two reasons:
a) we're already caching the target machine which contains it,
b) which relocation model you get is dependent upon whether or
not you ask before MCCodeGenInfo is constructed on the target
machine, so avoid any latent issues there.
llvm-svn: 213420
Options struct and move the comment to inMips16HardFloat. Use the
fact that we now know whether or not we cared about soft float to
set the libcalls.
Accordingly rename mipsSEUsesSoftFloat to abiUsesSoftFloat and
propagate since it's no longer CPU specific.
llvm-svn: 213335
Summary:
Generally speaking, mips-* vs mips64-* should not be used to make decisions
about the content or format of the ELF. This should be based on the ABI
and CPU in use. For example, `mips-linux-gnu-clang -mips64r2 -mabi=64`
should produce an ELF64 as should `mips64-linux-gnu-clang -mabi=64`.
Conversely, `mips64-linux-gnu-clang -mabi=n32` should produce an ELF32 as
should `mips-linux-gnu-clang -mips64r2 -mabi=n32`.
This patch fixes the e_flags but leaves the ELF32 vs ELF64 issue for now
since there is no apparent way to base this decision on the ABI and CPU.
Differential Revision: http://reviews.llvm.org/D4539
llvm-svn: 213244
Summary:
The cpr1_size field describes the minimum register width to run the program
rather than the size of the registers on the target. MIPS32r6 was acting
as if -mfp64 has been given because it starts off with 64-bit FPU registers.
Differential Revision: http://reviews.llvm.org/D4538
llvm-svn: 213243
Summary:
These options are not implemented yet but we act as if they are always
given.
The integrated assembler is driven by the clang driver so the e_flag test
cases should match the e_flags emitted by GCC+GAS rather than GAS
by itself.
Differential Revision: http://reviews.llvm.org/D4536
llvm-svn: 213242
Summary:
A few instructions (mostly cvt.d.w and similar) are causing problems with
-mfp64 and -mno-odd-spreg and it looks like fixing it properly may
take several weeks. In the meantime, let's disable the odd-numbered
double-precision registers so that the generated code is at least valid.
The problem is that instructions like cvt.d.w read from the 32-bit low
subregister of a double-precision FPU register. This often leads to the compiler
to inserting moves to transfer a GPR32 to a FGR32 using mtc1. Such moves
violate the rules against 32-bit writes to odd-numbered FPU registers imposed
by -mno-odd-spreg. By disabling the odd-numbered double-precision registers, it
becomes impossible for the 32-bit low subregister to be odd-numbered.
This fixes numerous test-suite failures when compiling for the FP64A ABI
('-mfp64 -mno-odd-spreg'). There is no LLVM test case because it's difficult to
test that odd-numbered FPU registers are not allocatable. Instead, we depend on
the assembler (GAS and -fintegrated-as) raising errors when the rules are
violated.
Differential Revision: http://reviews.llvm.org/D4532
llvm-svn: 213160
Refactoring; no functional changes intended
Removed PostRAScheduler bits from subtargets (X86, ARM).
Added PostRAScheduler bit to MCSchedModel class.
This bit is set by a CPU's scheduling model (if it exists).
Removed enablePostRAScheduler() function from TargetSubtargetInfo and subclasses.
Fixed the existing enablePostMachineScheduler() method to use the MCSchedModel (was just returning false!).
Added methods to TargetSubtargetInfo to allow overrides for AntiDepBreakMode, CriticalPathRCs, and OptLevel for PostRAScheduling.
Added enablePostRAScheduler() function to PostRAScheduler class which queries the subtarget for the above values.
Preserved existing scheduler behavior for ARM, MIPS, PPC, and X86:
a. ARM overrides the CPU's postRA settings by enabling postRA for any non-Thumb or Thumb2 subtarget.
b. MIPS overrides the CPU's postRA settings by enabling postRA for everything.
c. PPC overrides the CPU's postRA settings by enabling postRA for everything.
d. X86 is the only target that actually has postRA specified via sched model info.
Differential Revision: http://reviews.llvm.org/D4217
llvm-svn: 213101
Summary: Previously all the test cases set it after initialization with '.module fp=xx'.
Differential Revision: http://reviews.llvm.org/D4489
llvm-svn: 213071
Summary:
.bss, .text, and .data are at least 16-byte aligned.
.reginfo is 4-byte aligned and has a 24-byte EntrySize.
.MIPS.abiflags has an 24-byte EntrySize.
.MIPS.options is 8-byte aligned and has 1-byte EntrySize.
Using a 1-byte EntrySize for .MIPS.options seems strange because the
records are neither 1-byte long nor fixed-length but this matches the value
that GAS emits.
Differential Revision: http://reviews.llvm.org/D4487
llvm-svn: 212939
Summary:
This is because the FP64A the hardware will redirect 32-bit reads/writes
from/to odd-numbered registers to the upper 32-bits of the corresponding
even register. In effect, simulating FR=0 mode when FR=0 mode is not
available.
Unfortunately, we have to make the decision to avoid mfc1/mtc1 before
register allocation so we currently do this for even registers too.
FPXX has a similar requirement on 32-bit architectures that lack
mfhc1/mthc1 so this patch also handles the affected moves from the FPU for
FPXX too. Moves to the FPU were supported by an earlier commit.
Differential Revision: http://reviews.llvm.org/D4484
llvm-svn: 212938
Summary:
This is similar to r210771 which did the same thing for MTHC1.
Also corrected MTHC1_D32 and MTHC1_D64 which used AFGR64 and FGR64 on the
wrong definitions.
Differential Revision: http://reviews.llvm.org/D4483
llvm-svn: 212936
enabled and mthc1 and dmtc1 are not available (e.g. on MIPS32r1)
This prevents the upper 32-bits of a double precision value from being moved to
the FPU with mtc1 to an odd-numbered FPU register. This is necessary to ensure
that the code generated executes correctly regardless of the current FPU mode.
MIPS32r2 and above continues to use mtc1/mthc1, while MIPS-IV and above continue
to use dmtc1.
Differential Revision: http://reviews.llvm.org/D4465
llvm-svn: 212930
passes in the mips back end. This, unfortunately, required a
bit of churn in the various predicates to use a pointer rather
than a reference.
llvm-svn: 212744
Summary:
When -mno-odd-spreg is in effect, 32-bit floating point values are not
permitted in odd FPU registers. The option also prohibits 32-bit and 64-bit
floating point comparison results from being written to odd registers.
This option has three purposes:
* It allows support for certain MIPS implementations such as loongson-3a that
do not allow the use of odd registers for single precision arithmetic.
* When using -mfpxx, -mno-odd-spreg is the default and this allows us to
statically check that code is compliant with the O32 FPXX ABI since mtc1/mfc1
instructions to/from odd registers are guaranteed not to appear for any
reason. Once this has been established, the user can then re-enable
-modd-spreg to regain the use of all 32 single-precision registers.
* When using -mfp64 and -mno-odd-spreg together, an O32 extension named
O32 FP64A is used as the ABI. This is intended to provide almost all
functionality of an FR=1 processor but can also be executed on a FR=0 core
with the assistance of a hardware compatibility mode which emulates FR=0
behaviour on an FR=1 processor.
* Added '.module oddspreg' and '.module nooddspreg' each of which update
the .MIPS.abiflags section appropriately
* Moved setFpABI() call inside emitDirectiveModuleFP() so that the caller
doesn't have to remember to do it.
* MipsABIFlags now calculates the flags1 and flags2 member on demand rather
than trying to maintain them in the same format they will be emitted in.
There is one portion of the -mfp64 and -mno-odd-spreg combination that is not
implemented yet. Moves to/from odd-numbered double-precision registers must not
use mtc1. I will fix this in a follow-up.
Differential Revision: http://reviews.llvm.org/D4383
llvm-svn: 212717
Summary:
On MIPS32r6/MIPS64r6, floating point comparisons return 0 or -1 but integer
comparisons return 0 or 1.
Updated the various uses of getBooleanContents. Two simplifications had to be
disabled when float and int boolean contents differ:
- ScalarizeVecRes_VSELECT except when the kind of boolean contents is trivially
discoverable (i.e. when the condition of the VSELECT is a SETCC node).
- visitVSELECT (select C, 0, 1) -> (xor C, 1).
Come to think of it, this one could test for the common case of 'C'
being a SETCC too.
Preserved existing behaviour for all other targets and updated the affected
MIPS32r6/MIPS64r6 tests. This also fixes the pi benchmark where the 'low'
variable was counting in the wrong direction because it thought it could simply
add the result of the comparison.
Reviewers: hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, jholewinski, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4389
llvm-svn: 212697
Summary:
It seems we accidentally read the wrong column of the table MIPS64r6 spec
and used the names for c.cond.fmt instead of cmp.cond.fmt.
Differential Revision: http://reviews.llvm.org/D4387
llvm-svn: 212607
Summary:
This completes the change to use JALR instead of JR on MIPS32r6/MIPS64r6.
Reviewers: jkolek, vmedic, zoran.jovanovic, dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4269
llvm-svn: 212605
Summary:
RET, and RET_MM have been replaced by a pseudo named PseudoReturn.
In addition a version with a 64-bit GPR named PseudoReturn64 has been
added.
Instruction selection for a return matches RetRA, which is expanded post
register allocation to PseudoReturn/PseudoReturn64. During MipsAsmPrinter,
this PseudoReturn/PseudoReturn64 are emitted as:
- (JALR64 $zero, $rs) on MIPS64r6
- (JALR $zero, $rs) on MIPS32r6
- (JR_MM $rs) on microMIPS
- (JR $rs) otherwise
On MIPS32r6/MIPS64r6, 'jr $rs' is an alias for 'jalr $zero, $rs'. To aid
development and review (specifically, to ensure all cases of jr are
updated), these aliases are temporarily named 'r6.jr' instead of 'jr'.
A follow up patch will change them back to the correct mnemonic.
Added (JALR $zero, $rs) to MipsNaClELFStreamer's definition of an indirect
jump, and removed it from its definition of a call.
Note: I haven't accounted for MIPS64 in MipsNaClELFStreamer since it's
doesn't appear to account for any MIPS64-specifics.
The return instruction created as part of eh_return expansion is now expanded
using expandRetRA() so we use the right return instruction on MIPS32r6/MIPS64r6
('jalr $zero, $rs').
Also, fixed a misuse of isABI_N64() to detect 64-bit wide registers in
expandEhReturn().
Reviewers: jkolek, vmedic, mseaborn, zoran.jovanovic, dsanders
Reviewed By: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4268
llvm-svn: 212604
Summary:
Follow on to r212519 to improve the encapsulation and limit the scope of the enums.
Also merged two very similar parser functions, fixed a bug where ASE's
were not being reported, and marked CPR1's as being 128-bit when MSA is
enabled.
Differential Revision: http://reviews.llvm.org/D4384
llvm-svn: 212522
We have detected a documentation bug in the encoding tables of the released
MIPS64r6 specification that has resulted in the wrong encodings being used for
these instructions in LLVM. This commit corrects them.
llvm-svn: 212330
The argument list vector is never used after it has been passed to the
CallLoweringInfo and moving it to the CallLoweringInfo is cleaner and
pretty much as cheap as keeping a pointer to it.
llvm-svn: 212135
In assembly the expression a=b is parsed as an assignment, so it should be
printed as one.
This remove a truly horrible hack for producing a label with "a=.". It would
be used by codegen but would never be reached by the asm parser. Sorry I
missed this when it was first committed.
llvm-svn: 211639
Summary:
This instruction is re-encoded in MIPS32r6/MIPS64r6 without changing the
restrictions. We hadn't implemented it for earlier ISA's so it has been added to those too.
Differential Revision: http://reviews.llvm.org/D4265
llvm-svn: 211590
Patch by David Chisnall
His work was sponsored by: DARPA, AFRL
Some small modifications to the original patch: we now error if
it's not possible to expand an instruction (mips-expansions-bad.s has some
examples). Added some comments to the expansions.
llvm-svn: 211271
Summary:
The functions that do the expansion now return false on success and true otherwise. This is so
we can catch some errors during the expansion (e.g.: immediate too large). The next patch adds some test cases.
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4214
llvm-svn: 211269
Summary:
The assembler tries to reuse the destination register for memory operations whenever
it can but it's not possible to do so if the destination register is not a GPR.
Example:
ldc1 $f0, sym
should expand to:
lui $at, %hi(sym)
ldc1 $f0, %lo(sym)($at)
It's entirely wrong to expand to:
lui $f0, %hi(sym)
ldc1 $f0, %lo(sym)($f0)
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4173
llvm-svn: 211169
Summary:
This patch doesn't really change the logic behind expandMemInst but it allows
us to assemble .S files that use .set noat with some macros. For example:
.set noat
lw $k0, offset($k1)
Can expand to:
lui $k0, %hi(offset)
addu $k0, $k0, $k1
lw $k0, %lo(offset)($k0)
with no need to access $at.
Reviewers: dsanders, vmedic
Reviewed By: dsanders, vmedic
Differential Revision: http://reviews.llvm.org/D4159
llvm-svn: 211165
Summary:
Added negative test case so that we can be sure we handle erroneous situations
while parsing the .cpsetup directive.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D3681
llvm-svn: 211160
Summary:
This patches allows non conversions like i1=i2; where both are global ints.
In addition, arithmetic and other things start to work since fast-isel will use
existing patterns for non fast-isel from tablegen files where applicable.
In addition i8, i16 will work in this limited context for assignment without the need
for sign extension (zero or signed). It does not matter how i8 or i16 are loaded (zero or sign extended)
since only the 8 or 16 relevant bits are used and clang will ask for sign extension before using them in
arithmetic. This is all made more complete in forthcoming patches.
for example:
int i, j=1, k=3;
void foo() {
i = j + k;
}
Keep in mind that this pass is not enabled right now and is an experimental pass
It can only be enabled with a hidden option to llvm of -mips-fast-isel.
Test Plan: Run test-suite, loadstore2.ll and I will run some executable tests.
Reviewers: dsanders
Subscribers: mcrosier
Differential Revision: http://reviews.llvm.org/D3856
llvm-svn: 211061
Summary:
There is no change to the restrictions, just the result register is stored
once in the encoding rather than twice. The rt field is zero in
MIPS32r6/MIPS64r6.
Depends on D4119
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4120
llvm-svn: 211019
Summary:
The linked-load, store-conditional operations have been re-encoded such
that have a 9-bit offset instead of the 16-bit offset they have prior to
MIPS32r6/MIPS64r6.
While implementing this, I noticed that the atomic load/store pseudos always
emit a sign extension using sll and sra. I have improved this to use seb/seh
when they are available (MIPS32r2/MIPS64r2 and above).
Depends on D4118
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4119
llvm-svn: 211018
Summary:
The error message for the invalid.s cases isn't very helpful. It happens because
there is an instruction with a wider immediate that would have matched if the
NotMips32r6 predicate were true. I have some WIP to improve the message but it
affects most error messages for removed/re-encoded instructions on
MIPS32r6/MIPS64r6 and should therefore be a separate commit.
Depens on D4115
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4117
llvm-svn: 211012
Summary:
cache and pref were added in MIPS-III, and MIPS32 but were re-encoded in
MIPS32r6/MIPS64r6 to use a 9-bit offset rather than the 16-bit offset
available to earlier cores.
Resolved the decoding conflict between pref and lwc3.
Depends on D4115
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4116
llvm-svn: 210900
Summary:
These MIPS-3D instructions have never been implemented in LLVM so we only
add testcases.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4115
llvm-svn: 210899
Summary:
b(ge|lt)zal have been removed in MIPS32r6/MIPS64r6. However, bal (an alias
for 'bgezal $zero, $offset') still remains with the same encoding it had
prior to MIPS32r6/MIPS64r6.
Updated the MipsNaCLELFStreamer, and MipsLongBranch to correctly handle the
MIPS32r6/MIPS64r6 BAL instruction in addition to the existing BAL_BR pseudo.
No changes were required to the CodeGen test that looks for BAL
(test/CodeGen/Mips/longbranch.ll) since the new instruction has the same
syntax.
Depends on D4113
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4114
llvm-svn: 210898
Summary:
It's not emitted by the code generator so we only need assembler tests.
Also added missing daddi aliases from dsub mnemonics, and removed a couple
duplicate dsub tests.
Depends on D4112
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4113
llvm-svn: 210897
Summary:
Also tightened up the acceptable condition operand for these instructions
on MIPS-I to MIPS-III. Support for $fcc[1-7] was added in MIPS-IV. Prior
to that only $fcc0 is acceptable.
We currently don't optimize (BEQZ (NOT $a), $target) and similar. It's
probably best to do this in InstCombine.
Depends on D4111
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4112
llvm-svn: 210787
Summary:
These instructions are not implemented for any MIPS ISA so we only need
testcases.
Depends on D4110
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4111
llvm-svn: 210786
Summary:
Folded mips64-fp-indexed-ls.ll into fp-indexed-ls.ll. To do so, the zext's in
mips64-fp-indexed-ls.ll were changed to implicit sign extensions (performed
by getelementptr). This does not affect the purpose of the test.
Depends on D4004
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D4110
llvm-svn: 210784
Summary: We haven't implemented this instruction so we only add a test case.
Reviewers: vmedic, zoran.jovanovic, jkolek
Reviewed By: jkolek
Differential Revision: http://reviews.llvm.org/D4004
llvm-svn: 210779
Summary:
c.cond.fmt has been replaced by cmp.cond.fmt. Where c.cond.fmt wrote to
dedicated condition registers, cmp.cond.fmt writes 1 or 0 to normal FGR's
(like the GPR comparisons).
mov[fntz] have been replaced by seleqz and selnez. These instructions
conditionally zero a register based on a bool in a GPR. The results can
then be or'd together to act as a select without, for example, requiring a third
register read port.
mov[fntz].[ds] have been replaced with sel.[ds]
MIPS64r6 currently generates unnecessary sign-extensions for most selects.
This is because the result of a SETCC is currently an i32. Bits 32-63 are
undefined in i32 and the behaviour of seleqz/selnez would otherwise depend
on undefined bits. Later, we will fix this by making the result of SETCC an
i64 on MIPS64 targets.
Depends on D3958
Reviewers: jkolek, vmedic, zoran.jovanovic
Reviewed By: vmedic, zoran.jovanovic
Differential Revision: http://reviews.llvm.org/D4003
llvm-svn: 210777
Summary:
To make this work for both AFGR64 and FGR64 register sets, I've had to make the
instruction definition consistent with the white lie (that it reads the lower
32-bits of the register) when they are generated by expandBuildPairF64().
Corrected the definition of hasMips32r2() and hasMips64r2() to include
MIPS32r6 and MIPS64r6.
Depends on D3956
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3957
llvm-svn: 210771
Summary:
This patch updates both the assembler and the code generator.
MIPS32r6/MIPS64r6 replaces them with maddf.[ds] and msubf.[ds] which are fused
multiply-add/sub operations. We don't emit these yet, this patch only prevents the removed instructions from being emitted.
Depends on D3955
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3956
llvm-svn: 210763
Summary:
This patch disables madd/maddu/msub/msubu in both the assembler and code
generator.
Depends on D3896
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3955
llvm-svn: 210762
Summary:
The accumulator-based (HI/LO) multiplies and divides from earlier ISA's have
been removed and replaced with GPR-based equivalents. For example:
div $1, $2
mflo $3
is now:
div $3, $1, $2
This patch disables the accumulator-based multiplies and divides for
MIPS32r6/MIPS64r6 and uses the GPR-based equivalents instead.
Renamed expandPseudoDiv to insertDivByZeroTrap to better describe the
behaviour of the function.
MipsDelaySlotFiller now invalidates the liveness information when moving
instructions to the delay slot. Without this, divrem.ll will abort since
%GP ends up used before it is defined.
Reviewers: vmedic, zoran.jovanovic, jkolek
Reviewed By: jkolek
Differential Revision: http://reviews.llvm.org/D3896
llvm-svn: 210760
Summary: These instructions are available in ISAs >= mips32/mips64. For mips32r6/mips64r6, jr.hb has a new encoding format.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4019
llvm-svn: 210654
Summary:
Implement materialize of floating point literals in Mips Fast-Isel
Reopened version of D3659
Test Plan: simplestorefp1.ll
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D4071
llvm-svn: 210546
The SelectionDAG bad a special case for ISD::SELECT_CC, where it would
allow targets to specify:
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
to indicate that they wanted to expand ISD::SELECT_CC for all types.
This wasn't applied correctly everywhere, and it makes writing new
DAG patterns with ISD::SELECT_CC difficult.
llvm-svn: 210541
I saw at least a memory leak or two from inspection (on probably
untested error paths) and r206991, which was the original inspiration
for this change.
I ran this idea by Jim Grosbach a few weeks ago & he was OK with it.
Since it's a basically mechanical patch that seemed sufficient - usual
post-commit review, revert, etc, as needed.
llvm-svn: 210427
1) The commit was made despite profound lack of understanding:
"I did not understand the comment about using dyn_cast instead of isa. I will
commit as is and make the update after. You can explain what you meant to me."
Commit first, understand later isn't OK.
2) Review comments were simply ignored:
"Can you edit the summary to describe what the patch is for? It appears to be
a list of commits at the moment."
3) The patch got LGTM'd off-list without any indication of readiness.
4) The public mailing list was excluded from patch review so all of this was
hidden from the community.
This reverts commit r210414.
llvm-svn: 210424
Summary:
start to do simple constants
finish simplestore
add test case
format
Merge branch 'master' into 1756_8
Add basic functionality for assignment of ints. This creates a lot of core infrastructure in which to add, with little effort, quite a bit more to mips fast-isel
Merge branch 'master' into 1756_8
Add basic functionality for assignment of ints. This creates a lot of core infrastructure in which to add, with little effort, quite a bit more to mips fast-isel
in progress
finish integer materialize
test cases
test cases
in progress
Finish up fast-isel materialize for ints.
Finish materialize for ints
test cases
simplestorei.ll
Merge branch 'master' into 1756_8
fix fp constants for fast-isel
Merge branch '1758_1' of dmz-portal.mips.com:llvm into 1758_1
in progress
lastest for fp materialization
clean up
Merge branch 'master' into 1758_1
formatting
add test case
finish test case
Merge branch 'master' into 1758_2
Test Plan:
simplestore.ll
simplestore.ll
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D3659
llvm-svn: 210414
Summary: Merge branch 'master' into 1758_6
Test Plan:
No functionality change. Run "make check" and run test-suite.
Because our servers are not yet running again I have not yet run test-suite.
I will further review myself before submission.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D3819
llvm-svn: 210413
Summary:
Included this file which is needed to enable tablegen generated functionality
for fast mips-isel
Test Plan:
This has no visible functionality by itself but just adding the include
file creates some issues so I have it as a separate patch.
Reviewers: dsanders
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D3812
llvm-svn: 210410
* Move the instruction that changes sp outside of the branch delay slot.
* Bundle-align the target of indirect branch.
Differential Revision: http://llvm-reviews.chandlerc.com/D3928
llvm-svn: 210262
%higher and %highest can have non-zero values only for offsets greater
than 2GB, which is highly unlikely, if not impossible when compiling a
single function. This makes long branch for MIPS64 3 instructions smaller.
Differential Revision: http://llvm-reviews.chandlerc.com/D3281.diff
llvm-svn: 209678
Summary:
Add a second fixup table to MipsAsmBackend::getFixupKindInfo() to correctly
position llvm-mc's fixup placeholders for big-endian.
See PR19836 for full details of the issue. To summarize, the fixup placeholders
do not account for endianness properly and the implementations of
getFixupKindInfo() for each target are measuring MCFixupKindInfo.TargetOffset
from different ends of the instruction encoding to compensate.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3889
llvm-svn: 209514
Summary:
Instead the system is required to provide some means of handling unaligned
load/store without special instructions. Options include full hardware
support, full trap-and-emulate, and hybrids such as hardware support within
a cache line and trap-and-emulate for multi-line accesses.
MipsSETargetLowering::allowsUnalignedMemoryAccesses() has been configured to
assume that unaligned accesses are 'fast' on the basis that I expect few
hardware implementations will opt for pure-software handling of unaligned
accesses. The ones that do handle it purely in software can override this.
mips64-load-store-left-right.ll has been merged into load-store-left-right.ll
The stricter testing revealed a Bits!=Bytes bug in passByValArg(). This has
been fixed and the variables renamed to clarify the units they hold.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3872
llvm-svn: 209512
Summary: Depends on D3787. Tablegen will raise an assertion without it.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3842
llvm-svn: 209419
Summary:
These emit the 'unknown instruction' instead of the correct error
because they have not been implemented in LLVM for any MIPS ISA.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3841
llvm-svn: 209418
Summary:
This required me to implement the disassembler for MIPS64r6 since the encodings
are ambiguous with other instructions. This in turn revealed a few
assembly/disassembly bugs which I have fixed.
* da[ht]i only take two operands according to the spec, not three.
* DecodeBranchTarget2[16] correctly handles wider immediates than simm16
* Also made non-functional change to DecodeBranchTarget and
DecodeBranchTargetMM to keep implementation style consistent between
them.
* Difficult encodings are handled by a custom decode method on the most
general encoding in the group. This method will convert the MCInst to a
different opcode if necessary.
DecodeBranchTarget is not currently the inverse of getBranchTargetOpValue
so disassembling some branch instructions emit incorrect output. This seems
to affect branches with delay slots on all MIPS ISA's. I've left this bug
for now and temporarily removed the check for the immediate on
bc[12]eqz/bc[12]nez in the MIPS32r6/MIPS64r6 tests.
jialc and jic crash the disassembler for some reason. I've left these
instructions commented out for the moment.
Depends on D3760
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3761
llvm-svn: 209415
After discussion with Zoran, we have decided to temporarily revert this commit.
It's causing some difficult to resolve conflicts and we are under time pressure
to deliver an initial MIPS64r6 compiler.
We will re-apply an equivalent patch once the time pressure has passed.
llvm-svn: 209211
This is mostly a mechanical change changing all the call sites to the newer
chained-function construction pattern. This removes the horrible 15-parameter
constructor for the CallLoweringInfo in favour of setting properties of the call
via chained functions. No functional change beyond the removal of the old
constructors are intended.
llvm-svn: 209082
This is a preliminary step to help ease the construction of CallLoweringInfo.
Changing the construction to a chained function pattern requires that the
parameter be nullable. However, rather than copying the vector, save a pointer
rather than the reference to permit a late binding of the arguments.
llvm-svn: 209080
Certainly not without having a custom PrintMethod to invert the immediate
beforehand. But probably not at all.
This will be tested when the TableGen "should I print this Alias" heuristic is
fixed (very soon).
llvm-svn: 208964
Summary:
No support for symbols in place of the immediate yet since it requires new
relocations.
Depends on D3671
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3689
llvm-svn: 208858
Summary:
They aren't implemented for any ISA at the moment.
Depends on D3670
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3671
llvm-svn: 208855
Summary:
Also use named constants for common opcode fields.
Depends on D3669
Reviewers: vmedic, zoran.jovanovic, jkolek
Reviewed By: jkolek
Differential Revision: http://reviews.llvm.org/D3670
llvm-svn: 208784
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-3 that was available in MIPS32R2.
To limit the number of tests required, only one 32-bit and one 64-bit ISA
prior to MIPS32/MIPS64 are tested.
rdhwr has been deliberately left without an ISA annotation for now. This is
because the assembler and CodeGen disagree on when the instruction is
available. Strictly speaking, it is only available in MIPS32r2 and
MIPS64r2. However, it is emulated by a kernel trap on earlier ISA's and is
necessary for TLS so CodeGen should emit it on older ISA's too.
Depends on D3696
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3697
llvm-svn: 208690
Summary:
We are currently very close to the 32-bit limit of the current assembler
implementation. This is because there is no way to represent an instruction
that is available in, for example, Mips3 or Mips32. We have to define a
feature bit that represents this.
This patch cleans up a pair of redundant feature bits and slightly postpones the
point we will reach the limit.
Reviewers: zoran.jovanovic, jkolek, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3703
llvm-svn: 208685
r208453 added support for having sret on the second parameter. In that
change, the code for copying sret into a virtual register was hoisted
into the loop that lowers formal parameters. This caused a "Wrong
topological sorting" assertion failure during scheduling when a
parameter is passed in memory. This change undoes that by creating a
second loop that deals with sret.
I'm worried that this fix is incomplete. I don't fully understand the
dependence issues. However, with this change we produce the same DAGs
we used to produce, so if they are broken, they are just as broken as
they have always been.
llvm-svn: 208637
Summary:
Also use named constants for common opcode fields.
Depends on D3669
Reviewers: jkolek, vmedic, zoran.jovanovic
Differential Revision: http://reviews.llvm.org/D3670
llvm-svn: 208582
Summary: The 'mul' line of the test is temporarily commented out because it currently matches the MIPS32 mul instead of the MIPS32r6 mul. This line will be uncommented when we disable the MIPS32 mul on MIPS32r6.
Reviewers: jkolek, zoran.jovanovic, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3668
llvm-svn: 208576
Summary:
To limit the number of tests required, only one 32-bit and one 64-bit ISA
prior to MIPS32/MIPS64 are explicitly tested.
Depends on D3695
Reviewers: vmedic
Differential Revision: http://reviews.llvm.org/D3696
llvm-svn: 208549
Summary:
This required a new instruction group representing the 32-bit subset of
MIPS-V that was available in MIPS32R2
Most of these instructions are correctly rejected but with the wrong error
message. These have been placed in a separate test for now. It happens
because many of the MIPS V instructions have not been implemented.
Depends on D3694
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3695
llvm-svn: 208546
Summary:
DCL[ZO] are now correctly marked as being MIPS64 instructions. This has no
effect on the CodeGen tests since expansion of i64 prevented their use
anyway.
The check for MIPS16 to prevent the use of CLZ no longer prevents DCLZ as
well. This is not a functional change since DCLZ is still prohibited by
being a MIPS64 instruction (MIPS16 is only compatible with MIPS32).
No functional change
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3694
llvm-svn: 208544
Summary:
dsbh and dshd are not available on Mips32r2. No codegen test changes
required since expansion of i64 prevented the use of these instructions
anyway.
Depends on D3690
Reviewers: vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3692
llvm-svn: 208542