The test is failing on 32-bit targets in C++03 mode. Clang produces
the following warning: 'integer literal is too large to be represented
in type 'long' and is subject to undefined behavior under C++98,
interpreting as 'unsigned long'; this literal will have type 'long
long' in C++11 onwards [-Wc++11-compat]' which is promoted to an error
and causes the test to fail.
There have been no changes in the test itself since 2019, so it looks
like the diagnostic has been updated.
Differential Revision: https://reviews.llvm.org/D81559
C++98 and C++03 are effectively aliases as far as Clang is concerned.
As such, allowing both std=c++98 and std=c++03 as Lit parameters is
just slightly confusing, but provides no value. It's similar to allowing
both std=c++17 and std=c++1z, which we don't do.
This was discovered because we had an internal bot that ran the test
suite under both c++98 AND c++03 -- one of which is redundant.
Differential Revision: https://reviews.llvm.org/D80926
Tests that require support for Clang-verify are already marked as such
explicitly by their extension, which is .verify.cpp. Requiring the use
of an explicit Lit feature is, after thought, not really helpful.
This is a change in design: we have been bitten in the past by tests not
being enabled when we thought they were. However, the issue was mostly
with file extensions being ignored. The fix for that is not to blindly
require explicit features all the time, but instead to report all files
that are in the suite but that don't match any known test format. This
can be implemented in a follow-up patch.
By renaming .fail.cpp tests that don't need clang-verify to .compile.fail.cpp,
the new test format will not try to compile these tests with clang-verify,
and the old test format will work just the same. However, this allows
removing a workaround that requires parsing each test looking for
clang-verify markup.
After this change, a .fail.cpp test should always have clang-verify markup.
When clang-verify is not supported by the compiler, we will just check that
these tests fail to compile. When clang-verify is supported, these tests
will be compiled with clang-verify whether they have markup or not (so
they should have markup, or they will fail).
This simplifies the test suite and also ensures that all of our .fail.cpp
tests provide clang-verify markup. If it's impossible for a test to have
clang-verify markup, it can be moved to a .compile.fail.cpp test, which
are unconditionally just checked for compilation failure.
The libc++ test suite has a lot of old Lit features used to XFAIL tests
and mark them as UNSUPPORTED. Many of them are to workaround problems on
old compilers or old platforms. As time goes by, it is good to go and
clean those up to simplify the configuration of the test suite, and also
to reflect the testing reality. It's not useful to have markup that gives
the impression that e.g. clang-3.3 is supported, when we don't really
test on it anymore (and hence several new tests probably don't have the
necessary markup on them).
This allows both the old and the new testing formats to handle these
tests with modules enabled.
We also include the modules flags in the %{flags} substitution, which
means that .sh.cpp tests in the old format and all tests in the new
format will use modules flags when enabled.
We had a workaround because GCC 5 does not evaluate static assertions
that are dependent on template parameters. This commit removes the
workaround and marks the corresponding tests as unsupported with GCC 5.
This has the benefit of bringing the new and the old test formats closer
without having to carry a workaround for an old compiler in the new
test format.
Forcing -Werror and other warnings means that the test suite isn't
actually testing what most people are seeing in their code -- it seems
better and less arbitrary to compile these tests as close as possible
to the compiler default instead.
Removing -Werror also means that we get to differentiate between
diagnostics that are errors and those that are warnings, which makes
the test suite more precise.
Differential Revision: https://reviews.llvm.org/D76311
Some tests do not fail at all when -verify is not supported, unless some
arbitrary warning flag is added to make them fail. We currently used
-Werror=unused-result to make them fail, but doing so makes the test
suite a lot more inscrutable. It seems better to just disable those
tests when -verify is not supported.
Differential Revision: https://reviews.llvm.org/D76256
[libcxx] [test] Calling min and max on an empty valarray is UB.
libcxx/test/std/numerics/numarray/template.valarray/valarray.members/min.pass.cpp
libcxx/test/std/numerics/numarray/template.valarray/valarray.members/max.pass.cpp
The calls `v1.min();` and `v1.max();` were emitting nodiscard warnings
with MSVC's STL. Upon closer inspection, these calls were triggering
undefined behavior. N4842 [valarray.members] says:
"T min() const;
8 Preconditions: size() > 0 is true.
T max() const;
10 Preconditions: size() > 0 is true."
As these tests already provide coverage for non-empty valarrays
(immediately above), I've simply deleted the code for empty valarrays.
[libcxx] [test] Add macros to msvc_stdlib_force_include.h (NFC).
libcxx/test/support/msvc_stdlib_force_include.h
These macros are being used by:
libcxx/test/std/utilities/meta/meta.trans/meta.trans.other/result_of11.pass.cpp
Defining them to nothing allows that test to pass.
[libcxx] [test] Silence MSVC warning C5063 for is_constant_evaluated (NFC).
libcxx/test/std/utilities/meta/meta.const.eval/is_constant_evaluated.pass.cpp
This test is intentionally writing code that MSVC intentionally warns
about, so the warning should be silenced.
Additionally, comment an endif for clarity.
[libcxx] [test] Silence MSVC warning C4127 (NFC).
libcxx/test/support/charconv_test_helpers.h
MSVC avoids emitting this warning when it sees a single constexpr value
being tested, but this condition is a mix of compile-time and run-time.
Using push-disable-pop is the least intrusive way to silence this.
[libcxx] [test] Silence MSVC truncation warning (NFC).
libcxx/test/std/containers/sequences/vector/vector.cons/construct_iter_iter.pass.cpp
This test is intentionally truncating float to int, which MSVC
intentionally warns about, so push-disable-pop is necessary.
[libcxx] [test] Avoid truncation warnings in erase_if tests (NFC).
libcxx/test/std/containers/associative/map/map.erasure/erase_if.pass.cpp
libcxx/test/std/containers/associative/multimap/multimap.erasure/erase_if.pass.cpp
libcxx/test/std/containers/unord/unord.map/erase_if.pass.cpp
libcxx/test/std/containers/unord/unord.multimap/erase_if.pass.cpp
These tests use maps with `short` keys and values, emitting MSVC
truncation warnings from `int`. Adding `static_cast` to `key_type`
and `mapped_type` avoids these warnings.
As these tests require C++20 mode (or newer), for brevity I've changed
the multimap tests to use emplace to initialize the test data.
This has no effect on the erase_if testing.
exceptions are disabled.
The patch was reverted due to some confusion about non-movable types. ie
types
that explicitly delete their move constructors. However, such types do
not meet
the requirement for `MoveConstructible`, which is required by
`std::vector`:
Summary:
`std::vector<T>` is free choose between using copy or move operations
when it
needs to resize. The standard only candidates that the correct exception
safety
guarantees are provided. When exceptions are disabled these guarantees
are
trivially satisfied. Meaning vector is free to optimize it's
implementation by
moving instead of copying.
This patch makes `std::vector` unconditionally move elements when
exceptions are
disabled. This optimization is conforming according to the current
standard wording.
There are concerns that moving in `-fno-noexceptions`mode will be a
surprise to
users. For example, a user may be surprised to find their code is slower
with
exceptions enabled than it is disabled. I'm sympathetic to this
surprised, but
I don't think it should block this optimization.
Reviewers: mclow.lists, ldionne, rsmith
Reviewed By: ldionne
Subscribers: zoecarver, christof, dexonsmith, libcxx-commits
Tags: #libc
Differential Revision: https://reviews.llvm.org/D62228
llvm-svn: 371867
Some tests #include <iostream> but they don't use anything from the
header. Those are probably artifacts of when the tests were developped.
llvm-svn: 357181
Summary:
Freestanding is *weird*. The standard allows it to differ in a bunch of odd
manners from regular C++, and the committee would like to improve that
situation. I'd like to make libc++ behave better with what freestanding should
be, so that it can be a tool we use in improving the standard. To do that we
need to try stuff out, both with "freestanding the language mode" and
"freestanding the library subset".
Let's start with the super basic: run the libc++ tests in freestanding, using
clang as the compiler, and see what works. The easiest hack to do this:
In utils/libcxx/test/config.py add:
self.cxx.compile_flags += ['-ffreestanding']
Run the tests and they all fail.
Why? Because in freestanding `main` isn't special. This "not special" property
has two effects: main doesn't get mangled, and main isn't allowed to omit its
`return` statement. The first means main gets mangled and the linker can't
create a valid executable for us to test. The second means we spew out warnings
(ew) and the compiler doesn't insert the `return` we omitted, and main just
falls of the end and does whatever undefined behavior (if you're luck, ud2
leading to non-zero return code).
Let's start my work with the basics. This patch changes all libc++ tests to
declare `main` as `int main(int, char**` so it mangles consistently (enabling us
to declare another `extern "C"` main for freestanding which calls the mangled
one), and adds `return 0;` to all places where it was missing. This touches 6124
files, and I apologize.
The former was done with The Magic Of Sed.
The later was done with a (not quite correct but decent) clang tool:
https://gist.github.com/jfbastien/793819ff360baa845483dde81170feed
This works for most tests, though I did have to adjust a few places when e.g.
the test runs with `-x c`, macros are used for main (such as for the filesystem
tests), etc.
Once this is in we can create a freestanding bot which will prevent further
regressions. After that, we can start the real work of supporting C++
freestanding fairly well in libc++.
<rdar://problem/47754795>
Reviewers: ldionne, mclow.lists, EricWF
Subscribers: christof, jkorous, dexonsmith, arphaman, miyuki, libcxx-commits
Differential Revision: https://reviews.llvm.org/D57624
llvm-svn: 353086
to reflect the new license. These used slightly different spellings that
defeated my regular expressions.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351648
We already have a specialization that will use memcpy for construction
of trivial types from an iterator range like
std::vector<int>(int *, int *);
But if we have const-ness mismatch like
std::vector<int>(const int *, const int *);
we would use a slow path that copies each element individually. This change
enables the optimal specialization for const-ness mismatch. Fixes PR37574.
Contributions to the patch are made by Arthur O'Dwyer, Louis Dionne.
rdar://problem/40485845
Reviewers: mclow.lists, EricWF, ldionne, scanon
Reviewed By: ldionne
Subscribers: christof, ldionne, howard.hinnant, cfe-commits
Differential Revision: https://reviews.llvm.org/D48342
llvm-svn: 350583
The iterator types for different specializations of containers with the
same element type but different allocators are not required to be
convertible. This patch makes the test to take the iterator type from
the same container specialization as the created container.
Reviewed as https://reviews.llvm.org/D54806.
Thanks to Andrey Maksimov for the patch.
llvm-svn: 347423
C++2a[container.requirements.general]p8 states that when move constructing
a container, the allocator is move constructed. Vector previously copy
constructed these allocators. This patch fixes that bug.
Additionally it cleans up some unnecessary allocator conversions
when copy constructing containers. Libc++ uses
__internal_allocator_traits::select_on_copy_construction to select
the correct allocator during copy construction, but it unnecessarily
converted the resulting allocator to the user specified allocator
type and back. After this patch list and forward_list no longer
do that.
Technically we're supposed to be using allocator_traits<allocator_type>::select_on_copy_construction,
but that should seemingly be addressed as a separate patch, if at all.
llvm-svn: 334053
Summary:
The constructors `vector(Iter, Iter, Alloc = Alloc{})` and `assign(Iter, Iter)` don't correctly perform EmplaceConstruction from the result of dereferencing the iterator. This results in them performing an additional and unneeded copy.
This patch addresses the issue by correctly using `emplace_back` in C++11 and newer.
There are also some bugs in our `insert` implementation, but those will be handled separately.
@mclow.lists We should probably merge this into 5.1, agreed?
Reviewers: mclow.lists, dlj, EricWF
Reviewed By: mclow.lists, EricWF
Subscribers: cfe-commits, mclow.lists
Differential Revision: https://reviews.llvm.org/D38757
llvm-svn: 315994
This makes them consistent (many comments already used uppercase).
The special REQUIRES, UNSUPPORTED, and XFAIL comments are excluded from this change.
llvm-svn: 309468
This patch cleans up all usages of the following feature test macros inside
<vector> and its tests:
* _LIBCPP_HAS_NO_RVALUE_REFERENCES
* _LIBCPP_HAS_NO_VARIADICS
* _LIBCPP_HAS_NO_GENERALIZED_INITIALIZERS
Where needed the above guards were replaced with _LIBCPP_CXX03_LANG.
llvm-svn: 300410
Summary:
By manipulating a local variable in the loop, when the loop can
be optimized away (due to no non-trivial destructors), this lets
it be fully optimized away and we modify the __end_ separately.
This results in a substantial improvement in the generated code.
Prior to this change, this would be generated (on x86_64):
movq (%rdi), %rdx
movq 8(%rdi), %rcx
cmpq %rdx, %rcx
je LBB2_2
leaq -12(%rcx), %rax
subq %rdx, %rax
movabsq $-6148914691236517205, %rdx ## imm = 0xAAAAAAAAAAAAAAAB
mulq %rdx
shrq $3, %rdx
notq %rdx
leaq (%rdx,%rdx,2), %rax
leaq (%rcx,%rax,4), %rax
movq %rax, 8(%rdi)
And after:
movq (%rdi), %rax
movq %rax, 8(%rdi)
This brings this in line with what other implementations do.
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D25241
llvm-svn: 298601
Guard typedefs and static_asserts with _LIBCPP_VERSION.
test/std/containers/sequences/vector.bool/move_assign_noexcept.pass.cpp
test/std/containers/sequences/vector.bool/move_noexcept.pass.cpp
test/std/containers/sequences/vector.bool/swap_noexcept.pass.cpp
Additionally deal with conditional compilation.
test/std/containers/associative/map/map.cons/move_noexcept.pass.cpp
test/std/containers/associative/multimap/multimap.cons/move_noexcept.pass.cpp
Additionally deal with typedefs used by other typedefs.
Fixes D29135.
llvm-svn: 294154