This removes the after the fact FMF handling from D46854 in favor of passing fast math flags to getNode. This should be a superset of D87130.
This required adding a SDNodeFlags to SelectionDAG::getSetCC.
Now we manage to contant fold some stuff undefs during the
initial getNode that we don't do in later DAG combines.
Differential Revision: https://reviews.llvm.org/D87200
We only need to include MachineInstrBundle.h, but exposes an implicit dependency in MachineOutliner.h.
Also, remove duplicate includes from LiveRegUnits.cpp + MachineOutliner.cpp.
On SystemZ, a ZERO_EXTEND of an i1 vector handled by WidenVecRes_Convert()
always ended up being scalarized, because the type action of the input is
promotion which was previously an unhandled case in this method.
This fixes https://bugs.llvm.org/show_bug.cgi?id=47132.
Differential Revision: https://reviews.llvm.org/D86268
Patch by Eli Friedman.
Review: Ulrich Weigand
Rather than using SELECT instructions, use SRA, UADDO/ADDCARRY and
XORs to expand ABS. This is the multi-part version of the sequence
we use in LegalizeDAG.
It's also the same as the Custom sequence uses for i64 on 32-bit
and i128 on 64-bit. So we can remove the X86 customization.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D87215
This is a follow-up suggested in D86420 - if we have a pair of stores
in inverted order for the target endian, we can rotate the source
bits into place.
The "be_i64_to_i16_order" test shows a limitation of the current
function (which might be avoided if we integrate this function with
the other cases in mergeConsecutiveStores). In the earlier
"be_i64_to_i16" test, we skip the first 2 stores because we do not
match the full set as consecutive or rotate-able, but then we reach
the last 2 stores and see that they are an inverted pair of 16-bit
stores. The "be_i64_to_i16_order" test alters the program order of
the stores, so we miss matching the sub-pattern.
Differential Revision: https://reviews.llvm.org/D87112
a warning about clobbering reserved registers (NFC).
Also address some minor inefficiencies and style issues.
Differential Revision: https://reviews.llvm.org/D86088
In getMemcpyLoadsAndStores(), a memcpy where the source is a zero constant is expanded to a MemOp::Set instead of a MemOp::Copy, even when the memcpy is volatile.
This is incorrect.
The fix is to add a check for volatile, and expand to MemOp::Copy in the volatile case.
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D87134
The post-index matcher, before it queries the target legality, walks uses
of some instructions which in pathological cases can be massive. Since
no targets actually support indexed loads yet, disable this to stop wasting
compile time on something which is going to fail anyway.
Previously SDNodeFlags::instersectWith(Flags) would do nothing if Flags was
in an undefined state, which is very bad given that this is the default when
getNode() is called without passing an explicit SDNodeFlags argument.
This meant that if an already existing and reused node had a flag which the
second caller to getNode() did not set, that flag would remain uncleared.
This was exposed by https://bugs.llvm.org/show_bug.cgi?id=47092, where an NSW
flag was incorrectly set on an add instruction (which did in fact overflow in
one of the two original contexts), so when SystemZElimCompare removed the
compare with 0 trusting that flag, wrong-code resulted.
There is more that needs to be done in this area as discussed here:
Differential Revision: https://reviews.llvm.org/D86871
Review: Ulrich Weigand, Sanjay Patel
Reduce to forward declaration, add the Register.h include that we still needed, move CCState::ensureMaxAlignment into CallingConvLower.cpp as it was the only function that needed the full definition of MachineFunction.
Fix a few implicit dependencies further down.
I have fixed up some more ElementCount/TypeSize related warnings in
the following tests:
CodeGen/AArch64/sve-split-extract-elt.ll
CodeGen/AArch64/sve-split-insert-elt.ll
In SelectionDAG::CreateStackTemporary we were relying upon the implicit
cast from TypeSize -> uint64_t when calling MachineFrameInfo::CreateStackObject.
I've fixed this by passing in the known minimum size instead, which I
believe is fine because the associated stack id indicates whether this
is a scalable object or not.
I've also fixed up a case in TargetLowering::SimplifyDemandedBits when
extracting a vector element from a scalable vector. The result is a scalar,
hence it wasn't caught at the start of the function. If the vector is
scalable we just bail out for now.
Differential Revision: https://reviews.llvm.org/D86431
- When an operand is changed into an immediate value or like, ensure their
target flags being cleared or set properly.
Differential Revision: https://reviews.llvm.org/D87109
This hashing scheme has been useful out of tree, and I want to start
experimenting with it. Specifically I want to experiment on the
MIRVRegNamer, MIRCanononicalizer, and eventually the MachineOutliner.
This diff is a first step, that optionally brings stable hashing to the
MIRVRegNamer (and as a result, the MIRCanonicalizer). We've tested this
hashing scheme on a lot of MachineOperand types that llvm::hash_value
can not handle in a stable manner.
This stable hashing was also the basis for
"Global Machine Outliner for ThinLTO" in EuroLLVM 2020
http://llvm.org/devmtg/2020-04/talks.html#TechTalk_58
Credits: Kyungwoo Lee, Nikolai Tillmann
Differential Revision: https://reviews.llvm.org/D86952
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
This helps SelectionDAGBuilder recognize the splat can be used as a uniform base.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D86371
After computing dependence, we check if it is safe to hoist by
identifying if it clobbers any liveIns in the sibling block (NullSucc).
This check is moved to its own function which will be used in the
soon-to-be modified dependence checking algorithm for implicit null
checks pass.
Tests-Run: lit tests on X86/implicit-*
Separated out some checks in isSuitableMemoryOp and added comments
explaining why some of those checks are done.
Tests-Run:X86 implicit null checks tests.
When lowering fixed length vector operations for SVE the subvector
operations are used extensively to marshall data between scalable
and fixed-length vectors. This means that sequences like:
extract_subvec(binop(insert_subvec(a), insert_subvec(b)))
are very common. DAGCombine only checks if the resulting binop is
legal or can be custom lowered when undoing such sequences. When
it's custom lowering that is introducing them the result is an
infinite legalise->combine->legalise loop.
This patch extends the isOperationLegalOr... functions to include
a "LegalOnly" parameter to restrict the check to legal operations
only. Although isOperationLegal could be used it's common for
the affected code paths to be visited pre and post legalisation,
so the extra parameter keeps the code tidy.
Differential Revision: https://reviews.llvm.org/D86450
Unwinders may only preserve the lower 64bits of Neon and SVE registers,
as only the registers in the base ABI are guaranteed to be preserved
over the exception edge. The caller will need to preserve additional
registers for when the call throws an exception and the unwinder has
tried to recover state.
For e.g.
svint32_t bar(svint32_t);
svint32_t foo(svint32_t x, bool *err) {
try { bar(x); } catch (...) { *err = true; }
return x;
}
`z0` needs to be spilled before the call to `bar(x)` and reloaded before
returning from foo, as the exception handler may have clobbered z0.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D84737
As stated in section 6.1.1.2, DWARFv5, p. 142,
| The last entry for each name is followed by a zero byte that
| terminates the list. There may be gaps between the lists.
The patch changes emitting a 4-byte zero value to a 1-byte one, which
effectively removes the gap between entry lists, and thus saves
approximately 3 bytes per name; the calculation is not exact because
the total size of the table is aligned to 4.
Differential Revision: https://reviews.llvm.org/D86927
The member is not in use; the unit length for the table is emitted as
a difference between two labels. Moreover, the type of the member might
be misleading, because for DWARF64 the field should be 64 bit long.
Differential Revision: https://reviews.llvm.org/D86912
Previously if the source match we asserted that the destination
matched. But GPR <-> mask register copies on X86 can violate this
since we use the same K-registers for multiple sizes.
Fixes this ISPC issue https://github.com/ispc/ispc/issues/1851
Differential Revision: https://reviews.llvm.org/D86507
This is needed for an upcoming change to how we translate conditional branches
which might generate these.
Differential Revision: https://reviews.llvm.org/D86383
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MLOAD I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-load.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86697