 bit vectors illegal in the X86 backend type legalizer due to CPU frequency penalties associated with wide vectors on Skylake Server CPUs. We want the loop vectorizer to be able to emit IR containing wide vectors as intermediate operations in vectorized code and allow these wide vectors to be legalized to 256 bits by the X86 backend even though we are targetting a CPU that supports 512 bit vectors. This is similar to what happens with an AVX2 CPU, the vectorizer can emit wide vectors and the backend will split them. We want this splitting behavior, but still be able to use new Skylake instructions that work on 256-bit vectors and support things like masking and gather/scatter.
Of course if the user uses explicit vector code in their source code we need to not split those operations. Especially if they have used any of the 512-bit vector intrinsics from immintrin.h. And we need to make it so that merely using the intrinsics produces the expected code in order to be backwards compatible.
To support this goal, this patch adds a new IR function attribute "min-legal-vector-width" that can indicate the need for a minimum vector width to be legal in the backend. We need to ensure this attribute is set to the largest vector width needed by any intrinsics from immintrin.h that the function uses. The inliner will be reponsible for merging this attribute when a function is inlined. We may also need a way to limit inlining in the future as well, but we can discuss that in the future.
To make things more complicated, there are two different ways intrinsics are implemented in immintrin.h. Either as an always_inline function containing calls to builtins(can be target specific or target independent) or vector extension code. Or as a macro wrapper around a taget specific builtin. I believe I've removed all cases where the macro was around a target independent builtin.
To support the always_inline function case this patch adds attribute((min_vector_width(128))) that can be used to tag these functions with their vector width. All x86 intrinsic functions that operate on vectors have been tagged with this attribute.
To support the macro case, all x86 specific builtins have also been tagged with the vector width that they require. Use of any builtin with this property will implicitly increase the min_vector_width of the function that calls it. I've done this as a new property in the attribute string for the builtin rather than basing it on the type string so that we can opt into it on a per builtin basis and avoid any impact to target independent builtins.
There will be future work to support vectors passed as function arguments and supporting inline assembly. And whatever else we can find that isn't covered by this patch.
Special thanks to Chandler who suggested this direction and reviewed a preview version of this patch. And thanks to Eric Christopher who has had many conversations with me about this issue.
Differential Revision: https://reviews.llvm.org/D48617
llvm-svn: 336583
This case occurs in the intrinsic headers so we should avoid emitting the mask in those cases.
Factor the code into a helper function to make this easy.
llvm-svn: 336472
Shufflevector is easier to generate and matches what the backend pattern matches without relying on constant selects being turned into shuffles.
While I was there I also made the IR regular expressions a little stricter to ensure operand order on the shuffle.
llvm-svn: 336388
This patch removes on optimization used with the TRUE/FALSE
predicates, as was suggested in https://reviews.llvm.org/D45616
for r335339.
The optimization was buggy, since r335339 used it also
for *_mask builtins, without actually applying the mask -- the
mask argument was just ignored.
Reviewers: craig.topper, uriel.k, RKSimon, andrew.w.kaylor, spatel, scanon, efriedma
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D48715
llvm-svn: 336355
Additional IR is emitted to convert between scalar and vXi1 type to match the expected software inferface for the builtin that clang exposes.
llvm-svn: 335564
D48464 contains changes that will loosen some of the range checks in SemaChecking to a DefaultError warning that can be disabled.
This patch adds explicit masking to avoid using the upper bits of immediates to gracefully handle the warning being disabled.
llvm-svn: 335308
Summary: All *_sqrt_round_s[s|d] intrinsics should execute a square root on
zeroth element from B (Ops[1]) and insert in to A (Ops[0]), not the other way around.
Reviewers: itaraban, craig.topper
Reviewed By: craig.topper
Subscribers: craig.topper, cfe-commits
Differential Revision: https://reviews.llvm.org/D48288
llvm-svn: 334964
The previous names took the shift amount in bits to match gcc and required a multiply by 8 in the header. This creates a misleading error message when we check the range of the immediate to the builtin since the allowed range also got multiplied by 8.
This commit changes the builtins to use a byte shift amount to match the underlying instruction and the Intel intrinsic.
Fixes the remaining issue from PR37795.
llvm-svn: 334773
Summary: These intrinsics result in hint instructions. They are provided here for MSVC ARM64 compatibility.
Reviewers: mstorsjo, compnerd, javed.absar
Reviewed By: mstorsjo
Subscribers: kristof.beyls, chrib, cfe-commits
Differential Revision: https://reviews.llvm.org/D48132
llvm-svn: 334639
Summary: We've had these target independent intrinsics for at least a year and a half. Looks like they do exactly what we need here and the backend already supports them.
Reviewers: RKSimon, delena, spatel, GBuella
Reviewed By: RKSimon
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D47693
llvm-svn: 334366
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47446
llvm-svn: 334362
I'd like to make the select builtins require an avx512f, avx512bw, or avx512vl fature to match what is normally required to get masking. Truncate is special in that there are instructions with a 128/256-bit masked result even without avx512vl.
By using special buitlins we can emit a select without using the 128/256-bit select builtins.
llvm-svn: 334331
I'm looking into making the select builtins require avx512f, avx512bw, or avx512vl since masking operations generally require those features.
The extract builtins are funny because the 512-bit versions return a 128 or 256 bit vector with masking even when avx512vl is not supported.
llvm-svn: 334330
Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
Adds support for these intrinsics, which are ARM and ARM64 only:
_interlockedbittestandreset_acq
_interlockedbittestandreset_rel
_interlockedbittestandreset_nf
_interlockedbittestandset_acq
_interlockedbittestandset_rel
_interlockedbittestandset_nf
Refactor the bittest intrinsic handling to decompose each intrinsic into
its action, its width, and its atomicity.
llvm-svn: 334239
We still emit shufflevector instructions we just do it from CGBuiltin.cpp now. This ensures the intrinsics that use this are only available on CPUs that support the feature.
I also added range checking to the immediate, but only checked it is 8 bits or smaller. We should maybe be stricter since we never use all 8 bits, but gcc doesn't seem to do that.
llvm-svn: 334237
We still lower them to native shuffle IR, but we do it in CGBuiltin.cpp now. This allows us to check the target feature and ensure the immediate fits in 8 bits.
This also improves our -O0 codegen slightly because we're able to see the zeroinitializer in the shuffle. It looks like it got lost behind a store+load previously.
llvm-svn: 334208
Summary:
We recently switch to using a selects in the intrinsics header files for FMA instructions. But the 512-bit versions support flavors with rounding mode which must be an Integer Constant Expression. This has forced those intrinsics to be implemented as macros. As it stands now the mask and mask3 intrinsics evaluate one of their macro arguments twice. If that argument itself is another intrinsic macro, we can end up over expanding macros. Or if its something we can CSE later it would show up multiple times when it shouldn't.
I tried adding __extension__ around the macro and making it an expression statement and declaring a local variable. But whatever name you choose for the local variable can never be used as the name of an input to the macro in user code. If that happens you would end up with the same name on the LHS and RHS of an assignment after expansion. We might be safe if we use __ in front of the variable names because those names are reserved and user code shouldn't use that, but I wasn't sure I wanted to make that claim.
The other option which I've chosen here, is to add back _mask, _maskz, and _mask3 flavors of the builtin which we will expand in CGBuiltin.cpp to replicate the argument as needed and insert any fneg needed on the third operand to make a subtract. The _maskz isn't truly necessary if we have an unmasked version or if we use the masked version with a -1 mask and wrap a select around it. But I've chosen to make things more uniform.
I separated out the scalar builtin handling to avoid too many things going on in EmitX86FMAExpr. It was different enough due to the extract and insert that the minor duplication of the CreateCall was probably worth it.
Reviewers: tkrupa, RKSimon, spatel, GBuella
Reviewed By: tkrupa
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47724
llvm-svn: 334159
Factor out the common setjmp call emission code.
Based on a patch by Chris January
Differential Revision: https://reviews.llvm.org/D47784
llvm-svn: 334112
I tested these locally on an x86 machine by disabling the inline asm
codepath and confirming that it does the same bitflips as we do with the
inline asm.
Addresses code review feedback.
llvm-svn: 334059
Previously we were just using extended vector operations in the header file.
This unfortunately allowed non-constant indices to be used with the intrinsics. This is incompatible with gcc, icc, and MSVC. It also introduces a different performance characteristic because non-constant index gets lowered to a vector store and an element sized load.
By adding the builtins we can check for the index to be a constant and ensure its in range of the vector element count.
User code still has the option to use extended vector operations themselves if they need non-constant indexing.
llvm-svn: 334057
This builtin takes an index as its second operand, but the codegen hardcodes an index of 0 and doesn't use the operand. The only use of the builtin in the header file passes 0 to the operand so this works for that usage. But its more correct to use the real operand.
llvm-svn: 334054
We need to implement _interlockedbittestandset as a builtin for
windows.h, so we might as well do the whole family. It reduces code
duplication anyway.
Fixes PR33188, a long standing bug in our bittest implementation
encountered by Chakra.
llvm-svn: 333978
Adding __attribute__((aligned(32))) to __m256 breaks the implementation
of _mm256_loadu_ps on Windows. On Windows, alignment attributes have
higher precedence than packing attributes.
We also might want to carefully consider the consequences of changing
our vector typedefs, since many users copy them and invent their own
new, non-Intel specific vector type names.
llvm-svn: 333958
This seems like a premature optimization. It's unlikely a user would pass something the frontend can tell is all ones to the masked load/store intrinsics.
We do this optimization for emitting select for masking because we have builtin calls in header files that pass an all ones mask in. Though at this point we may not longer have any builtins that emit some IR and a select. We may only have the select builtins so maybe we can remove that optimization too.
llvm-svn: 333847
We currently support them only in AArch64. The NEON Reference,
however, says they are 'ARMv7, ARMv8' intrinsics.
Differential Revision: https://reviews.llvm.org/D47121
llvm-svn: 333829
This fixes two major problems:
- We were not capping vector alignment as desired on 32-bit ARM.
- We were using different alignments based on the AVX settings on
Intel, so we did not have a consistent ABI.
This is an ABI break, but we think we can get away with it because
vectors tend to be used mostly in inline code (which is why not having
a consistent ABI has not proven disastrous on Intel).
Intel's AVX types are specified as having 32-byte / 64-byte alignment,
so align them explicitly instead of relying on the base ABI rule.
Note that this sort of attribute is stripped from template arguments
in template substitution, so there's a possibility that code templated
over vectors will produce inadequately-aligned objects. The right
long-term solution for this is for alignment attributes to be
interpreted as true qualifiers and thus preserved in the canonical type.
llvm-svn: 333791
The WebAssembly committee has decided on the names `memory.size` and
`memory.grow` for the memory intrinsics, so update the clang builtin
functions to follow those names, keeping both sets of old names in place
for compatibility.
llvm-svn: 333712
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
These intrinsics are used by MSVC's header files on AArch64 Windows as
well as AArch32, so we should support them for both targets. I've
factored them out of CodeGenFunction::EmitARMBuiltinExpr into separate
functions that EmitAArch64BuiltinExpr can call as well.
Reviewers: javed.absar, mstorsjo
Reviewed By: mstorsjo
Subscribers: kristof.beyls, cfe-commits
Differential Revision: https://reviews.llvm.org/D47476
llvm-svn: 333513
The clang builtins have the same semantics as the stdlib functions.
The stdlib functions are defined in section 7.20.6.1 of the C standard with:
"If the result cannot be represented, the behavior is undefined."
That lets us mark the negation with 'nsw' because "sub i32 0, INT_MIN" would
be UB/poison.
Differential Revision: https://reviews.llvm.org/D47202
llvm-svn: 333038
Because the intrinsics in the headers are implemented as macros, we can't just use a select builtin and pternlog builtin. This would require one of the macro arguments to be used twice. Depending on what was passed to the macro we could expand an expression twice leading to weird behavior. We could maybe declare our local variable in the macro, but that would need to worry about name collisions.
To avoid that just generate IR directly in CGBuiltin.cpp.
Differential Revision: https://reviews.llvm.org/D47125
llvm-svn: 332891
1. added restrictions to memory scope, order and volatile parameters
2. added custom processing for these builtins - currently is not used code,
needed to switch off GCCBuiltin link to the builtins (ongoing change to llvm
tree)
3. builtins renamed as requested
Differential Revision: https://reviews.llvm.org/D43281
llvm-svn: 332848
This is unnecessary for AVX512VL supporting CPUs like SKX. We can just emit a 128-bit masked load/store here no matter what. The backend will widen it to 512-bits on KNL CPUs.
Fixes the frontend portion of PR37386. Need to fix the backend to optimize the new sequences well.
llvm-svn: 331958
Previously we emitted something like
rotl(x, n) {
n &= bitwidth-1;
return n != 0 ? ((x << n) | (x >> (bitwidth - n)) : x;
}
We use a select to avoid the undefined behavior on the (bitwidth - n) shift.
The middle and backend don't really recognize this as a rotate and end up emitting a cmov or control flow because of the select.
A better pattern is (x << (n & mask)) | (x << (-n & mask)) where mask is bitwidth - 1.
Fixes the main complaint in PR37387. There's still some work to be done if the user writes that sequence directly on a short or char where type promotion rules can prevent it from being recognized. The builtin is emitting direct IR with unpromoted types so that isn't a problem for it.
Differential Revision: https://reviews.llvm.org/D46656
llvm-svn: 331943
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
The ACLE spec which describes these intrinsics hasn't been published yet, but
this is based on the final draft which will be published soon, and these have
already been implemented by GCC.
Differential revision: https://reviews.llvm.org/D46109
llvm-svn: 331039
SPIR-V encodes the read_only and write_only access qualifiers of pipes,
so separate LLVM IR types are required to target SPIR-V. Other backends
may also find this useful.
These new types are `opencl.pipe_ro_t` and `opencl.pipe_wo_t`, which
replace `opencl.pipe_t`.
This replaces __get_pipe_num_packets(...) and __get_pipe_max_packets(...)
which took a read_only pipe with separate versions for read_only and
write_only pipes, namely:
* __get_pipe_num_packets_ro(...)
* __get_pipe_num_packets_wo(...)
* __get_pipe_max_packets_ro(...)
* __get_pipe_max_packets_wo(...)
These separate versions exist to avoid needing a bitcast to one of the
two qualified pipe types.
Patch by Stuart Brady.
Differential Revision: https://reviews.llvm.org/D46015
llvm-svn: 331026
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations.
Patch by tkrupa
Differential Revision: https://reviews.llvm.org/D44786
llvm-svn: 330323
Summary:
A clang builtin for xray typed events. Differs from
__xray_customevent(...) by the presence of a type tag that is vended by
compiler-rt in typical usage. This allows xray handlers to expand logged
events with their type description and plugins to process traced events
based on type.
This change depends on D45633 for the intrinsic definition.
Reviewers: dberris, pelikan, rnk, eizan
Subscribers: cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D45716
llvm-svn: 330220
Summary:
This change addresses http://llvm.org/PR36926 by allowing users to pick
which instrumentation bundles to use, when instrumenting with XRay. In
particular, the flag `-fxray-instrumentation-bundle=` has four valid
values:
- `all`: the default, emits all instrumentation kinds
- `none`: equivalent to -fnoxray-instrument
- `function`: emits the entry/exit instrumentation
- `custom`: emits the custom event instrumentation
These can be combined either as comma-separated values, or as
repeated flag values.
Reviewers: echristo, kpw, eizan, pelikan
Reviewed By: pelikan
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D44970
llvm-svn: 329985
I believe all the pieces are now in place in the backend to make this work correctly. We can either mask the input to 32 bits for pmuludg or shl/ashr for pmuldq and use a regular mul instruction. The backend should combine this to PMULUDQ/PMULDQ and then SimplifyDemandedBits will remove the and/shifts.
Differential Revision: https://reviews.llvm.org/D45421
llvm-svn: 329605
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
A recent addition to Coroutines TS (https://wg21.link/p0913) adds a pre-defined
coroutine noop_coroutine that does nothing. To implement this feature, we implemented
an llvm.coro.noop intrinsic that returns a coroutine handle to a coroutine that
does nothing when resumed or destroyed.
This patch adds a builtin __builtin_coro_noop() that maps to llvm.coro.noop intrinsic.
Related llvm change: https://reviews.llvm.org/D45114
llvm-svn: 328993
The conversion of operatios to bitcode helps to eliminate an additional
store in certain cases. We used to lower these load intrinsics in DAG to
DAG conversion by which time, the "Dead Store Elimination" pass is
already run. There is an associated LLVM patch.
Patch by Sumanth Gundapaneni.
llvm-svn: 328776
These instructions have been around for a long time, but we
haven't supported intrinsics for them. The "new" vesrions use
the CSx register for the start of the buffer instead of the K
field in the Mx register.
There is a related llvm patch.
Patch by Brendon Cahoon.
llvm-svn: 328725
Putting back the code in commit r327189 that was reverted in r322737. The code is being committed in three stages and this one is the last stage: 1) r327455 fp16 feature flags, 2) r327836 pass half type or i16 based on FullFP16, and 3) the code here which the front-end fp16 vector intrinsic for ARM.
Differential revision https://reviews.llvm.org/D43650
llvm-svn: 328277
This is needed for the upcoming implementation of the
new 8x32x16 and 32x8x16 variants of WMMA instructions
introduced in CUDA 9.1.
Differential Revision: https://reviews.llvm.org/D44719
llvm-svn: 328158
Summary:
Libc++'s default allocator uses `__builtin_operator_new` and `__builtin_operator_delete` in order to allow the calls to new/delete to be ellided. However, libc++ now needs to support over-aligned types in the default allocator. In order to support this without disabling the existing optimization Clang needs to support calling the aligned new overloads from the builtins.
See llvm.org/PR22634 for more information about the libc++ bug.
This patch changes `__builtin_operator_new`/`__builtin_operator_delete` to call any usual `operator new`/`operator delete` function. It does this by performing overload resolution with the arguments passed to the builtin to determine which allocation function to call. If the selected function is not a usual allocation function a diagnostic is issued.
One open issue is if the `align_val_t` overloads should be considered "usual" when `LangOpts::AlignedAllocation` is disabled.
In order to allow libc++ to detect this new behavior the value for `__has_builtin(__builtin_operator_new)` has been updated to `201802`.
Reviewers: rsmith, majnemer, aaron.ballman, erik.pilkington, bogner, ahatanak
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D43047
llvm-svn: 328134
This way we can support address-space specific variants without explicitly
encoding the space in the name of the intrinsic. Less intrinsics to deal with ->
less boilerplate.
Added a bit of tablegen magic to match/replace an intrinsics with a pointer
argument in particular address space with the space-specific instruction
variant.
Updated tests to use non-default address spaces.
Differential Revision: https://reviews.llvm.org/D43268
llvm-svn: 328006
For generating NEON intrinsics, this determines the NEON data type, and whether
it should be a half type or an i16 type. I.e., we always pass a half type for
AArch64, this hasn't changed, but now also for ARM but only when FullFP16 is
enabled, and i16 otherwise.
This is intended to be non-functional change, but together with the backend
work in D44538 which adds support for f16 vectors, this enables adding the
AArch32 FP16 (vector) intrinsics.
Differential Revision: https://reviews.llvm.org/D44561
llvm-svn: 327836
The MSVC runtime library does not provide a definition of wmemcmp,
so we need an inline implementation.
Differential Revision: https://reviews.llvm.org/D42441
llvm-svn: 323362
Summary:
kunpck intrinsics were removed in favor of native IR a few months ago. The implementation lowers them as by operation on the integer types passed to the intrinsic and then just shifting, masking, and oring them together. A special X86 DAG combine was added to recognize this patter and turn it into a concat_vector operation.
I think it makes more sense to keep the IR implementation closer to vector operations on vXi1. Given that we expect these builtins to be used around other builtins that operate on k-registers which we try to represent in IR with vXi1. InstCombine should be able to get rid of the bitcasts between integers and vXi1 leaving only the vector operations.
Reviewers: RKSimon, spatel, zvi, jina.nahias
Reviewed By: RKSimon
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42016
llvm-svn: 322461
These just overloads for _Float128. They're supported by GCC 7 and used
by glibc. APFloat support is already there so just add the overloads.
__builtin_copysignf128
__builtin_fabsf128
__builtin_huge_valf128
__builtin_inff128
__builtin_nanf128
__builtin_nansf128
This is the same support that GCC has, according to the documentation,
but limited to _Float128.
llvm-svn: 321948
r320902 fixed the IRGen for some types of checked multiplications. It
did not handle unsigned overflow correctly in the case where the signed
operand is negative (PR35750).
Eli pointed out that on overflow, the result must be equal to the unique
value that is equivalent to the mathematically-correct result modulo two
raised to the k power, where k is the number of bits in the result type.
This patch fixes the specialized IRGen from r320902 accordingly.
Testing: Apart from check-clang, I modified the test harness from
r320902 to validate the results of all multiplications -- not just the
ones which don't overflow:
https://gist.github.com/vedantk/3eb9c88f82e5c32f2e590555b4af5081
llvm.org/PR35750, rdar://34963321
Differential Revision: https://reviews.llvm.org/D41717
llvm-svn: 321771
Diagnose 'unreachable' UB when a noreturn function returns.
1. Insert a check at the end of functions marked noreturn.
2. A decl may be marked noreturn in the caller TU, but not marked in
the TU where it's defined. To diagnose this scenario, strip away the
noreturn attribute on the callee and insert check after calls to it.
Testing: check-clang, check-ubsan, check-ubsan-minimal, D40700
rdar://33660464
Differential Revision: https://reviews.llvm.org/D40698
llvm-svn: 321231
This patch introduces a specialized way to lower overflow-checked
multiplications with mixed-sign operands. This fixes link failures and
ICEs on code like this:
void mul(int64_t a, uint64_t b) {
int64_t res;
__builtin_mul_overflow(a, b, &res);
}
The generic checked-binop irgen would use a 65-bit multiplication
intrinsic here, which requires runtime support for _muloti4 (128-bit
multiplication), and therefore fails to link on i386. To get an ICE
on x86_64, change the example to use __int128_t / __uint128_t.
Adding runtime and backend support for 65-bit or 129-bit checked
multiplication on all of our supported targets is infeasible.
This patch solves the problem by using simpler, specialized irgen for
the mixed-sign case.
llvm.org/PR34920, rdar://34963321
Testing: Apart from check-clang, I compared the output from this fairly
comprehensive test driver using unpatched & patched clangs:
https://gist.github.com/vedantk/3eb9c88f82e5c32f2e590555b4af5081
Differential Revision: https://reviews.llvm.org/D41149
llvm-svn: 320902
Summary:
InterlockedCompareExchange128 is a bit more complicated than the other
InterlockedCompareExchange functions, so it requires a bit more work. It
doesn't directly refer to 128bit ints, instead it takes pointers to
64bit ints for Destination and ComparandResult, and exchange is taken as
two 64bit ints (high & low). The previous value is written to
ComparandResult, and success is returned. This implementation does the
following in order to produce a cmpxchg instruction:
1. Cast everything to 128bit ints or int pointers, and glues together
the Exchange values
2. Reads from CompareandResult to get the comparand
3. Calls cmpxchg volatile (on X86 this will produce a lock cmpxchg16b
instruction)
1. Result 0 (previous value) is written back to ComparandResult
2. Result 1 (success bool) is zext'ed to a uchar and returned
Resolves bug https://llvm.org/PR35251
Patch by Colden Cullen!
Reviewers: rnk, agutowski
Reviewed By: rnk
Subscribers: majnemer, cfe-commits
Differential Revision: https://reviews.llvm.org/D41032
llvm-svn: 320730
There are 20 LLVM math intrinsics that correspond to mathlib calls according to the LangRef:
http://llvm.org/docs/LangRef.html#standard-c-library-intrinsics
We were only converting 3 mathlib calls (sqrt, fma, pow) and 12 builtin calls (ceil, copysign,
fabs, floor, fma, fmax, fmin, nearbyint, pow, rint, round, trunc) to their intrinsic-equivalents.
This patch pulls the transforms together and handles all 20 cases. The switch is guarded by a
check for const-ness to make sure we're not doing the transform if errno could possibly be set by
the libcall or builtin.
Differential Revision: https://reviews.llvm.org/D40044
llvm-svn: 319593
Summary:
The -fxray-always-emit-customevents flag instructs clang to always emit
the LLVM IR for calls to the `__xray_customevent(...)` built-in
function. The default behaviour currently respects whether the function
has an `[[clang::xray_never_instrument]]` attribute, and thus not lower
the appropriate IR code for the custom event built-in.
This change allows users calling through to the
`__xray_customevent(...)` built-in to always see those calls lowered to
the corresponding LLVM IR to lay down instrumentation points for these
custom event calls.
Using this flag enables us to emit even just the user-provided custom
events even while never instrumenting the start/end of the function
where they appear. This is useful in cases where "phase markers" using
__xray_customevent(...) can have very few instructions, must never be
instrumented when entered/exited.
Reviewers: rnk, dblaikie, kpw
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D40601
llvm-svn: 319388
LLVM exposes a file in the backend (X86TargetParser.def) that
contains information about the correct list of CpuIs values.
This patch removes 2 of the copied and pasted versions of this
list from clang and instead includes the data from the .def file.
Differential Revision: https://reviews.llvm.org/D40054
llvm-svn: 318234
cbrt() is always constant because it can't overflow or underflow. Therefore, it can't set errno.
fma() is not always constant because it can overflow or underflow. Therefore, it can set errno.
But we know that it never sets errno on GNU / MSVC, so make it constant in those environments.
Differential Revision: https://reviews.llvm.org/D39641
llvm-svn: 318093
Summary:
This just seems to have been an oversight. We already supported the f64
atomic add with an explicit scope (e.g. "cta"), but not the scopeless
version.
Reviewers: tra
Subscribers: jholewinski, sanjoy, cfe-commits, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D39638
llvm-svn: 317623
The LLVM sqrt intrinsic definition changed with:
D28797
...so we don't have to use any relaxed FP settings other than errno handling.
This patch sidesteps a question raised in PR27435:
https://bugs.llvm.org/show_bug.cgi?id=27435
Is a programmer using __builtin_sqrt() invoking the compiler's intrinsic definition of sqrt or the mathlib definition of sqrt?
But we have an answer now: the builtin should match the behavior of the libm function including errno handling.
Differential Revision: https://reviews.llvm.org/D39204
llvm-svn: 317031
In OpenCL the kernel function and non-kernel function has different calling conventions.
For certain targets they have different argument ABIs. Also kernels have special function
attributes and metadata for runtime to launch them.
The blocks passed to enqueue_kernel is supposed to be executed as kernels. As such,
the block invoke function should be emitted as kernel with proper calling convention and
argument ABI.
This patch emits enqueued block as kernel. If a block is both called directly and passed
to enqueue_kernel, separate functions will be generated.
Differential Revision: https://reviews.llvm.org/D38134
llvm-svn: 315804
The Cpu Init functionality is required for the target
attribute, so this patch simply splits it out into its own
function, exactly like CpuIs and CpuSupports.
llvm-svn: 315075
code size.
Currently clang expands a call to __builtin_os_log_format into a long
sequence of instructions at the call site, causing code size to
increase in some cases.
This commit attempts to reduce code size by emitting a helper function
that can be shared by calls to __builtin_os_log_format with similar
formats and arguments. The helper function has linkonce_odr linkage to
enable the linker to merge identical functions across translation units.
Attribute 'noinline' is attached to the helper function at -Oz so that
the inliner doesn't inline functions that can potentially be merged.
This commit also fixes a bug where the generated IR writes past the end
of the buffer when "%m" is the last specifier appearing in the format
string passed to __builtin_os_log_format.
Original patch by Duncan Exon Smith.
rdar://problem/34065973
rdar://problem/34196543
Differential Revision: https://reviews.llvm.org/D38606
llvm-svn: 315045
Summary:
Restore the `__builtin_wasm_rethrow` builtin deleted in D37931. On second
thought, it appears it can be used to implement `__cxa_rethrow`.
Reviewers: dschuff, sunfish
Reviewed By: dschuff
Subscribers: jfb, sbc100, jgravelle-google
Differential Revision: https://reviews.llvm.org/D37942
llvm-svn: 313430
This patch replaces the perm2f128 intrinsics with native shuffle vectors.
This uses a pretty simple approach to allocate source 0 to the lower half input and source 1 to the upper half input. Then its just a matter of filling in the indices to use either the lower or upper half of that specific source. This can result in the same source being used by both operands. InstCombine or SelectionDAGBuilder should be able to clean that up.
Differential Revision: https://reviews.llvm.org/D37892
llvm-svn: 313418
Summary:
Remove `__builtin_wasm_rethrow` builtin. I thought it was required to implement
`__cxa_rethrow` function in libcxxabi, but it turned out it will be using
`__builtin_wasm_throw` instead.
Reviewers: dschuff, jgravelle-google
Reviewed By: jgravelle-google
Subscribers: jfb, sbc100, jgravelle-google
Differential Revision: https://reviews.llvm.org/D37931
llvm-svn: 313402
Not all targets support vararg (e.g. amdgpu). Instead of using vararg in the emitted functions for enqueue_kernel,
this patch creates a temporary array of size_t, stores the size arguments in the temporary array
and passes it to the emitted functions for enqueue_kernel.
Differential Revision: https://reviews.llvm.org/D36678
llvm-svn: 312441
"target" implementation
A small set of refactors that'll make it easier for me to implement 'target'
support.
First, extract the CPUSupports functionality into its own function.
THis has the advantage of not wasting time in this builtin to deal with
arguments.
Second, pulls both CPUSupports and CPUIs implementation into a member-function,
so that it can be called from the resolver generation that I'm working on.
Third, creates an overload that takes simply the feature/cpu name (rather than
extracting it from a callexpr), since that info isn't available later.
Note that despite how the 'diff' looks, the EmitX86CPUSupports function simply
takes the implementation out of the 'switch'.
llvm-svn: 312355
This adds builtin_cpu_init which will emit a call to cpu_indicator_init in libgcc or compiler-rt.
This is needed to support builtin_cpu_supports/builtin_cpu_is in an ifunc resolver.
Differential Revision: https://reviews.llvm.org/D36336
llvm-svn: 311874
the interface.
The ultimate goal here is to make it easier to do some more interesting
things in constant emission, like emit constant initializers that have
ignorable side-effects, or doing the majority of an initialization
in-place and then patching up the last few things with calls. But for
now this is mostly just a refactoring.
llvm-svn: 310964
This patch adds support for __builtin_cpu_is. I've tried to match the strings supported to the latest version of gcc.
Differential Revision: https://reviews.llvm.org/D35449
llvm-svn: 310657
They still need to be implemented in the intrinsics, the command line, and the backend. But this change isn't dependent on any of that and resolves a TODO.
llvm-svn: 310386
On some targets, passing zero to the clz() or ctz() builtins has undefined
behavior. I ran into this issue while debugging UB in __hash_table from libcxx:
the bug I was seeing manifested itself differently under -O0 vs -Os, due to a
UB call to clz() (see: libcxx/r304617).
This patch introduces a check which can detect UB calls to builtins.
llvm.org/PR26979
Differential Revision: https://reviews.llvm.org/D34590
llvm-svn: 309459
Move builtins from the x86 specific scope into the global
scope. Their use is still limited to x86_64 and aarch64 though.
This allows wine on aarch64 to properly handle variadic functions.
Differential Revision: https://reviews.llvm.org/D34475
llvm-svn: 308218
This patch series adds support for the IBM z14 processor. This part includes:
- Basic support for the new processor and its features.
- Support for low-level builtins mapped to new LLVM intrinsics.
Support for the -fzvector extension to vector float and the new
high-level vector intrinsics is provided by separate patches.
llvm-svn: 308197
There are two other features before it that we don't currently support in the the frontend or backend so I left placeholders to keep the encoding correct.
I think the compiler-rt implementation of this feature is even further out of date.
llvm-svn: 307456
problems in testing, see comments in D34161 for some more details.
A fix is in progres in D35011, but a revert seems better now as the fix will
probably take some more time to land.
llvm-svn: 307277
AVX512_VPOPCNTDQ is a new feature set that was published by Intel.
The patch represents the Clang side of the addition of six intrinsics for two new machine instructions (vpopcntd and vpopcntq).
It also includes the addition of the new feature set.
Differential Revision: https://reviews.llvm.org/D33170
llvm-svn: 303857
The functions creating LValues propagated information about alignment
source. Extend the propagated data to also include information about
possible unrestricted aliasing. A new class LValueBaseInfo will
contain both AlignmentSource and MayAlias info.
This patch should not introduce any functional changes.
Differential Revision: https://reviews.llvm.org/D33284
llvm-svn: 303358
Use variadic templates instead of relying on <cstdarg> + sentinel.
This enforces better type checking and makes code more readable.
Differential revision: https://reviews.llvm.org/D32550
llvm-svn: 302572
Summary:
We define the `__xray_customeevent` builtin that gets translated to
IR calls to the correct intrinsic. The default implementation of this is
a no-op function. The codegen side of this follows the following logic:
- When `-fxray-instrument` is not provided in the driver, we elide all
calls to `__xray_customevent`.
- When `-fxray-instrument` is enabled and a function is marked as "never
instrumented", we elide all calls to `__xray_customevent` in that
function; if either marked as "always instrumented" or subject to
threshold-based instrumentation, we emit a call to the
`llvm.xray.customevent` intrinsic from LLVM for each
`__xray_customevent` occurrence in the function.
This change depends on D27503 (to land in LLVM first).
Reviewers: echristo, rsmith
Subscribers: mehdi_amini, pelikan, lrl, cfe-commits
Differential Revision: https://reviews.llvm.org/D30018
llvm-svn: 302492
It's used by MS headers in VS 2017 without including intrin.h, so we
can't implement it in the header anymore.
Differential Revision: https://reviews.llvm.org/D31736
llvm-svn: 299782
This patch is a part two of two reviews, one for the clang and the other for LLVM.
In this patch, I covered the clang side, by introducing the intrinsic to the front end.
This is done by creating a generic replacement.
Differential Revision: https://reviews.llvm.org/D31394a
llvm-svn: 299431
It seems MS headers have started using __readgsqword, and since it's
used in a header that doesn't include intrin.h, we can't implement it as
an inline function anymore.
That was already the case for __readfsdword, which Saleem added support
for in r220859. This patch reuses that codegen to implement all of
__read[fg]s{byte,word,dword,qword}.
Differential Revision: https://reviews.llvm.org/D31248
llvm-svn: 298538
x86 has undef SSE/AVX intrinsics that should represent a bogus register operand.
This is not the same as LLVM's undef value which can take on multiple bit patterns.
There are better solutions / follow-ups to this discussed here:
https://bugs.llvm.org/show_bug.cgi?id=32176
...but this should prevent miscompiles with a one-line code change.
Differential Revision: https://reviews.llvm.org/D30834
llvm-svn: 297588
This fixes an assertion failure in cases where we had expression
statements that declared variables nested inside of pass_object_size
args. Since we were emitting the same ExprStmt twice (once for the arg,
once for the @llvm.objectsize call), we were getting issues with
redefining locals.
This also means that we can be more lax about when we emit
@llvm.objectsize for pass_object_size args: since we're reusing the
arg's value itself, we don't have to care so much about side-effects.
llvm-svn: 295935
The following code would crash clang:
void foo(unsigned *const __attribute__((pass_object_size(0))));
void bar(unsigned *i) { foo(i); }
This is because we were always selecting the version of
`@llvm.objectsize` that takes an i8* in CodeGen. Passing an i32* as an
i8* makes LLVM very unhappy.
(Yes, I'm surprised that this remained uncaught for so long, too. :) )
As an added bonus, we'll now also use the appropriate address space when
emitting @llvm.objectsize calls.
llvm-svn: 295805
Removed ndrange_t as Clang builtin type and added
as a struct type in the OpenCL header.
Use type name to do the Sema checking in enqueue_kernel
and modify IR generation accordingly.
Review: D28058
Patch by Dmitry Borisenkov!
llvm-svn: 295311
__fastfail terminates the process immediately with a special system
call. It does not run any process shutdown code or exception recovery
logic.
Fixes PR31854
llvm-svn: 294606
Support for CUDA printf is exploited to support printf for
an NVPTX OpenMP device.
To reflect the support of both programming models, the file
CGCUDABuiltin.cpp has been renamed to CGGPUBuiltin.cpp, and
the call EmitCUDADevicePrintfCallExpr has been renamed to
EmitGPUDevicePrintfCallExpr.
Reviewers: jlebar
Differential Revision: https://reviews.llvm.org/D17890
llvm-svn: 293444
Modify ObjC blocks impl wrt address spaces as follows:
- keep default private address space for blocks generated
as local variables (with captures);
- add global address space for global block literals (no captures);
- make the block invoke function and enqueue_kernel prototype with
the generic AS block pointer parameter to accommodate both
private and global AS cases from above;
- add block handling into default AS because it's implemented as
a special pointer type (BlockPointer) in the frontend and therefore
it is used as a pointer everywhere. This is also needed to accommodate
both private and global AS blocks for the two cases above.
- removes ObjC RT specific symbols (NSConcreteStackBlock and
NSConcreteGlobalBlock) in the OpenCL mode.
Review: https://reviews.llvm.org/D28814
llvm-svn: 293286
by providing a memchr builtin that returns char* instead of void*.
Also add a __has_feature flag to indicate the presence of constexpr forms of
the relevant <string> functions.
llvm-svn: 292555
Add builtins for the functions and custom codegen mapping the builtins to their
corresponding intrinsics and handling the endian related swapping.
https://reviews.llvm.org/D26546
llvm-svn: 291179
Unfortunately _setjmp3 can be both import or local. The ASAN tests try to
emulate the flags which makes this harder to detect. Rely on the linker
creating or using thunks here instead. Should repair the ASAN windows bots.
llvm-svn: 289783
This adds a way for us to version any UBSan handler by itself.
The patch overrides D21289 for a better implementation (we're able to
rev up a single handler).
After this, then we can land a slight modification of D19667+D19668.
We probably don't want to keep all the versions in compiler-rt (maybe we
want to deprecate on one release and remove the old handler on the next
one?), but with this patch we will loudly fail to compile when mixing
incompatible handler calls, instead of silently compiling and then
providing bad error messages.
Reviewers: kcc, samsonov, rsmith, vsk
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D21695
llvm-svn: 289444
have the same size.
This fixes an asset that is triggered when an address of a boolean
variable is passed to __builtin_arm_ldrex or __builtin_arm_strex.
rdar://problem/29269006
llvm-svn: 288404
This patch implements all the overloads for vec_xl_be and vec_xst_be. On BE,
they behaves exactly the same with vec_xl and vec_xst, therefore they are
simply implemented by defining a matching macro. On LE, they are implemented
by defining new builtins and intrinsics. For int/float/long long/double, it
is just a load (lxvw4x/lxvd2x) or store(stxvw4x/stxvd2x). For char/char/short,
we also need some extra shuffling before or after call the builtins to get the
desired BE order. For int128, simply call vec_xl or vec_xst.
llvm-svn: 286971
Make handling integer parameters more flexible:
- For the number of events argument allow to pass larger
integers than 32 bits as soon as compiler can prove that
the range fits in 32 bits. If not, the diagnostic will be given.
- Change type of the arguments specifying the sizes of
the corresponding block arguments to be size_t.
Review: https://reviews.llvm.org/D26509
llvm-svn: 286849
- Accept NULL pointer as a valid parameter value for clk_event.
- Generate clk_event_t arguments of internal
__enqueue_kernel_XXX function as pointers in generic address space.
Review: https://reviews.llvm.org/D26507
llvm-svn: 286836
__builtin_alloca always uses __BIGGEST_ALIGNMENT__ for the alignment of
the allocation. __builtin_alloca_with_align allows the programmer to
specify the alignment of the allocation.
This fixes PR30658.
llvm-svn: 285544
GCC documents __builtin_alloca as aligning the storage to at least
__BIGGEST_ALIGNMENT__.
MSVC documents essentially the same for the x64 ABI:
https://msdn.microsoft.com/en-us/library/x9sx5da1.aspx
The 32-bit ABI follows the same rule: it emits a call to _alloca_probe_16
Differential Revision: https://reviews.llvm.org/D24378
llvm-svn: 285316
abstract information about the callee. NFC.
The goal here is to make it easier to recognize indirect calls and
trigger additional logic in certain cases. That logic will come in
a later patch; in the meantime, I felt that this was a significant
improvement to the code.
llvm-svn: 285258
This reverts commit r285007 and reapply r284990, with a fix for the
opencl test that I broke. Original commit message follows:
These new builtins support a mechanism for logging OS events, using a
printf-like format string to specify the layout of data in a buffer.
The _buffer_size version of the builtin can be used to determine the size
of the buffer to allocate to hold the data, and then __builtin_os_log_format
can write data into that buffer. This implements format checking to report
mismatches between the format string and the data arguments. Most of this
code was written by Chris Willmore.
Differential Revision: https://reviews.llvm.org/D25888
llvm-svn: 285019
These new builtins support a mechanism for logging OS events, using a
printf-like format string to specify the layout of data in a buffer.
The _buffer_size version of the builtin can be used to determine the size
of the buffer to allocate to hold the data, and then __builtin_os_log_format
can write data into that buffer. This implements format checking to report
mismatches between the format string and the data arguments. Most of this
code was written by Chris Willmore.
Differential Revision: https://reviews.llvm.org/D25888
llvm-svn: 284990
Summary: We need `__stosb` to be an intrinsic, because SecureZeroMemory function uses it without including intrin.h. Implementing it as a volatile memset is not consistent with MSDN specification, but it gives us target-independent IR while keeping the most important properties of `__stosb`.
Reviewers: rnk, hans, thakis, majnemer
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D25334
llvm-svn: 284253
Summary: Previously global 64-bit versions of _Interlocked functions broke buildbots on i386, so now I'm adding them as builtins for x86-64 and ARM only (should they be also on AArch64? I had problems with testing it for AArch64, so I left it)
Reviewers: hans, majnemer, mstorsjo, rnk
Subscribers: cfe-commits, aemerson
Differential Revision: https://reviews.llvm.org/D25576
llvm-svn: 284172
Summary: _BitScan intrinsics (and some others, for example _Interlocked and _bittest) are supposed to work on both ARM and x86. This is an attempt to isolate them, avoiding repeating their code or writing separate function for each builtin.
Reviewers: hans, thakis, rnk, majnemer
Subscribers: RKSimon, cfe-commits, aemerson
Differential Revision: https://reviews.llvm.org/D25264
llvm-svn: 284060
This reverts commit r283802. It introduces temporarily static
initializers, because StringRef ctor isn't (yet) constexpr for
string literals.
I plan to get there this week, but apparently GCC is so terrible
with these static initializer right now (10 min+ extra codegen
time was reported) that I'll hold on to this patch till the
constexpr one is ready, and land these at the same time.
llvm-svn: 283920
Summary: We need x86-64-specific builtins if we want to implement some of the MS intrinsics - winnt.h contains definitions of some functions for i386, but not for x86-64 (for example _InterlockedOr64), which means that we cannot treat them as builtins for both i386 and x86-64, because then we have definitions of builtin functions in winnt.h on i386.
Reviewers: thakis, majnemer, hans, rnk
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D24598
llvm-svn: 283264
Summary:
With this commit simple coroutines can be created in plain C using coroutine builtins.
Reviewers: rnk, EricWF, rsmith
Subscribers: modocache, mgorny, mehdi_amini, beanz, cfe-commits
Differential Revision: https://reviews.llvm.org/D24373
llvm-svn: 283155
These are supposed to produce the same as normal volatile
pointer loads/stores. When -volatile:ms is specified,
normal volatile pointers are forced to have atomic semantics
(as is the default on x86 in MSVC mode). In that case,
these builtins should still produce non-atomic volatile
loads/stores without acquire/release semantics, which
the new test verifies.
These are only available on ARM (and on AArch64,
although clang doesn't support AArch64/Windows yet).
This implements what is missing for PR30394, making it possible
to compile C++ for ARM in MSVC mode with MSVC headers.
Differential Revision: https://reviews.llvm.org/D24986
llvm-svn: 282900
This patch corresponds to review:
https://reviews.llvm.org/D24397
It adds the __POWER9_VECTOR__ macro and the -mpower9-vector option along with
a number of altivec.h functions (refer to the code review for a list).
llvm-svn: 282481
Summary: This patch converts finite/__finite to builtin functions so that it will be inlined by compiler.
Reviewers: hfinkel, davidxl, efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D24483
llvm-svn: 281509
Summary:
int __builtin_amdgcn_ds_swizzle (int a, int imm);
while imm is a constant.
Differential Revision:
http://reviews.llvm.org/D23682
llvm-svn: 279165
constraints were added to _mm256_broadcast_{pd,ps} intel intrinsics.
The spec for these intrinics is ... pretty much silent on alignment.
This is especially frustrating considering the amount of discussion of
alignment in the load and store instrinsics. So I was forced to rely on
the specification for the VBROADCASTF128 instruction.
That instruction's spec is *also* completely silent on alignment.
Fortunately, when it comes to the instruction's spec, silence is enough.
There is no #GP fault option for an underaligned address so this
instruction, and by inference the intrinsic, can read any alignment.
As it happens, the old code worked exactly this way and in fact we have
plenty of code that hands pointers with less than 16-byte alignment to
these intrinsics. This code broke pretty spectacularly with this commit.
Fortunately, the fix is super simple! Change a 16 to a 1, and ta da!
Anyways, a lot of debugging for a really boring fix. =]
llvm-svn: 278202
Summary:
In order to re-define OpenCL built-in functions
'to_{private,local,global}' in OpenCL run-time library LLVM names must
be different from the clang built-in function names.
Reviewers: yaxunl, Anastasia
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D23120
llvm-svn: 277743
As discussed on D22460, I've updated the vbroadcastf128 pd256/ps256 builtins to map directly to generic IR - load+splat a 128-bit vector to both lanes of a 256-bit vector.
Fix for PR28657.
llvm-svn: 276417
- Added new Builtins: enqueue_kernel, get_kernel_work_group_size
and get_kernel_preferred_work_group_size_multiple.
These Builtins use custom check to diagnose parameters of the passed Blocks
i. e. variable number of 'local void*' type params, and check different
overloads specified in Table 6.31 of OpenCL v2.0.
- IR is generated as an internal library call for each OpenCL Builtin,
reusing ObjC Block implementation.
Review: http://reviews.llvm.org/D20249
llvm-svn: 274540
Currently we only have OpenCL 2.0 Builtins i.e. pipes or address space conversions.
They have to be added only in the version 2.0 compilation mode to make the identifiers
available for use in the other versions.
Review: http://reviews.llvm.org/D20249
llvm-svn: 274509
This is important for building libclc. Since r273039 tests are failing
due to now emitting calls to these functions instead of emitting the
DAG node. The libm function names are implemented for OpenCL, and should
call the locally defined versions, so -fno-builtin is used. The IR
Some functions use the __builtins and expect the intrinsics to be
emitted. Without this we end up with nobuiltin calls to intrinsics
or to unsupported library calls.
llvm-svn: 274370
Reapplying patch in r272777 which was reverted
because the llvm patch which added support
for generating the mcrr/mcrr2 instructions
from the intrinsic was causing an assertion
failure. This has now been fixed in llvm.
llvm-svn: 272983
As noted in the code comment, a potential follow-on would be to remove
the builtins themselves. Other than ord/unord, this already works as
expected. Eg:
typedef float v4sf __attribute__((__vector_size__(16)));
v4sf fcmpgt(v4sf a, v4sf b) { return a > b; }
Differential Revision: http://reviews.llvm.org/D21268
llvm-svn: 272840
Patch adds intrinsics for mrrc/mrrc2. The
intrinsics for mrrc/mrrc2 return a single
uint64_t to represent two 32 bit values.
The mcrr/mcrr2 intrinsic was changed to
accept a single uint64_t instead of two
32 bit values as the input for consistency.
Differential Revision: http://reviews.llvm.org/D21179
llvm-svn: 272777
We can now use __builtin_nontemporal_store instead of target specific builtins for naturally aligned nontemporal stores which avoids the need for handling in CGBuiltin.cpp
The scalar integer nontemporal (unaligned) store builtins will have to wait as __builtin_nontemporal_store currently assumes natural alignment and doesn't accept the 'packed struct' trick that we use for normal unaligned load/stores.
The nontemporal loads require further backend support before we can safely convert them to __builtin_nontemporal_load
Differential Revision: http://reviews.llvm.org/D21272
llvm-svn: 272540
_InterlockedIncrement and _InterlockedDecrement have 'long' in their
prototypes. We assumed 'long' was the same size as an i32 which is
incorrect for other targets.
This fixes PR27892.
llvm-svn: 270953
OpenCL builtin functions to_{global|local|private} accepts argument of pointer type to arbitrary pointee type, and return a pointer to the same pointee type in different addr space, i.e.
global gentype *to_global(gentype *p);
It is not desirable to declare it as
global void *to_global(void *);
in opencl header file since it misses diagnostics.
This patch implements these builtin functions as Clang builtin functions. In the builtin def file they are defined to have signature void*(void*). When handling call expressions, their declarations are re-written to have correct parameter type and return type corresponding to the call argument.
In codegen call to addr void *to_addr(void*) is generated with addrcasts or bitcasts to facilitate implementation in builtin library.
Differential Revision: http://reviews.llvm.org/D19932
llvm-svn: 270261
This is matching what trunk gcc is accepting. Also adds a missing ssse3
case. PR27779. The amount of duplication here is annoying, maybe it
should be factored into a separate .def file?
llvm-svn: 270224
Summary:
Previously it was implemented as inline asm in the CUDA headers.
This change allows us to use the [addr+imm] addressing mode when
executing ld.global.nc instructions. This translates into a 1.3x
speedup on some benchmarks that call this instruction from within an
unrolled loop.
Reviewers: tra, rsmith
Subscribers: jhen, cfe-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D19990
llvm-svn: 270150
The intrinsic is now called llvm.thread.pointer, not
llvm.aarch64.thread.pointer. Also, the code handling it in CGBuiltin.cpp
is dead - it's already covered by GCCBuiltin. Remove it.
Differential Revision: http://reviews.llvm.org/D19099
llvm-svn: 266817
r259537 added vfma/vfms to armv7, but the builtin was only lowered
on the AArch64 side. Instead of supporting it on ARM, get rid of it.
The vfms builtin lowered to:
%nb = fsub float -0.0, %b
%r = @llvm.fma.f32(%a, %nb, %c)
Instead, define the operation in terms of vfma, and swap the
multiplicands. It now lowers to:
%na = fsub float -0.0, %a
%r = @llvm.fma.f32(%na, %b, %c)
This matches the instruction more closely, and lets current LLVM
generate the "natural" operand ordering:
fmls.2s v0, v1, v2
instead of the crooked (but equivalent):
fmls.2s v0, v2, v1
Except for theses changes, assembly is identical.
LLVM accepts both commutations, and the LLVM tests in:
test/CodeGen/AArch64/arm64-fmadd.ll
test/CodeGen/AArch64/fp-dp3.ll
test/CodeGen/AArch64/neon-fma.ll
test/CodeGen/ARM/fusedMAC.ll
already check either the new one only, or both.
Also verified against the test-suite unittests.
llvm-svn: 266807
isinf (is infinite) and isfinite should be implemented with the same function
except we change the comparison operator.
See PR27145 for more details:
https://llvm.org/bugs/show_bug.cgi?id=27145
Ref: forked off of the discussion in D18513.
Differential Revision: http://reviews.llvm.org/D18648
llvm-svn: 265675
Summary: See LLVM change D18775 for details, this change depends on it.
Reviewers: jyknight, reames
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18776
llvm-svn: 265569
These functions cannot be implemented as atomicrmw or cmpxchg
instructions, so they are implemented as a call to the NVVM intrinsics
@llvm.nvvm.atomic.load.inc.32.p0i32 and
@llvm.nvvm.atomic.load.dec.32.p0i32.
Patch by Jason Henline.
Reviewers: jlebar
Differential Revision: http://reviews.llvm.org/D18322
llvm-svn: 264009
Includes new built-in, conversion of built-in to target-independent intrinsic
and update in the header file. Tests are also updated. There is a second part in
the backend for which I will post a separate code-review. BACKEND PART SHOULD BE
COMMITTED FIRST.
Phabricator: http://reviews.llvm.org/D17816
llvm-svn: 263051
Fix arc patch fuzz error.
Summary:
Support for the pipe built-in functions for OpenCL 2.0.
The pipe builtin functions may have infinite kinds of element types, one approach
would be to just generate calls that would always use generic types such as void*.
This patch is based on bader's opencl support patch on SPIR-V branch.
Reviewers: Anastasia, pekka.jaaskelainen
Subscribers: keryell, bader, cfe-commits
Differential Revision: http://reviews.llvm.org/D15914
llvm-svn: 258782
Summary:
Support for the pipe built-in functions for OpenCL 2.0.
The pipe builtin functions may have infinite kinds of element types, one approach
would be to just generate calls that would always use generic types such as void*.
This patch is based on bader's opencl support patch on SPIR-V branch.
Reviewers: Anastasia, pekka.jaaskelainen
Subscribers: keryell, bader, cfe-commits
Differential Revision: http://reviews.llvm.org/D15914
llvm-svn: 258773
Keep the ones still used by libclc around for now.
Emit the new amdgcn intrinsic name if not targeting r600,
in which case the old AMDGPU name is still used.
llvm-svn: 258560
`pass_object_size` is our way of enabling `__builtin_object_size` to
produce high quality results without requiring inlining to happen
everywhere.
A link to the design doc for this attribute is available at the
Differential review link below.
Differential Revision: http://reviews.llvm.org/D13263
llvm-svn: 254554
Function__builtin_signbit returns wrong value for type ppcf128 on big endian
machines. This patch fixes how value is generated in that case.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D14149
llvm-svn: 252307
only one of a group of possibilities.
This changes the syntax in the builtin files to represent:
, as the and operator
| as the or operator
The former syntax matches how the backend tablegen files represent
multiple subtarget features being required.
Updated the builtin and intrinsic headers accordingly for the new
syntax.
llvm-svn: 251388
match the feature set of the function that they're being called from.
This ensures that we can effectively diagnose some[1] code that would
instead ICE in the backend with a failure to select message.
Example:
__m128d foo(__m128d a, __m128d b) {
return __builtin_ia32_addsubps(b, a);
}
compiled for normal x86_64 via:
clang -target x86_64-linux-gnu -c
would fail to compile in the back end because the normal subtarget
features for x86_64 only include sse2 and the builtin requires sse3.
[1] We're still not erroring on:
__m128i bar(__m128i const *p) { return _mm_lddqu_si128(p); }
where we should fail and error on an always_inline function being
inlined into a function that doesn't support the subtarget features
required.
llvm-svn: 250473
Summary: __nvvm_atom_cas_* returns the old value instead of whether the swap succeeds.
Reviewers: eliben, tra
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D13306
llvm-svn: 248951
This is the clang commit associated with llvm r248887.
This commit changes the interface of the vld[1234], vld[234]lane, and vst[1234],
vst[234]lane ARM neon intrinsics and associates an address space with the
pointer that these intrinsics take. This changes, e.g.,
<2 x i32> @llvm.arm.neon.vld1.v2i32(i8*, i32)
to
<2 x i32> @llvm.arm.neon.vld1.v2i32.p0i8(i8*, i32)
This change ensures that address spaces are fully taken into account in the ARM
target during lowering of interleaved loads and stores.
Differential Revision: http://reviews.llvm.org/D13127
llvm-svn: 248888
* adds -aux-triple option to specify target triple
* propagates aux target info to AST context and Preprocessor
* pulls in target specific preprocessor macros.
* pulls in target-specific builtins from aux target.
* sets appropriate host or device attribute on builtins.
Differential Revision: http://reviews.llvm.org/D12917
llvm-svn: 248299
Summary:
This change adds support for `__builtin_ms_va_list`, a GCC extension for
variadic `ms_abi` functions. The existing `__builtin_va_list` support is
inadequate for this because `va_list` is defined differently in the Win64
ABI vs. the System V/AMD64 ABI.
Depends on D1622.
Reviewers: rsmith, rnk, rjmccall
CC: cfe-commits
Differential Revision: http://reviews.llvm.org/D1623
llvm-svn: 247941
Summary:
Currently clang provides no general way to generate nontemporal loads/stores.
There are some architecture specific builtins for doing so (e.g. in x86), but
there is no way to generate non-temporal store on, e.g. AArch64. This patch adds
generic builtins which are expanded to a simple store with '!nontemporal'
attribute in IR.
Differential Revision: http://reviews.llvm.org/D12313
llvm-svn: 247104
Introduce an Address type to bundle a pointer value with an
alignment. Introduce APIs on CGBuilderTy to work with Address
values. Change core APIs on CGF/CGM to traffic in Address where
appropriate. Require alignments to be non-zero. Update a ton
of code to compute and propagate alignment information.
As part of this, I've promoted CGBuiltin's EmitPointerWithAlignment
helper function to CGF and made use of it in a number of places in
the expression emitter.
The end result is that we should now be significantly more correct
when performing operations on objects that are locally known to
be under-aligned. Since alignment is not reliably tracked in the
type system, there are inherent limits to this, but at least we
are no longer confused by standard operations like derived-to-base
conversions and array-to-pointer decay. I've also fixed a large
number of bugs where we were applying the complete-object alignment
to a pointer instead of the non-virtual alignment, although most of
these were hidden by the very conservative approach we took with
member alignment.
Also, because IRGen now reliably asserts on zero alignments, we
should no longer be subject to an absurd but frustrating recurring
bug where an incomplete type would report a zero alignment and then
we'd naively do a alignmentAtOffset on it and emit code using an
alignment equal to the largest power-of-two factor of the offset.
We should also now be emitting much more aggressive alignment
attributes in the presence of over-alignment. In particular,
field access now uses alignmentAtOffset instead of min.
Several times in this patch, I had to change the existing
code-generation pattern in order to more effectively use
the Address APIs. For the most part, this seems to be a strict
improvement, like doing pointer arithmetic with GEPs instead of
ptrtoint. That said, I've tried very hard to not change semantics,
but it is likely that I've failed in a few places, for which I
apologize.
ABIArgInfo now always carries the assumed alignment of indirect and
indirect byval arguments. In order to cut down on what was already
a dauntingly large patch, I changed the code to never set align
attributes in the IR on non-byval indirect arguments. That is,
we still generate code which assumes that indirect arguments have
the given alignment, but we don't express this information to the
backend except where it's semantically required (i.e. on byvals).
This is likely a minor regression for those targets that did provide
this information, but it'll be trivial to add it back in a later
patch.
I partially punted on applying this work to CGBuiltin. Please
do not add more uses of the CreateDefaultAligned{Load,Store}
APIs; they will be going away eventually.
llvm-svn: 246985
This implements basic support for compiling (though not yet assembling
or linking) for a WebAssembly target. Note that ABI details are not yet
finalized, and may change.
Differential Revision: http://reviews.llvm.org/D12002
llvm-svn: 246814
This patch depends on r246688 (D12341).
The goal is to make LLVM generate different code for these functions for a target that
has cheap branches (see PR23827 for more details):
int foo();
int normal(int x, int y, int z) {
if (x != 0 && y != 0) return foo();
return 1;
}
int crazy(int x, int y) {
if (__builtin_unpredictable(x != 0 && y != 0)) return foo();
return 1;
}
Differential Revision: http://reviews.llvm.org/D12458
llvm-svn: 246699
GCC 4.8+ has a PowerPC-specific intrinsic, __builtin_ppc_get_timebase, to do
what Clang's __builtin_readcyclecounter does. For compatibility with code that
uses GCC's spelling (including glibc), support it as well.
Partially fixes PR23681.
llvm-svn: 246510
We had "vcvt_f16" and "VCVT_HIGH_F16": for other FP types, this naming
is used for intrinsics with integer overloads. The FP->FP conversions,
on the other hand, use the full "vcvt_f32_f64" name instead.
Use the same naming convention for the f16<->f32 conversions.
While there, reorder the definitions a little bit.
llvm-svn: 245763
- Use cached LLVM types
- Turn SmallVectors into Arrays/ArrayRef if the size is static
- Use ConstantInt::get's implicit splatting for vector types
No functionality change intended.
llvm-svn: 243425
__builtin_frame_address requires its argument to be a constant
expression which already implies that it cannot have undefined behavior.
However, we used EmitScalarExpr to emit the argument causing UBSan to
try to check for overflow.
Instead, use the constant expression emission system.
This fixes PR24256.
llvm-svn: 243206
This patch corresponds to review:
http://reviews.llvm.org/D11184
A number of new interfaces for altivec.h (as mandated by the ABI):
vector float vec_cpsgn(vector float, vector float)
vector double vec_cpsgn(vector double, vector double)
vector double vec_or(vector bool long long, vector double)
vector double vec_or(vector double, vector bool long long)
vector double vec_re(vector double)
vector signed char vec_cntlz(vector signed char)
vector unsigned char vec_cntlz(vector unsigned char)
vector short vec_cntlz(vector short)
vector unsigned short vec_cntlz(vector unsigned short)
vector int vec_cntlz(vector int)
vector unsigned int vec_cntlz(vector unsigned int)
vector signed long long vec_cntlz(vector signed long long)
vector unsigned long long vec_cntlz(vector unsigned long long)
vector signed char vec_nand(vector bool signed char, vector signed char)
vector signed char vec_nand(vector signed char, vector bool signed char)
vector signed char vec_nand(vector signed char, vector signed char)
vector unsigned char vec_nand(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector unsigned char)
vector short vec_nand(vector bool short, vector short)
vector short vec_nand(vector short, vector bool short)
vector short vec_nand(vector short, vector short)
vector unsigned short vec_nand(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector unsigned short)
vector int vec_nand(vector bool int, vector int)
vector int vec_nand(vector int, vector bool int)
vector int vec_nand(vector int, vector int)
vector unsigned int vec_nand(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector unsigned int)
vector signed long long vec_nand(vector bool long long, vector signed long long)
vector signed long long vec_nand(vector signed long long, vector bool long long)
vector signed long long vec_nand(vector signed long long, vector signed long long)
vector unsigned long long vec_nand(vector bool long long, vector unsigned long long)
vector unsigned long long vec_nand(vector unsigned long long, vector bool long long)
vector unsigned long long vec_nand(vector unsigned long long, vector unsigned long long)
vector signed char vec_orc(vector bool signed char, vector signed char)
vector signed char vec_orc(vector signed char, vector bool signed char)
vector signed char vec_orc(vector signed char, vector signed char)
vector unsigned char vec_orc(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector unsigned char)
vector short vec_orc(vector bool short, vector short)
vector short vec_orc(vector short, vector bool short)
vector short vec_orc(vector short, vector short)
vector unsigned short vec_orc(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector unsigned short)
vector int vec_orc(vector bool int, vector int)
vector int vec_orc(vector int, vector bool int)
vector int vec_orc(vector int, vector int)
vector unsigned int vec_orc(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector unsigned int)
vector signed long long vec_orc(vector bool long long, vector signed long long)
vector signed long long vec_orc(vector signed long long, vector bool long long)
vector signed long long vec_orc(vector signed long long, vector signed long long)
vector unsigned long long vec_orc(vector bool long long, vector unsigned long long)
vector unsigned long long vec_orc(vector unsigned long long, vector bool long long)
vector unsigned long long vec_orc(vector unsigned long long, vector unsigned long long)
vector signed char vec_div(vector signed char, vector signed char)
vector unsigned char vec_div(vector unsigned char, vector unsigned char)
vector signed short vec_div(vector signed short, vector signed short)
vector unsigned short vec_div(vector unsigned short, vector unsigned short)
vector signed int vec_div(vector signed int, vector signed int)
vector unsigned int vec_div(vector unsigned int, vector unsigned int)
vector signed long long vec_div(vector signed long long, vector signed long long)
vector unsigned long long vec_div(vector unsigned long long, vector unsigned long long)
vector unsigned char vec_mul(vector unsigned char, vector unsigned char)
vector unsigned int vec_mul(vector unsigned int, vector unsigned int)
vector unsigned long long vec_mul(vector unsigned long long, vector unsigned long long)
vector unsigned short vec_mul(vector unsigned short, vector unsigned short)
vector signed char vec_mul(vector signed char, vector signed char)
vector signed int vec_mul(vector signed int, vector signed int)
vector signed long long vec_mul(vector signed long long, vector signed long long)
vector signed short vec_mul(vector signed short, vector signed short)
vector signed long long vec_mergeh(vector signed long long, vector signed long long)
vector signed long long vec_mergeh(vector signed long long, vector bool long long)
vector signed long long vec_mergeh(vector bool long long, vector signed long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergeh(vector bool long long, vector unsigned long long)
vector double vec_mergeh(vector double, vector double)
vector double vec_mergeh(vector double, vector bool long long)
vector double vec_mergeh(vector bool long long, vector double)
vector signed long long vec_mergel(vector signed long long, vector signed long long)
vector signed long long vec_mergel(vector signed long long, vector bool long long)
vector signed long long vec_mergel(vector bool long long, vector signed long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergel(vector bool long long, vector unsigned long long)
vector double vec_mergel(vector double, vector double)
vector double vec_mergel(vector double, vector bool long long)
vector double vec_mergel(vector bool long long, vector double)
vector signed int vec_pack(vector signed long long, vector signed long long)
vector unsigned int vec_pack(vector unsigned long long, vector unsigned long long)
vector bool int vec_pack(vector bool long long, vector bool long long)
llvm-svn: 242171
This is needed to use clang's command line option "-ftrap-function" for LTO and
enable changing the trap function name on a per-call-site basis.
rdar://problem/21225723
Differential Revision: http://reviews.llvm.org/D10831
llvm-svn: 241306
This matches the implementation of the gcc support for the same
feature, including checking the values set up by libgcc at runtime.
The structure looks like this:
unsigned int __cpu_vendor;
unsigned int __cpu_type;
unsigned int __cpu_subtype;
unsigned int __cpu_features[1];
with a set of enums to match various fields that are field out after
parsing the output of the cpuid instruction.
This also adds a set of errors checking for valid input (and cpu).
compiler-rt support for this and the other builtins in this family
(__builtin_cpu_init and __builtin_cpu_is) are forthcoming.
llvm-svn: 240994
This patch corresponds to review:
http://reviews.llvm.org/D10637
This is the first round of additions of missing builtins listed in the ABI document. More to come (this builds onto what seurer already addes). This patch adds:
vector signed long long vec_abs(vector signed long long)
vector double vec_abs(vector double)
vector signed long long vec_add(vector signed long long, vector signed long long)
vector unsigned long long vec_add(vector unsigned long long, vector unsigned long long)
vector double vec_add(vector double, vector double)
vector double vec_and(vector bool long long, vector double)
vector double vec_and(vector double, vector bool long long)
vector double vec_and(vector double, vector double)
vector signed long long vec_and(vector signed long long, vector signed long long)
vector double vec_andc(vector bool long long, vector double)
vector double vec_andc(vector double, vector bool long long)
vector double vec_andc(vector double, vector double)
vector signed long long vec_andc(vector signed long long, vector signed long long)
vector double vec_ceil(vector double)
vector bool long long vec_cmpeq(vector double, vector double)
vector bool long long vec_cmpge(vector double, vector double)
vector bool long long vec_cmpge(vector signed long long, vector signed long long)
vector bool long long vec_cmpge(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmpgt(vector double, vector double)
vector bool long long vec_cmple(vector double, vector double)
vector bool long long vec_cmple(vector signed long long, vector signed long long)
vector bool long long vec_cmple(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmplt(vector double, vector double)
vector bool long long vec_cmplt(vector signed long long, vector signed long long)
vector bool long long vec_cmplt(vector unsigned long long, vector unsigned long long)
llvm-svn: 240821
Integer variants are implemented as atomicrmw or cmpxchg instructions.
Atomic add for floating point (__nvvm_atom_add_gen_f()) is implemented
as a call to an overloaded @llvm.nvvm.atomic.load.add.f32.* LVVM
intrinsic.
Differential Revision: http://reviews.llvm.org/D10666
llvm-svn: 240669
This fixes a serious bug in r240462: checking the BuiltinID for
ARM::BI_MoveToCoprocessor* in EmitBuiltinExpr() ignores the fact that
each target has an overlapping range of the BuiltinID values. That check
can trigger for builtins from other targets, leading to very bad
behavior.
Part of the reason I did not implement r240462 this way to begin with is
the special handling of the last argument for Neon builtins. In this
change, I have factored out the check to see which builtins have that
extra argument into a new HasExtraNeonArgument() function. There is still
some awkwardness in having to check for those builtins in two separate
places, i.e., once to see if the extra argument is present and once to
generate the appropriate IR, but this seems much cleaner than my previous
patch.
llvm-svn: 240522
The Microsoft-extension _MoveToCoprocessor and _MoveToCoprocessor2
builtins take the register value to be moved as the first argument,
but the corresponding mcr and mcr2 LLVM intrinsics expect that value
to be the third argument. Handle this as a special case, while still
leaving those intrinsics as generic MSBuiltins. I considered the
alternative of handling these in EmitARMBuiltinExpr, but that does
not work well for the follow-up change that I'm going to make to improve
the error handling for PR22560 -- we need the GetBuiltinType() checks
for ICEArguments, and the ARM version of that code is only used for
Neon intrinsics where the last argument is special and not
checked in the normal way.
llvm-svn: 240462
in section 10.1, __arm_{w,r}sr{,p,64}.
This includes arm_acle.h definitions with builtins and codegen to support
these, the intrinsics are implemented by generating read/write_register calls
which get appropriately lowered in the backend based on the register string
provided. SemaChecking is also implemented to fault invalid parameters.
Differential Revision: http://reviews.llvm.org/D9697
llvm-svn: 239737
On ARM/AArch64, we currently always use EmitScalarExpr for the immediate
builtin arguments, instead of directly emitting the constant. When the
overflow sanitizer is enabled, this generates overflow intrinsics
instead of constants, breaking assumptions in various places.
Instead, use the knowledge of "immediates" to directly emit a constant:
- teach the tablegen backend to emit the "immediate" modifiers
- use those modifiers in the NEON CodeGen, on ARM and AArch64.
Fixes PR23517.
Differential Revision: http://reviews.llvm.org/D10045
llvm-svn: 239002
This adds low-level builtins to allow access to all of the z13 vector
instructions. Note that instructions whose semantics can be described
by standard C (including clang extensions) do not get any builtins.
For each instructions whose semantics *cannot* (fully) be described, we
define a builtin named __builtin_s390_<insn> that directly maps to this
instruction. These are intended to be compatible with GCC.
For instructions that also set the condition code, the builtin will take
an extra argument of type "int *" at the end. The integer pointed to by
this argument will be set to the post-instruction CC value.
For many instructions, the low-level builtin is mapped to the corresponding
LLVM IR intrinsic. However, a number of instructions can be represented
in standard LLVM IR without requiring use of a target intrinsic.
Some instructions require immediate integer operands within a certain
range. Those are verified at the Sema level.
Based on a patch by Richard Sandiford.
llvm-svn: 236532
The zEC12 provides the transactional-execution facility. This is exposed
to users via a set of builtin routines on other compilers. This patch
adds clang support to enable those builtins. In partciular, the patch:
- enables the transactional-execution feature by default on zEC12
- allows to override presence of that feature via the -mhtm/-mno-htm options
- adds a predefined macro __HTM__ if the feature is enabled
- adds support for the transactional-execution GCC builtins
- adds Sema checking to verify the __builtin_tabort abort code
- adds the s390intrin.h header file (for GCC compatibility)
- adds s390 sections to the htmintrin.h and htmxlintrin.h header files
Since this is first use of target-specific intrinsics on the platform,
the patch creates the include/clang/Basic/BuiltinsSystemZ.def file and
hooks it up in TargetBuiltins.h and lib/Basic/Targets.cpp.
An associated LLVM patch adds the required LLVM IR intrinsics.
For reference, the transactional-execution instructions are documented
in the z/Architecture Principles of Operation for the zEC12:
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf
The associated builtins are documented in the GCC manual:
http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html
The htmxlintrin.h intrinsics provided for compatibility with the IBM XL
compiler are documented in the "z/OS XL C/C++ Programming Guide".
llvm-svn: 233804
The argument range checks for the HTM and Crypto builtins were implemented in
CGBuiltin.cpp, not in Sema. This change moves them to the appropriate location
in SemaChecking.cpp. It requires the creation of a new method in the Sema class
to do checks for PPC-specific builtins.
http://reviews.llvm.org/D8672
llvm-svn: 233586
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], with both 'PowerPC HTM
Low Level Built-in Functions' and 'PowerPC HTM High Level Inline Functions'
implemented.
Along with builtins a new driver switch is added to enable/disable HTM
instruction support (-mhtm) and a header with common definitions (mostly to
parse the TFHAR register value). The HTM switch also sets a preprocessor builtin
HTM.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a llvm patch to enabled the builtins and option switch.
[1]
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8248
llvm-svn: 233205
Somehow, we never managed to implement this fully. We could constant
fold it like crazy, including constant folding complex arguments, etc.
But if you actually needed to generate code for it, error.
I've implemented it using the somewhat obvious lowering. Happy for
suggestions on a more clever way to lower this.
Now, what you might ask does this have to do with modules? Fun story. So
it turns out that libstdc++ actually uses __builtin_isinf_sign to
implement std::isinf when in C++98 mode, but only inside of a template.
So if we're lucky, and we never instantiate that, everything is good.
But once we try to instantiate that template function, we need this
builtin. All of my customers at least are using C++11 and so they never
hit this code path.
But what does that have to do with modules? Fun story. So it turns out
that with modules we actually observe a bunch of bugs in libstdc++ where
their <cmath> header clobbers things exposed by <math.h>. To fix these,
we have to provide global function definitions to replace the macros
that C99 would have used. And it turns out that ::isinf needs to be
implemented using the exact semantics used by the C++98 variant of
std::isinf. And so I started to fix this bug in libstdc++ and ceased to
be able to compile libstdc++ with Clang.
The yaks are legion.
llvm-svn: 232778
std::make_exception_ptr calls std::__GetExceptionInfo in order to figure
out how to properly copy the exception object.
Differential Revision: http://reviews.llvm.org/D8280
llvm-svn: 232188
Originally we were using the same GCC builtins to lower this AVX2 vector
intrinsic. Instead we will now lower it directly to a vector shuffle.
This will not only allow LLVM to generate better code, but it will also allow us
to remove the GCC intrinsics.
Reviewed by Andrea
This is related to rdar://problem/18742778.
llvm-svn: 231081
llvm.eh.sjlj.setjmp / llvm.eh.sjlj.longjmp, if the backend is known to
support them outside the Exception Handling context. The default
handling in LLVM codegen doesn't work and will create incorrect code.
The ARM backend on the other hand will assert if the intrinsics are
used.
llvm-svn: 230255
Previously we would simply double-emit the body of the __finally block,
but that doesn't work when it contains any kind of Decl, which we can't
double emit.
This fixes that by emitting the block once and branching into a shared
code region and then branching back out.
llvm-svn: 228222