When sinking an instruction it might be moved past the original last use of one
of its operands. This last use has the kill flag set and the verifier will
obviously complain about this.
Before Machine Sinking (AArch64):
%vreg3<def> = ASRVXr %vreg1, %vreg2<kill>
%XZR<def> = SUBSXrs %vreg4, %vreg1<kill>, 160, %NZCV<imp-def>
...
After Machine Sinking:
%XZR<def> = SUBSXrs %vreg4, %vreg1<kill>, 160, %NZCV<imp-def>
...
%vreg3<def> = ASRVXr %vreg1, %vreg2<kill>
This fix clears all the kill flags in all instruction that use the same operands
as the instruction that is being sunk.
This fixes rdar://problem/18180996.
llvm-svn: 216803
specifier and change the default behavior to only emit the
DW_AT_accessibility(public) attribute when the isPublic() is explicitly
set.
rdar://problem/18154959
llvm-svn: 216799
Rushed when I realized I hadn't committed the FreeDeleter for a clang
change I'd committed, and didn't check that I had things lying around in
my client.
Apologies for the noise.
llvm-svn: 216792
Summary:
If a variadic function body contains a musttail call, then we copy all
of the remaining register parameters into virtual registers in the
function prologue. We track the virtual registers through the function
body, and add them as additional registers to pass to the call. Because
this is all done in virtual registers, the register allocator usually
gives us good code. If the function does a call, however, it will have
to spill and reload all argument registers (ew).
Forwarding regparms on x86_32 is not implemented because most compilers
don't support varargs in 32-bit with regparms.
Reviewers: majnemer
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D5060
llvm-svn: 216780
The code in SelectionDAG::getMemset for some reason assumes the value passed to
memset is an i32. This breaks the generated code for targets that only have
registers smaller than 32 bits because the value might get split into multiple
registers by the calling convention. See the test for the MSP430 target included
in the patch for an example.
This patch ensures that nothing is assumed about the type of the value. Instead,
the type is taken from the selected overload of the llvm.memset intrinsic.
llvm-svn: 216716
On MachO, putting a symbol that doesn't start with a 'L' or 'l' in one of the
__TEXT,__literal* sections prevents the linker from merging the context of the
section.
Since private GVs are the ones the get mangled to start with 'L' or 'l', we now
only put those on the __TEXT,__literal* sections.
llvm-svn: 216682
was marked custom. The target independent DAG combine has no way to know if
the shuffles it is introducing are ones that the target could support or not.
llvm-svn: 216678
The included test case would fail, because the MI PHI node would have two
operands from the same predecessor.
This problem occurs when a switch instruction couldn't be selected. This happens
always, because there is no default switch support for FastISel to begin with.
The problem was that FastISel would first add the operand to the PHI nodes and
then fall-back to SelectionDAG, which would then in turn add the same operands
to the PHI nodes again.
This fix removes these duplicate PHI node operands by reseting the
PHINodesToUpdate to its original state before FastISel tried to select the
instruction.
This fixes <rdar://problem/18155224>.
llvm-svn: 216640
Currently instructions are folded very aggressively for AArch64 into the memory
operation, which can lead to the use of killed operands:
%vreg1<def> = ADDXri %vreg0<kill>, 2
%vreg2<def> = LDRBBui %vreg0, 2
... = ... %vreg1 ...
This usually happens when the result is also used by another non-memory
instruction in the same basic block, or any instruction in another basic block.
This fix teaches hasTrivialKill to not only check the LLVM IR that the value has
a single use, but also to check if the register that represents that value has
already been used. This can happen when the instruction with the use was folded
into another instruction (in this particular case a load instruction).
This fixes rdar://problem/18142857.
llvm-svn: 216634
FastEmitInst_ri was constraining the first operand without checking if it is
a virtual register. Use constrainOperandRegClass as all the other
FastEmitInst_* functions.
llvm-svn: 216613
This teaches the AArch64 backend to deal with the operations required
to deal with the operations on v4f16 and v8f16 which are exposed by
NEON intrinsics, plus the add, sub, mul and div operations.
llvm-svn: 216555
This combine is essentially combining target-specific nodes back into target
independent nodes that it "knows" will be combined yet again by a target
independent DAG combine into a different set of target-independent nodes that
are legal (not custom though!) and thus "ok". This seems... deeply flawed. The
crux of the problem is that we don't combine un-legalized shuffles that are
introduced by legalizing other operations, and thus we don't see a very
profitable combine opportunity. So the backend just forces the input to that
combine to re-appear.
However, for this to work, the conditions detected to re-form the unlegalized
nodes must be *exactly* right. Previously, failing this would have caused poor
code (if you're lucky) or a crasher when we failed to select instructions.
After r215611 we would fall back into the legalizer. In some cases, this just
"fixed" the crasher by produces bad code. But in the test case added it caused
the legalizer and the dag combiner to iterate forever.
The fix is to make the alignment checking in the x86 side of things match the
alignment checking in the generic DAG combine exactly. This isn't really a
satisfying or principled fix, but it at least make the code work as intended.
It also highlights that it would be nice to detect the availability of under
aligned loads for a given type rather than bailing on this optimization. I've
left a FIXME to document this.
Original commit message for r215611 which covers the rest of the chang:
[SDAG] Fix a case where we would iteratively legalize a node during
combining by replacing it with something else but not re-process the
node afterward to remove it.
In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.
It took many million runs of the shuffle fuzz tester to find this.
llvm-svn: 216537
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
llvm-svn: 216393
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)
llvm-svn: 216371
There's no need to do this if the user doesn't call va_start. In the
future, we're going to have thunks that forward these register
parameters with musttail calls, and they won't need these spills for
handling va_start.
Most of the test suite changes are adding va_start calls to existing
tests to keep things working.
llvm-svn: 216294
Somewhat unnoticed in the original implementation of discriminators, but
it could cause instructions to end up in new, small,
DW_TAG_lexical_blocks due to the use of DILexicalBlock to track
discriminator changes.
Instead, use DILexicalBlockFile which we already use to track file
changes without introducing new scopes, so it works well to track
discriminator changes in the same way.
llvm-svn: 216239
isPow2DivCheap
That name doesn't specify signed or unsigned.
Lazy as I am, I eventually read the function and variable comments. It turns out that this is strictly about signed div. But I discovered that the comments are wrong:
srl/add/sra
is not the general sequence for signed integer division by power-of-2. We need one more 'sra':
sra/srl/add/sra
That's the sequence produced in DAGCombiner. The first 'sra' may be removed when dividing by exactly '2', but that's a special case.
This patch corrects the comments, changes the name of the flag bit, and changes the name of the accessor methods.
No functional change intended.
Differential Revision: http://reviews.llvm.org/D5010
llvm-svn: 216237
The advanced copy optimization does not yield any difference on the whole llvm
test-suite + SPECs, either in compile time or runtime (binaries are identical),
but has a big potential when data go back and forth between register files as
demonstrated with test/CodeGen/ARM/adv-copy-opt.ll.
Note: This was measured for both Os and O3 for armv7s, arm64, and x86_64.
<rdar://problem/12702965>
llvm-svn: 216236
AtomicExpandLoadLinked is currently rather ARM-specific. This patch is the first of
a group that aim at making it more target-independent. See
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075873.html
for details
The command line option is "atomic-expand"
llvm-svn: 216231
The FPv4-SP floating-point unit is generally referred to as
single-precision only, but it does have double-precision registers and
load, store and GPR<->DPR move instructions which operate on them.
This patch enables the use of these registers, the main advantage of
which is that we now comply with the AAPCS-VFP calling convention.
This partially reverts r209650, which added some AAPCS-VFP support,
but did not handle return values or alignment of double arguments in
registers.
This patch also adds tests for Thumb2 code generation for
floating-point instructions and intrinsics, which previously only
existed for ARM.
llvm-svn: 216172
advanced copy optimization.
This is the final step patch toward transforming:
udiv r0, r0, r2
udiv r1, r1, r3
vmov.32 d16[0], r0
vmov.32 d16[1], r1
vmov r0, r1, d16
bx lr
into:
udiv r0, r0, r2
udiv r1, r1, r3
bx lr
Indeed, thanks to this patch, this optimization is able to look through
vmov.32 d16[0], r0
vmov.32 d16[1], r1
and is able to rewrite the following sequence:
vmov.32 d16[0], r0
vmov.32 d16[1], r1
vmov r0, r1, d16
into simple generic GPR copies that the coalescer managed to remove.
<rdar://problem/12702965>
llvm-svn: 216144
This patch adds a new property: isInsertSubreg and the related target hooks:
TargetIntrInfo::getInsertSubregInputs and
TargetInstrInfo::getInsertSubregLikeInputs to specify that a target specific
instruction is a (kind of) INSERT_SUBREG.
The approach is similar to r215394.
<rdar://problem/12702965>
llvm-svn: 216139
advanced copy optimization.
This patch is a step toward transforming:
udiv r0, r0, r2
udiv r1, r1, r3
vmov.32 d16[0], r0
vmov.32 d16[1], r1
vmov r0, r1, d16
bx lr
into:
udiv r0, r0, r2
udiv r1, r1, r3
bx lr
Indeed, thanks to this patch, this optimization is able to look through
vmov r0, r1, d16
but it does not understand yet
vmov.32 d16[0], r0
vmov.32 d16[1], r1
Comming patches will fix that and update the related test case.
<rdar://problem/12702965>
llvm-svn: 216136
This patch adds a new property: isExtractSubreg and the related target hooks:
TargetIntrInfo::getExtractSubregInputs and
TargetInstrInfo::getExtractSubregLikeInputs to specify that a target specific
instruction is a (kind of) EXTRACT_SUBREG.
The approach is similar to r215394.
<rdar://problem/12702965>
llvm-svn: 216130
Store TargetSelectionDAGInfo as a pointer instead of a reference:
getSelectionDAGInfo() may not be implemented for certain backends
(e.g. it's not currently implemented for R600).
This bug is reported by UBSan.
llvm-svn: 216129
Both MachineLoopInfo and MachineDominatorTree may be null in ScheduleDAGMI
constructor call. It is undefined behavior to take references to these values.
This bug is reported by UBSan.
llvm-svn: 216118
In PR20308 ( http://llvm.org/bugs/show_bug.cgi?id=20308 ), the critical-anti-dependency breaker
caused a miscompile because it broke a WAR hazard using a register that it thinks is available
based on info from a kill inst. Until PR18663 is solved, we shouldn't use any def/use info from
a kill because they are really just nops.
This patch adds guard checks for kills around calls to ScanInstruction() where the DefIndices
array is set. For good measure, add an assert in ScanInstruction() so we don't hit this bug again.
The test case is a reduced version of the code from the bug report.
Differential Revision: http://reviews.llvm.org/D4977
llvm-svn: 216114
the isRegSequence property.
This is a follow-up of r215394 and r215404, which respectively introduces the
isRegSequence property and uses it for ARM.
Thanks to the property introduced by the previous commits, this patch is able
to optimize the following sequence:
vmov d0, r2, r3
vmov d1, r0, r1
vmov r0, s0
vmov r1, s2
udiv r0, r1, r0
vmov r1, s1
vmov r2, s3
udiv r1, r2, r1
vmov.32 d16[0], r0
vmov.32 d16[1], r1
vmov r0, r1, d16
bx lr
into:
udiv r0, r0, r2
udiv r1, r1, r3
vmov.32 d16[0], r0
vmov.32 d16[1], r1
vmov r0, r1, d16
bx lr
This patch refactors how the copy optimizations are done in the peephole
optimizer. Prior to this patch, we had one copy-related optimization that
replaced a copy or bitcast by a generic, more suitable (in terms of register
file), copy.
With this patch, the peephole optimizer features two copy-related optimizations:
1. One for rewriting generic copies to generic copies:
PeepholeOptimizer::optimizeCoalescableCopy.
2. One for replacing non-generic copies with generic copies:
PeepholeOptimizer::optimizeUncoalescableCopy.
The goals of these two optimizations are slightly different: one rewrite the
operand of the instruction (#1), the other kills off the non-generic instruction
and replace it by a (sequence of) generic instruction(s).
Both optimizations rely on the ValueTracker introduced in r212100.
The ValueTracker has been refactored to use the information from the
TargetInstrInfo for non-generic instruction. As part of the refactoring, we
switched the tracking from the index of the definition to the actual register
(virtual or physical). This one change is to provide better consistency with
register related APIs and to ease the use of the TargetInstrInfo.
Moreover, this patch introduces a new helper class CopyRewriter used to ease the
rewriting of generic copies (i.e., #1).
Finally, this patch adds a dead code elimination pass right after the peephole
optimizer to get rid of dead code that may appear after rewriting.
This is related to <rdar://problem/12702965>.
Review: http://reviews.llvm.org/D4874
llvm-svn: 216088
legalization stage. With those two optimizations, fewer signed/zero extension
instructions can be inserted, and then we can expose more opportunities to
Machine CSE pass in back-end.
llvm-svn: 216066
Note: This was originally reverted to track down a buildbot error. This commit
exposed a latent bug that was fixed in r215753. Therefore it is reapplied
without any modifications.
I run it through SPEC2k and SPEC2k6 for AArch64 and it didn't introduce any new
regeressions.
Original commit message:
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 216006
When combining a pair of shuffle nodes, check if the combined shuffle mask is
trivially Undef. In case, immediately fold that pair of shuffles to Undef.
The lack of checks for undef masks was the root-cause of a poor-codegen bug
in the dag combiner.
Example:
%1 = shufflevector <4 x i32> %A, <4 x i32> %B, <4 x i32> <i32 4, i32 1, i32 1, i32 6>
%2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 0, i32 4, i32 1, i32 6>
%3 = shufflevector <4 x i32> %2, <4 x i32> undef, <4 x i32> <i32 1, i32 5, i32 3, i32 3>
Before this patch, on x86 (with -mcpu=corei7) we failed to fold the entire
sequence to Undef value and therefore we generated:
shufps $-123, %xmm1, $xmm0
pshufd $-46, %xmm0, %xmm0
With this patch, the entire shuffle sequence is folded to Undef and no
shuffles are generated in the output assembly.
Added new test cases to test 'combine-vec-shuffle-5.ll'.
llvm-svn: 215797
We used to assume that any fixed-offset stack object was not aliased. This
meant that no IR value could point to the memory contained in such an object.
This is a reasonable default, but is not a universally-correct
target-independent fact. For example, on PowerPC (both Darwin and non-Darwin),
some byval arguments are allocated at fixed offsets by the ABI. These, however,
certainly can be pointed to by IR values. This change moves the 'isAliased'
logic out of FixedStackPseudoSourceValue and into MFI, and allows the isAliased
property to be overridden for fixed-offset objects.
This will be used by an upcoming commit to the PowerPC backend to fix PR20280.
No functionality change intended (the behavior of
FixedStackPseudoSourceValue::isAliased has been made more conservative for
callers that don't pass an MFI object, but I don't see any in-tree callers that
do that).
llvm-svn: 215794
As Jim pointed out this assert isn't really needed to test for correctness,
because the code right afterwards does the same check and falls-back to
SelectionDAG - as intended.
llvm-svn: 215735
This reverts:
r215595 "[FastISel][X86] Add large code model support for materializing floating-point constants."
r215594 "[FastISel][X86] Use XOR to materialize the "0" value."
r215593 "[FastISel][X86] Emit more efficient instructions for integer constant materialization."
r215591 "[FastISel][AArch64] Make use of the zero register when possible."
r215588 "[FastISel] Let the target decide first if it wants to materialize a constant."
r215582 "[FastISel][AArch64] Cleanup constant materialization code. NFCI."
llvm-svn: 215673
This patch allows a vector fneg of a bitcasted integer value to be optimized in the same way that we already optimize a scalar fneg. If the integer variable is a constant, we can precompute the result and not require any logic ops.
This patch is very similar to a fabs patch committed at r214892.
Differential Revision: http://reviews.llvm.org/D4852
llvm-svn: 215646
input node after manually adding it to the worklist and using CombineTo.
Once we use CombineTo the input node may have been deleted. Despite this
being *completely confusing* and somewhat broken, the only way to
"correctly" return from a DAG combine after potentially deleting the
input node is to return *that exact node*....
But really, this code should just never have used CombineTo. It won't do
what it wants (returning the node as mentioned above just causes the
combine to infloop). The correct way to combine away a casted load to
a load of the correct type is to RAUW the chain directly and then return
the loaded value to replace the actual value node.
I managed to find this with the vector shuffle fuzzer even though it
clearly has nothing at all to do with vector shuffles and rather those
happen to trigger a load of a constant pool that hits this combine *just
right*. I've included the test as it is small and a nice stress test
that the infrastructure isn't asserting.
llvm-svn: 215622
combining by replacing it with something else but not re-process the
node afterward to remove it.
In a truly remarkable stroke of bad luck, this would (in the test case
attached) end up getting some other node combined into it without ever
getting re-processed. By adding it back on to the worklist, in addition
to deleting the dead nodes more quickly we also ensure that if it
*stops* being dead for any reason it makes it back through the
legalizer. Without this, the test case will end up failing during
instruction selection due to an and node with a type we don't have an
instruction pattern for.
It took many million runs of the shuffle fuzz tester to find this.
llvm-svn: 215611
This changes the order in which FastISel tries to materialize a constant.
Originally it would try to use a simple target-independent approach, which
can lead to the generation of inefficient code.
On X86 this would result in the use of movabsq to materialize any 64bit
integer constant - even for simple and small values such as 0 and 1. Also
some very funny floating-point materialization could be observed too.
On AArch64 it would materialize the constant 0 in a register even the
architecture has an actual "zero" register.
On ARM it would generate unnecessary mov instructions or not use mvn.
This change simply changes the order and always asks the target first if it
likes to materialize the constant. This doesn't fix all the issues
mentioned above, but it enables the targets to implement such
optimizations.
Related to <rdar://problem/17420988>.
llvm-svn: 215588
This is a cleaner solution to the problem described in r215431.
When instructions are combined a dangling DBG_VALUE is removed.
This resolves bug 20598.
llvm-svn: 215587
New function to erase a machine instruction and mark DBG_VALUE
for removal. A DBG_VALUE is marked for removal when it references
an operand defined in the instruction.
Use the new function to cleanup code in dead machine instruction
removal pass.
llvm-svn: 215580
critical edge has been split. The MachineDominatorTree will when lazy update the
underlying dominance properties when require.
** Context **
This is a follow-up of r215410.
Each time a critical edge is split this invalidates the dominator tree
information. Thus, subsequent queries of that interface will be slow until the
underlying information is actually recomputed (costly).
** Problem **
Prior to this patch, splitting a critical edge needed to query the dominator
tree to update the dominator information.
Therefore, splitting a bunch of critical edges will likely produce poor
performance as each query to the dominator tree will use the slow query path.
This happens a lot in passes like MachineSink and PHIElimination.
** Proposed Solution **
Splitting a critical edge is a local modification of the CFG. Moreover, as soon
as a critical edge is split, it is not critical anymore and thus cannot be a
candidate for critical edge splitting anymore. In other words, the predecessor
and successor of a basic block inserted on a critical edge cannot be inserted by
critical edge splitting.
Using these observations, we can pile up the splitting of critical edge and
apply then at once before updating the DT information.
The core of this patch moves the update of the MachineDominatorTree information
from MachineBasicBlock::SplitCriticalEdge to a lazy MachineDominatorTree.
** Performance **
Thanks to this patch, the motivating example compiles in 4- minutes instead of
6+ minutes. No test case added as the motivating example as nothing special but
being huge!
The binaries are strictly identical for all the llvm test-suite + SPECs with and
without this patch for both Os and O3.
Regarding compile time, I observed only noise, although on average I saw a
small improvement.
<rdar://problem/17894619>
llvm-svn: 215576
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
This patch improves the existing algorithm in DAGCombiner that
attempts to fold shuffles according to rule:
shuffle(shuffle(x, y, M1), undef, M2) -> shuffle(y, undef, M3)
Before this change, there were cases where the DAGCombiner conservatively
avoided folding shuffles even if the resulting mask would have been legal.
That is because the algorithm wrongly assumed that commuting
an illegal shuffle mask would always produce an illegal mask.
With this change, we now correctly compute the commuted shuffle mask before
calling method 'isShuffleMaskLegal' on it.
On X86, this improves for example the codegen for the following function:
define <4 x i32> @test(<4 x i32> %A, <4 x i32> %B) {
%1 = shufflevector <4 x i32> %B, <4 x i32> %A, <4 x i32> <i32 1, i32 2, i32 6, i32 7>
%2 = shufflevector <4 x i32> %1, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32 2, i32 3>
ret <4 x i32> %2
}
Before this change the X86 backend (-mcpu=corei7) generated
the following assembly code for function @test:
shufps $-23, %xmm0, %xmm1 # xmm1 = xmm1[1,2],xmm0[2,3]
movhlps %xmm1, %xmm1 # xmm1 = xmm1[1,1]
movaps %xmm1, %xmm0
Now we produce:
movhlps %xmm0, %xmm0 # xmm0 = xmm0[1,1]
Added extra test cases in combine-vec-shuffle-2.ll to verify that we correctly
fold according to the above-mentioned rule.
llvm-svn: 215555
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).
This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).
llvm-svn: 215512
refactoring in 215384. This way it can unique multiple entries describing
the same piece even if they don't have the exact same location.
(The same piece may get merged in and be added from OpenRanges).
There ought to be a more elegant solution for this, though.
llvm-svn: 215418
as long as possible.
** Context **
Each time the dominance information is modified, the dominator tree analysis
switches in a slow query mode. After a few queries without any modification on
the dominator tree, it performs an expensive update of its internal structure to
provide fast queries again.
** Problem **
Prior to this patch, the MachineSink pass was splitting the critical edges on
demand while relying heavy on the dominator tree information. In some cases,
this leads to pathological behavior where:
- We end up in the slow query mode right after splitting an edge.
- We update the dominance information.
- We break the dominance information again, thus ending up in the slow query
mode and so on.
** Proposed Solution **
To mitigate this effect, this patch postpones all the splitting of the edges at
the end of each iteration of the main loop.
The benefits are:
- The dominance information is valid for the life time of an iteration.
- This simplifies the code as we do not have to special treat instructions that
are sunk on critical edges. Indeed, the related block will be available
through the next iteration.
The downside is that when edges splitting is required, this incurs an additional
iteration of the main loop compared to the previous scheme.
** Performance **
Thanks to this patch, the motivating example compiles in 6+ minutes instead of
10+ minutes. No test case added as the motivating example as nothing special but
being huge!
I have measured only noise for both the compile time and the runtime on the llvm
test-suite + SPECs with Os and O3.
Note: The current implementation of MachineBasicBlock::SplitCriticalEdge also
uses the dominance information and therefore, hits this problem. A subsequent
patch will address that.
<rdar://problem/17894619>
llvm-svn: 215410
This patch adds a new property: isRegSequence and the related target hooks:
TargetIntrInfo::getRegSequenceInputs and
TargetInstrInfo::getRegSequenceLikeInputs to specify that a target specific
instruction is a (kind of) REG_SEQUENCE.
<rdar://problem/12702965>
llvm-svn: 215394
buildLocationLists easier to read.
The previous implementation conflated the merging of individual pieces
and the merging of entire DebugLocEntries.
By splitting this functionality into two separate functions the intention
of the code should be clearer.
llvm-svn: 215383
be propagated to all its users, and this propagation could increase the
probability of finding common subexpressions. If the COPY has only one user,
the COPY itself can be removed.
llvm-svn: 215344
That broke the build:
/data/buildslave/clang-amd64-freebsd/src-llvm/lib/CodeGen/PeepholeOptimizer.cpp:729:46: error: non-const lvalue reference to type 'SmallPtrSet<[...], 8>' cannot bind to a value of unrelated type 'SmallPtrSet<[...], 16>'
Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
^~~~~~~~
/data/buildslave/clang-amd64-freebsd/src-llvm/lib/CodeGen/PeepholeOptimizer.cpp:265:49: note: passing argument to parameter 'LocalMIs' here
SmallPtrSet<MachineInstr*, 8> &LocalMIs) {
^
llvm-svn: 215341
Follow up to r214266. Add missing case in ScalarizeVectorResult() for
cttz_zero_undef.
Differential Revision: http://reviews.llvm.org/D4813
llvm-svn: 215330
floating point exceptions, added use of flag to fold potentially exception
raising floating point math in selection DAG. No functionality change, as
targets have to explicitly ask for this behavior and none does today.
llvm-svn: 215222
__stack_chk_guard.
Handle the case where the pointer operand of the load instruction that loads the
stack guard is not a global variable but instead a bitcast.
%StackGuard = load i8** bitcast (i64** @__stack_chk_guard to i8**)
call void @llvm.stackprotector(i8* %StackGuard, i8** %StackGuardSlot)
Original test case provided by Ana Pazos.
This fixes PR20558.
llvm-svn: 215167
Due to an unnecessary special case, inlined arguments that happened to
be from the same function as they were inlined into were misclassified
as non-inline arguments and would overwrite the non-inlined arguments.
Assert that we never overwrite a function's arguments, and stop
misclassifying inlined arguments as non-inline arguments to fix this
issue.
Excuse the rather crappy test case - handcrafted IR might do better, or
someone who understands better how to tickle the inliner to create a
recursive inlining situation like this (though it may also be necessary
to tickle the variable in a particular way to cause it to be recorded in
the MMI side table and go down this particular path for location
information).
llvm-svn: 215157
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
Re-commit of r214832,r21469 with a work-around that
avoids the previous problem with gcc build compilers
The work-around is to use SmallVector instead of ArrayRef
of basic blocks in preservesResourceLen()/MachineCombiner.cpp
llvm-svn: 215151
BranchFolderPass was not correctly setting the basic block branch weights when
tail-merging created or merged blocks. This patch recomutes the weights of
tail-merged blocks using the following formula:
branch_weight(merged block to successor j) =
sum(block_frequency(bb) * branch_probability(bb -> j))
bb is a block that is in the set of merged blocks.
<rdar://problem/16256423>
llvm-svn: 215135
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
In r210492 the logic of calculateDbgValueHistory was changed to end
register variable live ranges at the end of MBB conditionally on
the fact that the register was or not clobbered by the function body.
This requires an initial scan of all the operands of the function
to collect all clobbered registers. In a second pass over all
instructions, we compare this set with the set of clobbered
registers for the current MachineInstruction. This modification
incurred a compilation time regression on some benchmarks: the
debug info emission phase takes ~10% more time.
While a small performance hit is unavoidable due to the initial
scan requirement, we can improve the situation by avoiding to
create too many temporary sets and just use lambdas to work directly
on the result of the initial scan.
Fixes <rdar://problem/17884104>
Patch by Frederic Riss!
llvm-svn: 214987
The handling of the epilogue is best expressed as an early exit and
there is no reason to look for register defs in DbgValue MIs.
Patch by Frederic Riss!
llvm-svn: 214986
Otherwise we can end up with an argument frame size that is not a
multiple of stack slot size, which is very awkward.
This fixes PR20547, which was a bug in x86_64 Sys V vararg handling.
However, it's much easier to test this with x86 callee-cleanup
functions, which previously ended in "retl $6" instead of "retl $8".
This does affect behavior of all backends, but it presumably fixes the
same bug in all of them.
llvm-svn: 214980
This patch addresses 2 FIXME comments that I added to CriticalAntiDepBreaker while fixing PR20020.
Initialize an MCSubRegIterator and an MCRegAliasIterator to include the self reg.
Assuming that works as advertised, there should be functional difference with this patch, just less code.
Also, remove the associated asserts - we're setting those values just before, so the asserts don't do anything meaningful.
Differential Revision: http://reviews.llvm.org/D4566
llvm-svn: 214973
This was coming in weird debug info that had variables (and hence
debug_locs) but was in GMLT mode (because it was missing the 13th field
of the compile_unit metadata) so no ranges were constructed. We should
always have at least one range for any CU with a debug_loc in it -
because the range should cover the debug_loc.
The assertion just ensures that the "!= 1" range case inside the
subsequent loop doesn't get entered for the case where there are no
ranges at all, which should never reach here in the first place.
llvm-svn: 214939
This simplifies construction and usage while making the data structure
smaller. It was a holdover from the days when we didn't have a separate
DebugLocList and all we had was a flat list of DebugLocEntries.
llvm-svn: 214933
Allow vector fabs operations on bitcasted constant integer values to be optimized
in the same way that we already optimize scalar fabs.
So for code like this:
%bitcast = bitcast i64 18446744069414584320 to <2 x float> ; 0xFFFF_FFFF_0000_0000
%fabs = call <2 x float> @llvm.fabs.v2f32(<2 x float> %bitcast)
%ret = bitcast <2 x float> %fabs to i64
Instead of generating something like this:
movabsq (constant pool loadi of mask for sign bits)
vmovq (move from integer register to vector/fp register)
vandps (mask off sign bits)
vmovq (move vector/fp register back to integer return register)
We should generate:
mov (put constant value in return register)
I have also removed a redundant clause in the first 'if' statement:
N0.getOperand(0).getValueType().isInteger()
is the same thing as:
IntVT.isInteger()
Testcases for x86 and ARM added to existing files that deal with vector fabs.
One existing testcase for x86 removed because it is no longer ideal.
For more background, please see:
http://reviews.llvm.org/D4770
And:
http://llvm.org/bugs/show_bug.cgi?id=20354
Differential Revision: http://reviews.llvm.org/D4785
llvm-svn: 214892
shorter/easier and have the DAG use that to do the same lookup. This
can be used in the future for TargetMachine based caching lookups from
the MachineFunction easily.
Update the MIPS subtarget switching machinery to update this pointer
at the same time it runs.
llvm-svn: 214838
This code is completely wrong. It is also dead, as if it were to *ever*
run, it would crash. Fortunately, after my work to the combiner, it is
at least *possible* to reach the code, and llvm-stress has found a test
case. Thanks to Patrick for reporting.
It would be really good if anyone who remembers how this code works and
what it was intended to do could add some more obvious test coverage
instead of my completely contrived and reduced test case. My test case
was so brittle I left a bread crumb comment in it to help the next
person to stumble on it and not know what it was actually testing for.
llvm-svn: 214785
Originally reverted in r213432 with flakey failures on an ASan self-host
build. After reduction it seems to be the same issue fixed in r213805
(ArgPromo + DebugInfo: Handle updating debug info over multiple
applications of argument promotion) and r213952 (by having
LiveDebugVariables strip dbg_value intrinsics in functions that are not
described by debug info). Though I cannot explain why this failure was
flakey...
llvm-svn: 214761
combines) until they are legal.
Doing it the old way could, when the stars align *just* right, cause
a node to get into the combine set prior to being legalized. Then, when
the same node showed up as an operand to another node later on (but not
so much later on that it had been deleted as dead) we would fail to add
it back to the worklist thinking it had already been combined. This
would in turn cause it to not be legalized. Fortunately, we can also
walk the operands looking for uncombined (and thus potentially
un-legalized) nodes late. It will still ensure that we walk all operands
of all nodes and send all of them through both the legalizer without
changes and the combiner at least once. (Which was the original goal of
this).
I have a test case for this bug, but it is terribly brittle. For
example, it will stop finding the bug the moment I enable the new
shuffle lowering. I don't yet have any test case that reliably exercises
this bug, and it isn't clear that it will be possible to craft one. It
is entirely possible that with the new shuffle lowering the two forms of
doing this are precisely equivalent. That doesn't mean we shouldn't take
the more conservative approach of insisting on things in the combined
set having survived the legalizer.
llvm-svn: 214673
GCC 4.8.2 objects to the tautological condition in the assert as the unsigned
value is guaranteed to be >= 0. Simplify the assertion by dropping the
tautological condition.
llvm-svn: 214671
This is intended to be the minimal change needed to fix PR20354 ( http://llvm.org/bugs/show_bug.cgi?id=20354 ). The check for a vector operation was wrong; we need to check that the fabs itself is not a vector operation.
This patch will not generate the optimal code. A constant pool load and 'and' op will be generated instead of just returning a value that we can calculate in advance (as we do for the scalar case). I've put a 'TODO' comment for that here and expect to have that patch ready soon.
There is a very similar optimization that we can do in visitFNEG, so I've put another 'TODO' there and expect to have another patch for that too.
llvm-svn: 214670
sequence - target independent framework
When the DAGcombiner selects instruction sequences
it could increase the critical path or resource len.
For example, on arm64 there are multiply-accumulate instructions (madd,
msub). If e.g. the equivalent multiply-add sequence is not on the
crictial path it makes sense to select it instead of the combined,
single accumulate instruction (madd/msub). The reason is that the
conversion from add+mul to the madd could lengthen the critical path
by the latency of the multiply.
But the DAGCombiner would always combine and select the madd/msub
instruction.
This patch uses machine trace metrics to estimate critical path length
and resource length of an original instruction sequence vs a combined
instruction sequence and picks the faster code based on its estimates.
This patch only commits the target independent framework that evaluates
and selects code sequences. The machine instruction combiner is turned
off for all targets and expected to evolve over time by gradually
handling DAGCombiner pattern in the target specific code.
This framework lays the groundwork for fixing
rdar://16319955
llvm-svn: 214666
so using a single helper which adds operands back onto the worklist.
Several places didn't rigorously do this but a couple already did.
Factoring them together and doing it rigorously is important to delete
things recursively early on in the combiner and get a chance to see
accurate hasOneUse values. While no existing test cases change, an
upcoming patch to add DAG combining logic for PSHUFB requires this to
work correctly.
llvm-svn: 214623
during DAGCombine in certain circumstances. Unfortunately, the circumstances required
to trigger the issue seem to require a pretty specific interaction of DAGCombines,
and I haven't been able to find a testcase that reproduces on X86, ARM, or AArch64.
The functionality added here is replicated in essentially every other DAG combine,
so it seems pretty obviously correct.
llvm-svn: 214622
variables (for example, by-value struct arguments passed in registers, or
large integer values split across several smaller registers).
On the IR level, this adds a new type of complex address operation OpPiece
to DIVariable that describes size and offset of a variable fragment.
On the DWARF emitter level, all pieces describing the same variable are
collected, sorted and emitted as DWARF expressions using the DW_OP_piece
and DW_OP_bit_piece operators.
http://reviews.llvm.org/D3373
rdar://problem/15928306
What this patch doesn't do / Future work:
- This patch only adds the backend machinery to make this work, patches
that change SROA and SelectionDAG's type legalizer to actually create
such debug info will follow. (http://reviews.llvm.org/D2680)
- Making the DIVariable complex expressions into an argument of dbg.value
will reduce the memory footprint of the debug metadata.
- The sorting/uniquing of pieces should be moved into DebugLocEntry,
to facilitate the merging of multi-piece entries.
llvm-svn: 214576
fromulation of the node, which isn't really the desired behavior from
within the combiner or legalizer, but is necessary within ISel. I've
added a hopefully helpful comment and fixed the only two places where
this took place.
Yet another step toward the combiner and legalizer not needing to use
update listeners with virtual calls to manage the worklists behind
legalization and combining.
llvm-svn: 214574
This lifts the (very few) places the legalizer would delete dead nodes
into the outer loop around the legalizer. This is significantly simpler
because it doesn't require the legalizer itself to manage the iterator
validity, and it doesn't require the legalizer to be a DAG update
listener in order to remove things from the legalized set. It also makes
the interface much less contrived for the case of the legalizer running
inside the last phase of DAG combining.
I'm working on centralizing the deletion of nodes during both legalizing
and combining as much as possible. My hope is to remove the need for DAG
update listeners from the combiner next, which would remove a costly
virtual dispatch chain on every deletion. This in turn should allow us
to more aggressively delete DAG nodes during combining which will in
turn allow us to combine more aggressively by exposing the actual nodes
which have single users to the combine phases.
llvm-svn: 214546
This change adds code to explicitly mark a function which requires runtime stack realignment as not having a fixed frame size in the StackMap section. As it happens, this is not actually a functional change. The size that would be reported without the check is also "-1", but as far as I can tell, that's an accident. The code change makes this explicit.
Note: There's a separate bug in handling of stackmaps and patchpoints in functions which need dynamic frame realignment. The current code assumes that offsets can be calculated from RBP, but realigned frames must use RSP. (There's a variable gap between RBP and the spill slots.) This change set does not address that issue.
Reviewers: atrick, ributzka
Differential Revision: http://reviews.llvm.org/D4572
llvm-svn: 214534
Altivec vector loads on PowerPC have an interesting property: They always load
from an aligned address (by rounding down the address actually provided if
necessary). In order to generate an actual unaligned load, you can generate two
load instructions, one with the original address, one offset by one vector
length, and use a special permutation to extract the bytes desired.
When this was originally implemented, I generated these two loads using regular
ISD::LOAD nodes, now marked as aligned. Unfortunately, there is a problem with
this:
The alignment of a load does not contribute to its identity, and SDNodes
are uniqued. So, imagine that we have some unaligned load, L1, that is not
aligned. The routine will create two loads, L1(aligned) and (L1+16)(aligned).
Further imagine that there had already existed a load (L1+16)(unaligned) with
the same chain operand as the load L1. When (L1+16)(aligned) is created as part
of the lowering of L1, this load *is* also the (L1+16)(unaligned) node, just
now marked as aligned (because the new alignment overwrites the old). But the
original users of (L1+16)(unaligned) now get the data intended for the
permutation yielding the data for L1, and (L1+16)(unaligned) no longer exists
to get its own permutation-based expansion. This was PR19991.
A second potential problem has to do with the MMOs on these loads, which can be
used by AA during instruction scheduling to break chain-based dependencies. If
the new "aligned" loads get the MMO from the original unaligned load, this does
not represent the fact that it will load data from below the original address.
Normally, this would not matter, but this load might be combined with another
load pair for a previous vector, and then the dependency on the otherwise-
ignored lower bytes can matter.
To fix both problems, instead of generating the necessary loads using regular
ISD::LOAD instructions, ppc_altivec_lvx intrinsics are used instead. These are
provided with MMOs with a conservative address range.
Unfortunately, I no longer have a failing test case (since PR19991 was
reported, other changes in CodeGen have forced this bug back into hiding it
again). Nevertheless, this should fix the underlying problem.
llvm-svn: 214481