Before this patch, S_[L|G][THREAD32|DATA32] records were emitted with a simple name, not the fully qualified name (namespace + class scope).
Differential Revision: https://reviews.llvm.org/D79447
This patch adds support for DWARF attribute DW_AT_data_location.
Summary:
Dynamic arrays in fortran are described by array descriptor and
data allocation address. Former is mapped to DW_AT_location and
later is mapped to DW_AT_data_location.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79592
llvm rejects DWARF operator DW_OP_push_object_address.This DWARF
operator is needed for Flang to support allocatable array.
Summary:
Currently llvm rejects DWARF operator DW_OP_push_object_address.
below error is produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151)
warning: ignoring invalid debug info in pushobj.ll
[..]
There are some parts missing in support of this operator, need to
be completed.
Testing
-added a unit testcase
-check-debuginfo
-check-llvm
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79306
This patch extends DIModule Debug metadata in LLVM to support
Fortran modules. DIModule is extended to contain File and Line
fields, these fields will be used by Flang FE to create debug
information necessary for representing Fortran modules at IR level.
Furthermore DW_TAG_module is also extended to contain these fields.
If these fields are missing, debuggers like GDB won't be able to
show Fortran modules information correctly.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79484
It is bad practice to capture by default (via [&] in this case) when
using lambdas, so we should avoid that as much as possible.
This patch fixes that in the getForwardingRegsDefinedByMI
from DwarfDebug module.
Differential Revision: https://reviews.llvm.org/D79616
We should use explicit type instead of auto type deduction when
the type is so obvious. In addition, we remove ambiguity, since auto
type deduction sometimes is not that intuitive, so that could lead
us to some unwanted behavior.
This patch fixes that in the collectCallSiteParameters() from
DwarfDebug module.
Differential Revision: https://reviews.llvm.org/D79624
With a fix to uninitialized EndOffset.
DW_OP_call_ref is the only operation that has an operand which depends
on the DWARF format. The patch fixes handling that operation in DWARF64
units.
Differential Revision: https://reviews.llvm.org/D79501
DW_OP_call_ref is the only operation that has an operand which depends
on the DWARF format. The patch fixes handling that operation in DWARF64
units.
Differential Revision: https://reviews.llvm.org/D79501
Before this patch, global variables didn't have their namespace prepended in the Codeview debug symbol stream. This prevented Visual Studio from displaying them in the debugger (they appeared as 'unspecified error')
Differential Revision: https://reviews.llvm.org/D79028
The code assumed that zero-extending the integer constant to the
designated alloc size would be fine even for BE targets, but that's not
the case as that pulls in zeros from the MSB side while we actually
expect the padding zeros to go after the LSB.
I've changed the codepath handling the constant integers to use the
store size for both small(er than u64) and big constants and then add
zero padding right after that.
Differential Revision: https://reviews.llvm.org/D78011
Follow-up of D78082 and D78590.
Otherwise, because xray_instr_map is now read-only, the absolute
relocation used for Sled.Function will cause a text relocation.
Follow-up of D78082 (x86-64).
This change avoids dynamic relocations in `xray_instr_map` for ARM/AArch64/powerpc64le.
MIPS64 cannot use 64-bit PC-relative addresses because R_MIPS_PC64 is not defined.
Because MIPS32 shares the same code, for simplicity, we don't use PC-relative addresses for MIPS32 as well.
Tested on AArch64 Linux and ppc64le Linux.
Reviewed By: ianlevesque
Differential Revision: https://reviews.llvm.org/D78590
In a future change we should properly fix xray_fn_idx to use PC-relative
addresses as well, but for now let's keep absolute addresses until sled
addresses are all fixed.
Summary:
Machine Block Frequency Info (MBFI) is being computed but unused in AsmPrinter.
MBFI computation was introduced with PGO change D71149 and then its use was
removed in D71106. No need to keep computing it.
Reviewers: MaskRay, jyknight, skan, yamauchi, davidxl, efriedma, huihuiz
Reviewed By: MaskRay, skan, yamauchi
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78526
xray_instr_map contains absolute addresses of sleds, which are relocated
by `R_*_RELATIVE` when linked in -pie or -shared mode.
By making these addresses relative to PC, we can avoid the dynamic
relocations and remove the SHF_WRITE flag from xray_instr_map. We can
thus save VM pages containg xray_instr_map (because they are not
modified).
This patch changes x86-64 and bumps the sled version to 2. Subsequent
changes will change powerpc64le and AArch64.
Reviewed By: dberris, ianlevesque
Differential Revision: https://reviews.llvm.org/D78082
- Adding changes to support comments on outlined functions with outlining for the conditions through which it was outlined (e.g. Thunks, Tail calls)
- Adapts the emitFunctionHeader to print out a comment next to the header if the target specifies it based on information in MachineFunctionInfo
- Adds mir test for function annotiation
Differential Revision: https://reviews.llvm.org/D78062
Summary:
Original description (https://reviews.llvm/org/D69924)
Without this change, when a nested tag type of any kind (enum, class,
struct, union) is used as a variable type, it is emitted without
emitting the parent type. In CodeView, parent types point to their inner
types, and inner types do not point back to their parents. We already
walk over all of the parent scopes to build the fully qualified name.
This change simply requests their type indices as we go along to enusre
they are all emitted.
Now, while walking over the parent scopes, add the types to
DeferredCompleteTypes, since they might already be in the process of
being emitted.
Fixes PR43905
Reviewers: rnk, amccarth
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78249
It can be used to avoid passing the begin and end of a range.
This makes the code shorter and it is consistent with another
wrappers we already have.
Differential revision: https://reviews.llvm.org/D78016
in the same section.
This allows specifying BasicBlock clusters like the following example:
!foo
!!0 1 2
!!4
This places basic blocks 0, 1, and 2 in one section in this order, and
places basic block #4 in a single section of its own.
This is a performance patch that hoists two conditions in DwarfDebug's
validThroughout to avoid a linear-scan of all instructions in a block. We
now exit early if validThrougout will never return true for the variable
location.
The first added clause filters for the two circumstances where
validThroughout will return true. The second added clause should be
identical to the one that's deleted from after the linear-scan.
Differential Revision: https://reviews.llvm.org/D77639
Now that we have scalable vectors, there's a distinction that isn't
getting captured in the original SequentialType: some vectors don't have
a known element count, so counting the number of elements doesn't make
sense.
In some cases, there's a better way to express the commonality using
other methods. If we're dealing with GEPs, there's GEP methods; if we're
dealing with a ConstantDataSequential, we can query its element type
directly.
In the relatively few remaining cases, I just decided to write out
the type checks. We're talking about relatively few places, and I think
the abstraction doesn't really carry its weight. (See thread "[RFC]
Refactor class hierarchy of VectorType in the IR" on llvmdev.)
Differential Revision: https://reviews.llvm.org/D75661
A global symbol that is defined in a comdat should not generate an alias since
call sites that would've referred to that symbol will refer to their own
independent local aliases rather than the surviving global comdat one. This
could result in something that looks like:
```
ld.lld: error: relocation refers to a discarded section: .text._ZN3fbl8internal18NullFunctionTargetIvJjjPjEED1Ev.stub
>>> defined in user-x64-clang/obj/system/ulib/minfs/libminfs.a(minfs._sources.file.cc.o)
>>> section group signature: _ZN3fbl8internal18NullFunctionTargetIvJjjPjEED1Ev.stub
>>> prevailing definition is in user-x64-clang/obj/system/ulib/minfs/libminfs.a(minfs._sources.vnode.cc.o)
>>> referenced by function.h:169 (../../zircon/system/ulib/fbl/include/fbl/function.h:169)
>>> minfs._sources.file.cc.o:(minfs::File::AllocateAndCommitData(std::__2::unique_ptr<minfs::Transaction, std::__2::default_delete<minfs::Transaction> >)) in archive user-x64-clang/obj/system/ulib/minfs/libminfs.a
```
We ran into this when experimenting with a new C++ ABI for fuchsia
(refer to D72959) which takes relative offsets between comdat'd functions
which is why the normal C++ user wouldn't run into this.
Differential Revision: https://reviews.llvm.org/D77429
Summary:
This patch adds support for emission of following DWARFv5 macro forms
in .debug_macro section.
1. DW_MACRO_start_file
2. DW_MACRO_end_file
3. DW_MACRO_define_strp
4. DW_MACRO_undef_strp.
Reviewed By: dblaikie, ikudrin
Differential Revision: https://reviews.llvm.org/D72828
Previously line table symbol was represented as `DIE::value_iterator`
inside `DwarfCompileUnit` and subsequent function `intStmtList`
was used to create a local `MCSymbol` to initialize it.
This patch removes `DIE::value_iterator` from `DwarfCompileUnit`
and intoduce `MCSymbol` for representing this units symbol for
`debug_line` section. As a result `applyStmtList` is also modified
to utilize this. Further more a helper function `getLineTableStartSym`
is also introduced to get this symbol, this would be used by clients
which need to access this line table, i.e `debug_macro`.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D77489
Summary:
For current architect, we always require setContainingCsect to be
called on every MCSymbol got used in XCOFF context.
This is very hard to achieve because symbols gets created everywhere
and other MCSymbol types(ELF, COFF) do not have similar rules.
It's very easy to miss setting the containing csect, and we would
need to add a lot of XCOFF specialized code around some common code area.
This patch intendeds to do
1. Rely on getFragment().getParent() to get csect from labels.
2. Only use get/setRepresentedCsect (was get/setContainingCsect)
if symbol itself represents a csect.
Reviewers: DiggerLin, hubert.reinterpretcast, daltenty
Differential Revision: https://reviews.llvm.org/D77080
MC already knows how to emulate the .weak directive (with its ELF
semantics; i.e., an undefined weak symbol resolves to 0, and a defined
weak symbol has lower link precedence than a strong symbol of the same
name) using COFF weak externals. Plumb this through the ASM printer too,
so that definitions marked with __attribute__((weak)) at the language
level (which gets translated to weak linkage at the IR level) have the
corresponding .weak directive emitted. Note that declarations marked
with __attribute__((weak)) at the language level (which translates to
extern_weak at the IR level) already have .weak directives emitted.
Weak*/linkonce* symbols without an associated comdat (in particular, ones
generated with __attribute__((weak)) in C/C++) were earlier emitted as
normal unique globals, as the comdat is required to provide the linkonce
semantics. This change makes sure they are emitted as .weak instead,
allowing other symbols to override them.
Rename the existing coff-weak.ll test to coff-linkonce.ll. I'm not
quite sure what that test covers, since the behavior being tested in it
(the emission of a one_only section) is just a result of passing
-function-sections to llc; the linkonce_odr makes no difference.
Add a new coff-weak.ll which tests the new directive emission.
Based on an previous patch by Shoaib Meenai.
Differential Revision: https://reviews.llvm.org/D44543
SUMMARY:
SUMMARY
for a source file "test.c"
void foo() {};
llc will generate assembly code as (assembly patch)
.globl foo
.globl .foo
.csect foo[DS]
foo:
.long .foo
.long TOC[TC0]
.long 0
and symbol table as (xcoff object file)
[4] m 0x00000004 .data 1 unamex foo
[5] a4 0x0000000c 0 0 SD DS 0 0
[6] m 0x00000004 .data 1 extern foo
[7] a4 0x00000004 0 0 LD DS 0 0
After first patch, the assembly will be as
.globl foo[DS] # -- Begin function foo
.globl .foo
.align 2
.csect foo[DS]
.long .foo
.long TOC[TC0]
.long 0
and symbol table will as
[6] m 0x00000004 .data 1 extern foo
[7] a4 0x00000004 0 0 DS DS 0 0
Change the code for the assembly path and xcoff objectfile patch for llc.
Reviewers: Jason Liu
Subscribers: wuzish, nemanjai, hiraditya
Differential Revision: https://reviews.llvm.org/D76162
Record the address of a tail-calling branch instruction within its call
site entry using DW_AT_call_pc. This allows a debugger to determine the
address to use when creating aritificial frames.
This creates an extra attribute + relocation at tail call sites, which
constitute 3-5% of all call sites in xnu/clang respectively.
rdar://60307600
Differential Revision: https://reviews.llvm.org/D76336
When compiling
```
struct S {
float w;
};
void f(long w, long b);
void g(struct S s) {
int w = s.w;
f(w, w*4);
}
```
I get Assertion failed: ((!CombinedExpr || CombinedExpr->isValid()) && "Combined debug expression is invalid").
That's because we combine two epxressions that both end in DW_OP_stack_value:
```
(lldb) p Expr->dump()
!DIExpression(DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value)
(lldb) p Param.Expr->dump()
!DIExpression(DW_OP_constu, 4, DW_OP_mul, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value)
(lldb) p CombinedExpr->isValid()
(bool) $0 = false
(lldb) p CombinedExpr->dump()
!DIExpression(4097, 32, 5, 4097, 64, 5, 16, 4, 30, 4097, 32, 5, 4097, 64, 5, 159, 159)
```
I believe that in this particular case combining two stack values is
safe, but I didn't want to sink the special handling into
DIExpression::append() because I do want everyone to think about what
they are doing.
Patch by Adrian Prantl.
Fixes PR45181.
rdar://problem/60383095
Differential Revision: https://reviews.llvm.org/D76164
This is the second patch in a series of patches to enable basic block
sections support.
This patch adds support for:
* Creating direct jumps at the end of basic blocks that have fall
through instructions.
* New pass, bbsections-prepare, that analyzes placement of basic blocks
in sections.
* Actual placing of a basic block in a unique section with special
handling of exception handling blocks.
* Supports placing a subset of basic blocks in a unique section.
* Support for MIR serialization and deserialization with basic block
sections.
Parent patch : D68063
Differential Revision: https://reviews.llvm.org/D73674
LLVM currently supports CSK_MD5 and CSK_SHA1 source file checksums in
debug info. This change adds support for CSK_SHA256 checksums.
The SHA256 checksums are supported by the CodeView debug format.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D75785
In order for dsymutil to collect .apinotes files (which capture
attributes such as nullability, Swift import names, and availability),
I want to propose adding an apinotes: field to DIModule that gets
translated into a DW_AT_LLVM_apinotes (path) nested inside
DW_TAG_module. This will be primarily used by LLDB to indirectly
extract the Swift names of Clang declarations that were deserialized
from DWARF.
<rdar://problem/59514626>
Differential Revision: https://reviews.llvm.org/D75585
This is part of PR44213 https://bugs.llvm.org/show_bug.cgi?id=44213
When importing (system) Clang modules, LLDB needs to know which SDK
(e.g., MacOSX, iPhoneSimulator, ...) they came from. While the sysroot
attribute contains the absolute path to the SDK, this doesn't work
well when the debugger is run on a different machine than the
compiler, and the SDKs are installed in different directories. It thus
makes sense to just store the name of the SDK instead of the absolute
path, so it can be found relative to LLDB.
rdar://problem/51645582
Differential Revision: https://reviews.llvm.org/D75646
Spin-off from D75407. As described there, ConstantFoldConstant()
currently returns null for non-ConstantExpr/ConstantVector inputs,
but otherwise always returns non-null, independently of whether
any folding has happened or not.
This is confusing and makes consumer code more complicated.
I would expect either that ConstantFoldConstant() returns only if
it actually folded something, or that it always returns non-null.
I'm going to the latter possibility here, which appears to be more
useful considering existing usage.
Differential Revision: https://reviews.llvm.org/D75543
Summary:
This change checks for the return type in the frontend and adds a flag
to the DISubroutineType to indicate that the option should be added in
CodeViewDebug.
Previously function types sometimes appeared twice in the PDB: once with
"returns cxx udt" and once without.
See https://bugs.llvm.org/show_bug.cgi?id=44785.
Reviewers: rnk, asmith
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75215
```
// clang -c -gdwarf-5 a.s -o a.o
.section .init; ret
.text; ret
```
.debug_info contains DW_AT_ranges and llvm-dwarfdump will report
a verification error because .debug_rnglists does not exist (not
implemented).
This patch generates .debug_rnglists for assembly files.
emitListsTableHeaderStart() in DwarfDebug.cpp can be shared with
MCDwarf.cpp. Because CodeGen depends on MC, I move the function to
MCDwarf.cpp
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D75375
This patch adds support for dwarf emission/dumping part of debuginfo
generation for defaulted parameters.
Reviewers: probinson, aprantl, dblaikie
Reviewed By: aprantl, dblaikie
Differential Revision: https://reviews.llvm.org/D73462
Summary:
If the describeLoadedValue() hook produced a DIExpression when
describing a instruction, and it was not possible to emit a call site
entry directly (the value operand was not an immediate nor a preserved
register), then that described value could not be inserted into the
worklist, and would instead be dropped, meaning that the parameter's
call site value couldn't be described.
This patch extends the worklist so that each entry has an DIExpression
that is built up when iterating through the instructions.
This allows us to describe instruction chains like this:
$reg0 = mv $fp
$reg0 = add $reg0, offset
call @call_with_offseted_fp
Since DW_OP_LLVM_entry_value operations can't be combined with any other
expression, such call site entries will not be emitted. I have added a
test, dbgcall-site-expr-entry-value.mir, which verifies that we don't
assert or emit broken DWARF in such cases.
Reviewers: djtodoro, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75036
Summary:
This is a preparatory patch for D75036, in which a debug expression is
associated with each parameter register in the worklist. In that patch
the two lambda functions addToWorklist() and finishCallSiteParams() grow
a bit, so move those out to separate functions. This patch also prepares
for each parameter register having their own expression moving the
creation of the DbgValueLoc into finishCallSiteParams().
Reviewers: djtodoro, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75050
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Follow-up for D74006.
When the integrated assembler is used, we use SHF_LINK_ORDER. The
linked-to symbol is part of ELFSectionKey, thus we can omit the unique
ID.
In https://reviews.llvm.org/rG8b737688c21a9755cae14cb9343930e0882164ab I
switched the condition gating the creation of the descriptor symbol from
checking the MCAsmInfo if we need to support descriptors, to if the OS
was AIX. Technically the 2 should be interchangeable: if we are
targeting AIX then we need to emit XCOFF object files, and the MCAsmInfo
must return true for needing function descriptors.
This doesn't account for lit test with runsteps that only set the arch.
Eg: test/CodeGen/XCore/section-name.ll
which when run natively on AIX we end up with a target xcore-ibm-aix and
needFunctionDescriptors is false.
This patch reverts to using the MCAsmInfo and adds an assert that the
target OS must be AIX since that is the only target using the descriptor
hook.
Differential Revision: https://reviews.llvm.org/D74622
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Instructions marked as FrameSetup do not cause requestLabelAfterInsn to
be called and so no such label is generated. Call instructions which
require call site entries to be generated require this label to be
present in order to calculate the return PC offset/address, but the
check for whether the call instruction is marked as FrameSetup was not
present.
Therefore in the case where a call instruction is marked as FrameSetup,
an assertion failure occurs if a call site entry is to be generated.
This is the case with RISC-V's implementation of save/restore via
library calls.
Differential Revision: https://reviews.llvm.org/D71593
Add the isCandidateForCallSiteEntry predicate to MachineInstr to
determine whether a DWARF call site entry should be created for an
instruction.
For now, it's enough to have any call instruction that doesn't belong to
a blacklisted set of opcodes. For these opcodes, a call site entry isn't
meaningful.
Differential Revision: https://reviews.llvm.org/D74159
Printing floating point number in decimal is inconvenient for humans.
Verbose asm output will print out floating point values in comments, it
helps.
But in lots of cases, users still need additional work to covert the
decimal back to hex or binary to check the bit patterns,
especially when there are small precision difference.
Hexadecimal form is one of the supported form in LLVM IR, and easier for
debugging.
This patch try to print all FP constant in hex form instead.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D73566
Summary:
This patch reorders the emission of debug_str section, so that
string can come after macros.
This is necessary for macro forms like DW_MACRO_define_strp,
which emits macro as a string in debug_str section.
"linked-to section" is used by the ELF spec. By analogy, "linked-to
symbol" is a good name for the signature symbol. The word "linked-to"
implies a directed edge and makes it clear its relation with "sh_link",
while one can argue that "associated" means an undirected edge.
Also, combine tests and add precise SMLoc to improve diagnostics.
Reviewed By: eugenis, grimar, jhenderson
Differential Revision: https://reviews.llvm.org/D74082
Originally committed in: 1ced28cbe7
Reverted in: f75301d16d
(reverted due to tests failing on non-linux/x86 targets, tests have since been
generalized and specialized... since Split DWARF isn't supported on non-elf
targets anyway and we have no way to run on "whatever elf target is available"
so they fail on MacOS without an explicit target triple)
This code was incorrectly emitting extra bytes into arbitrary parts of
the object file when it was meant to be hashing them to compute the DWO
ID.
Follow-up patch(es) will refactor this API somewhat to make such bugs
harder to introduce, hopefully.
This extends the RemarkStreamer to allow for other emitters (e.g.
frontends, SIL, etc.) to emit remarks through a common interface.
See changes in llvm/docs/Remarks.rst for motivation and design choices.
Differential Revision: https://reviews.llvm.org/D73676
This code was incorrectly emitting extra bytes into arbitrary parts of
the object file when it was meant to be hashing them to compute the DWO
ID.
Follow-up patch(es) will refactor this API somewhat to make such bugs
harder to introduce, hopefully.
Significant missing hashing - as per the comment this was only meant to
skip member functions (unspecified, but I think it's legible as member
function declarations, not definitions) but was skipping all named
subprograms (so only hashed child DIEs for member function definitions -
because they didn't have a direct name, but only a name given indirectly
in the DW_AT_specification-referenced DIE)
- Extends the comments related to function descriptors, noting how they
are only used on AIX.
- Changes the condition used to gate the creation of the current function
symbol in AsmPrinter::SetupMachineFunction to reflect being AIX
specific. The creation of the symbol is different because of AIXs
linkage conventions, not because AIX uses function descriptors.
Differential Revision: https://reviews.llvm.org/D73115
Summary:
For -fpatchable-function-entry=N,0 -mbranch-protection=bti, after
9a24488cb6, we place the NOP sled after
the initial BTI.
```
.Lfunc_begin0:
bti c
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lfunc_begin0
```
This patch adds a label after the initial BTI and changes the __patchable_function_entries entry to reference the label:
```
.Lfunc_begin0:
bti c
.Lpatch0:
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lpatch0
```
This placement is compatible with the resolution in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 .
A local linkage function whose address is not taken does not need a BTI.
Placing the patch label after BTI has the advantage that code does not
need to differentiate whether the function has an initial BTI.
Reviewers: mrutland, nickdesaulniers, nsz, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73680
For `MC_GlobalAddress` operands referencing **certain** GlobalObjects,
we can lower them to STB_LOCAL aliases to avoid costs brought by
assembler/linker's conservative decisions about symbol interposition:
* An assembler conservatively assumes a global default visibility symbol interposable (ELF
semantics). So relocations in object files are needed even if the code generator assumed
the definition exact and non-interposable.
* The relocations can cause the creation of PLT entries on some targets for -shared links.
A linker conservatively assumes a global default visibility symbol interposable (if not
otherwise constrained by -Bsymbolic/--dynamic-list/VER_NDX_LOCAL/etc).
"certain" refers to GlobalObjects in the intersection of
`hasExactDefinition() and !isInterposable()`: `external`, `appending`, `internal`, `private`.
Local linkages (`internal` and `private`) cannot be interposed. `appending` is for very
few objects LLVM interpret specially. So the set just includes `external`.
This patch emits STB_LOCAL aliases (.Lfoo$local) for such GlobalObjects, so that targets can lower
MC_GlobalAddress operands to STB_LOCAL aliases if applicable.
We may extend the scope and include GlobalAlias in the future.
LLVM's existing -fno-semantic-interposition behaviors give us license to do such optimizations:
* Various optimizations (ipconstprop, inliner, sccp, sroa, etc) treat normal ExternalLinkage
GlobalObjects as non-interposable.
* Before D72197, MC resolved a PC-relative VK_None fixup to a non-local symbol at assembly time (no
outstanding relocation), if the target is defined in the same section. Put it simply, even if IR
optimizations failed to optimize and allowed interposition for the function call in
`void foo() {} void bar() { foo(); }`, the assembler would disallow it.
This patch sets up AsmPrinter infrastructure to make -fno-semantic-interposition more so.
With and without the patch, the object file output should be identical:
`.Lfoo$local` does not take a symbol table entry.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D73228
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
This patch fixes an assertion failure in DwarfExpression that is
triggered when a complex fragment has exactly the size of a
subregister of the register the DBG_VALUE points to *and* there is no
DWARF encoding for the super-register.
I took the opportunity to replace/document some magic values with
static constructor functions to make this code less confusing to read.
rdar://problem/58489125
Differential Revision: https://reviews.llvm.org/D72938
This is a revert-of-revert (i.e. this reverts commit 802bec89, which
itself reverted fa4701e1 and 79daafc9) with a fix folded in. The problem
was that call site tags weren't emitted properly when LTO was enabled
along with split-dwarf. This required a minor fix. I've added a reduced
test case in test/DebugInfo/X86/fission-call-site.ll.
Original commit message:
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
Update #1:
Reland with a fix to create a declaration DIE when the declaration is
missing from the CU's retainedTypes list. The declaration is left out
of the retainedTypes list in two cases:
1) Re-compiling pre-r266445 bitcode (in which declarations weren't added
to the retainedTypes list), and
2) Doing LTO function importing (which doesn't update the retainedTypes
list).
It's possible to handle (1) and (2) by modifying the retainedTypes list
(in AutoUpgrade, or in the LTO importing logic resp.), but I don't see
an advantage to doing it this way, as it would cause more DWARF to be
emitted compared to creating the declaration DIEs lazily.
Update #2:
Fold in a fix for call site tag emission in the split-dwarf + LTO case.
Tested with a stage2 ThinLTO+RelWithDebInfo build of clang, and with a
ReleaseLTO-g build of the test suite.
rdar://46577651, rdar://57855316, rdar://57840415, rdar://58888440
Differential Revision: https://reviews.llvm.org/D70350
The Version was used only to determine the size of an operand of
DW_OP_call_ref. The size was 4 for all versions apart from 2, but
the DW_OP_call_ref operation was introduced only in DWARF3. Thus,
the code may be simplified and using of Version may be eliminated.
Differential Revision: https://reviews.llvm.org/D73264
Summary:
This fixes PR44118. For cases where we have a chain like this:
R8 = R1 (entry value)
R0 = R8
call @foo R0
the code that emits call site entries using entry values would not
follow that chain, instead emitting a call site entry with R8 as
location rather than R0. Such a case was discovered when originally
adding dbgcall-site-orr-moves.mir. This patch fixes that issue. This is
done by changing the ForwardedRegWorklist set to a map in which the
worklist registers always map to the parameter registers that they
describe.
Another thing this patch fixes is that worklist registers now can
describe more than one parameter register at a time. Such a case
occurred in dbgcall-site-interpretation.mir, resulting in a call site
entry not being emitted for one of the parameters.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D73168
Summary:
Since D70431 the describeLoadedValue() hook takes a parameter register,
meaning that it can now be asked to describe any register. This means
that we can drop the difference between explicit and implicit defines
that we previously had in collectCallSiteParameters().
I have not found any case for any upstream targets where a parameter
register is only implicitly defined, and does not overlap with any
explicit defines. I don't know if such a case would even make sense. So
as far as I have tested, this patch should be a non-functional change.
However, this reduces the complexity of the code a bit, and it will
simplify the implementation of an upcoming patch which solves PR44118.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D73167
... as well as:
Revert "[DWARF] Defer creating declaration DIEs until we prepare call site info"
This reverts commit fa4701e197.
This reverts commit 79daafc903.
There have been reports of this assert getting hit:
CalleeDIE && "Could not find DIE for call site entry origin
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
The low_pc is analog to the DW_AT_call_return_pc, since it describes
the return address after the call. The DW_AT_call_pc is the address
of the call instruction, and we don't use it at the moment.
Differential Revision: https://reviews.llvm.org/D73173
Summary:
This was reverted in 328e0f3dca due to
chromium bot failure. This revision addresses that case.
Original commit message:
Summary:
This patch will provide support for auto return type for the C++ member
functions. Before this return type of the member function is deduced and
stored in the DIE.
This patch includes llvm side implementation of this feature.
Patch by: Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: dblaikie, aprantl, shafik, alok, SouraVX, jini.susan.george
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D70524
This makes the SectionLabel handling more resilient - specifically for
future PROPELLER work which will have more CU ranges (rather than just
one per function).
Ultimately it might be nice to make this more general/resilient to
arbitrary labels (rather than relying on the labels being created for CU
ranges & then being reused by ranges, loclists, and possibly other
addresses). It's possible that other (non-rnglist/loclist) uses of
addresses will need the addresses to be in SectionLabels earlier (eg:
move the CU.addRange to be done on function begin, rather than function
end, so during function emission they are already populated for other
use).
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
This is a reland of rG3a05c3969c18 with fixes for the expensive-checks
and Windows builds
Differential Revision: https://reviews.llvm.org/D71681
[this re-applies c0176916a4
with the correct commit message and phabricator link]
This addresses point 1 of PR44213.
https://bugs.llvm.org/show_bug.cgi?id=44213
The DW_AT_LLVM_sysroot attribute is used for Clang module debug info,
to allow LLDB to import a Clang module from source. Currently it is
part of each DW_TAG_module, however, it is the same for all modules in
a compile unit. It is more efficient and less ambiguous to store it
once in the DW_TAG_compile_unit.
This should have no effect on DWARF consumers other than LLDB.
Differential Revision: https://reviews.llvm.org/D71732
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
Differential Revision: https://reviews.llvm.org/D71681
This reverts D53469, which changed llvm's DWARF emission to emit
DW_AT_call_return_pc as a function-local offset. Such an encoding is not
compatible with post-link block re-ordering tools and isn't standards-
compliant.
In addition to reverting back to the original DW_AT_call_return_pc
encoding, teach lldb how to fix up DW_AT_call_return_pc when the address
comes from an object file pointed-to by a debug map. While doing this I
noticed that lldb's support for tail calls that cross a DSO/object file
boundary wasn't covered, so I added tests for that. This latter case
exercises the newly added return PC fixup.
The dsymutil changes in this patch were originally included in D49887:
the associated test should be sufficient to test DW_AT_call_return_pc
encoding purely on the llvm side.
Differential Revision: https://reviews.llvm.org/D72489
Summary:
This patch will provide support for auto return type for the C++ member
functions. Before this return type of the member function is deduced and
stored in the DIE.
This patch includes llvm side implementation of this feature.
Patch by: Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: dblaikie, aprantl, shafik, alok, SouraVX, jini.susan.george
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D70524
.section name, "flags"G, @type, GroupName[, linkage]
As of binutils 2.33, linkage cannot be 'unique'. For integrated
assembler, we use both 'o' flag and 'unique' linkage to support
--gc-sections and COMDAT with lld.
https://sourceware.org/ml/binutils/2019-11/msg00266.html
The Linux kernel uses -fpatchable-function-entry to implement DYNAMIC_FTRACE_WITH_REGS
for arm64 and parisc. GCC 8 implemented
-fpatchable-function-entry, which can be seen as a generalized form of
-mnop-mcount. The N,M form (function entry points before the Mth NOP) is
currently only used by parisc.
This patch adds N,0 support to AArch64 codegen. N is represented as the
function attribute "patchable-function-entry". We will use a different
function attribute for M, if we decide to implement it.
The patch reuses the existing patchable-function pass, and
TargetOpcode::PATCHABLE_FUNCTION_ENTER which is currently used by XRay.
When the integrated assembler is used, __patchable_function_entries will
be created for each text section with the SHF_LINK_ORDER flag to prevent
--gc-sections (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93197) and
COMDAT (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93195) issues.
Retrospectively, __patchable_function_entries should use a PC-relative
relocation type to avoid the SHF_WRITE flag and dynamic relocations.
"patchable-function-entry"'s interaction with Branch Target
Identification is still unclear (see
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 for GCC discussions).
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D72215
Summary:
It's not necessary to use an 'l'(ell) modifier when referencing a label.
Treat block addresses and MBB references as if the modifier is used
anyway. This prevents us from generating references to ficticious
labels.
Reviewers: jyknight, nickdesaulniers, hfinkel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71849
Summary:
This is documented as the appropriate template modifier for call operands.
Fixes PR44272, and adds a regression test.
Also adds support for operand modifiers in Intel-style inline assembly.
Reviewers: rnk
Reviewed By: rnk
Subscribers: merge_guards_bot, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71677
It isn't necessary to create DIEs for all of the declaration subprograms
in a CU's retainedTypes list. We can defer creating these subprograms
until we need to prepare a call site tag that refers to one.
This cleanup was mentioned in passing in D70350.
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
Update:
Reland with a fix to create a declaration DIE when the declaration is
missing from the CU's retainedTypes list. The declaration is left out
of the retainedTypes list in two cases:
1) Re-compiling pre-r266445 bitcode (in which declarations weren't added
to the retainedTypes list), and
2) Doing LTO function importing (which doesn't update the retainedTypes
list).
It's possible to handle (1) and (2) by modifying the retainedTypes list
(in AutoUpgrade, or in the LTO importing logic resp.), but I don't see
an advantage to doing it this way, as it would cause more DWARF to be
emitted compared to creating the declaration DIEs lazily.
Tested with a stage2 ThinLTO+RelWithDebInfo build of clang, and with a
ReleaseLTO-g build of the test suite.
rdar://46577651, rdar://57855316, rdar://57840415
Differential Revision: https://reviews.llvm.org/D70350
Extends DWARF expression language to express locals/globals locations. (via
target-index operands atm) (possible variants are: non-virtual registers
or address spaces)
The WebAssemblyExplicitLocals can replace virtual registers to targertindex
operand type at the time when WebAssembly backend introduces
{get,set,tee}_local instead of corresponding virtual registers.
Reviewed By: aprantl, dschuff
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D52634
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
The calculator was considering instructions such as KILLs as clobbers
of a physical address. This is wrong as meta instructions such as KILLs
produce no output in the final program and thus don't clobber or change
any physical location's value. As a result they're safe to ignore whilst
calculating location list ranges.
reviewers: aprantl, vsk
diff revision: https://reviews.llvm.org/D70497
fixes: https://bugs.llvm.org/show_bug.cgi?id=38753
Since the address pool doesn't get populated in this case (due to the
lack of inlining, no child DIEs are added to the CU - so no addresses
are needed for the DIEs themselves) until the range list is emitted - at
the time the attributes are added to the CU, the address pool is empty.
So check whether the address pool will be used for the range lists & add
an addr_base if that's the case.
Move these data structures closer together so their emission code can
eventually share more of its implementation.
Was an egregious bug (completely untested, evidently) where I hadn't
inverted a DWARFv5 test as needed, so it was doing the exact opposite of
what was required & thus tried to emit a DWARFv5 range list header in
DWARFv4.
Reapply 8e04896288 which was
reverted in a8154e5e0c.
added a test case for macinfo.dwo emission."
This was reverted in caa4120906,
since it was causing an assertion failure on Windows bots.
This revision is revised to fix that.
Original commit message -
[DebugInfo] Refactored macro related generation, added a test case for macinfo.dwo emission.
Reviewers: dblaikie, aprantl, jini.susan.george
Tags: #debug-info #llvm
Differential Revision: https://reviews.llvm.org/D71008
Summary:
With DWARF5 it is no longer possible to distinguish normal methods and methods with `__attribute__((objc_direct))` by just looking at the debug information
as they are both now children of the of the DW_TAG_structure_type that defines them (before only the `__attribute__((objc_direct))` methods were children).
This means that in LLDB we are no longer able to create a correct Clang AST of a module by just looking at the debug information. Instead we would
need to call the Objective-C runtime to see which of the methods have a `__attribute__((objc_direct))` and then add the attribute to our own Clang AST
depending on what the runtime returns. This would mean that we either let the module AST be dependent on the Objective-C runtime (which doesn't
seem right) or we retroactively add the missing attribute to the imported AST in our expressions.
A third option is to annotate methods with `__attribute__((objc_direct))` as `DW_AT_APPLE_objc_direct` which is what this patch implements. This way
LLDB doesn't have to call the runtime for any `__attribute__((objc_direct))` method and the AST in our module will already be correct when we create it.
Reviewers: aprantl, SouraVX
Reviewed By: aprantl
Subscribers: hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D71201
(except for v4 loclists, which are sufficiently different to not fit
well in this generic implementation)
In subsequent patches I intend to refactor the DebugLoc and ranges data
structures to be more similar so I can common more of the implementation
here.
Summary:
Support alloca-referencing dbg.value in hwasan instrumentation.
Update AsmPrinter to emit DW_AT_LLVM_tag_offset when location is in
loclist format.
Reviewers: pcc
Subscribers: srhines, aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70753
This reverts commit 30038da15b. It causes
the stage2 thinLTO bot to fail with:
Assertion failed: (CU.getDIE(CalleeSP) && "Expected declaration subprogram DIE for callee")
rdar://57840415
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
rdar://46577651
Differential Revision: https://reviews.llvm.org/D70350