It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
llvm-svn: 213678
"((~A & B) | A) -> (A | B)" and "((A & B) | ~A) -> (~A | B)"
Original Patch credit to Ankit Jain !!
Differential Revision: http://reviews.llvm.org/D4591
llvm-svn: 213676
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Refactor code, no functionality change, test case moved from instcombine to instsimplify.
Differential Revision: http://reviews.llvm.org/D4102
llvm-svn: 213231
In the original version of the patch the behaviour was like described in
the comment. This behaviour was changed before committing it without
updating the comment.
llvm-svn: 213117
Fix a crash in `InstCombiner::Descale()` when a multiply-by-zero gets
created as an argument to a GEP partway through an iteration, causing
-instcombine to optimize the GEP before the multiply.
rdar://problem/17615671
llvm-svn: 212742
isSafeToSpeculativelyExecute can optionally take a DataLayout pointer. In the
past, this was mainly used to make better decisions regarding divisions known
not to trap, and so was not all that important for users concerned with "cheap"
instructions. However, now it also helps look through bitcasts for
dereferencable loads, and will also be important if/when we add a
dereferencable pointer attribute.
This is some initial work to feed a DataLayout pointer through to callers of
isSafeToSpeculativelyExecute, generally where one was already available.
llvm-svn: 212720
In PR20059 ( http://llvm.org/pr20059 ), instcombine eliminates shuffles that are necessary before performing an operation that can trap (srem).
This patch calls isSafeToSpeculativelyExecute() and bails out of the optimization in SimplifyVectorOp() if needed.
Differential Revision: http://reviews.llvm.org/D4424
llvm-svn: 212629
This patch reduces the stack memory consumption of the InstCombine
function "isOnlyCopiedFromConstantGlobal() ", that in certain conditions
could overflow the stack because of excessive recursiveness.
For example, in a case like this:
%0 = alloca [50025 x i32], align 4
%1 = getelementptr inbounds [50025 x i32]* %0, i64 0, i64 0
store i32 0, i32* %1
%2 = getelementptr inbounds i32* %1, i64 1
store i32 1, i32* %2
%3 = getelementptr inbounds i32* %2, i64 1
store i32 2, i32* %3
%4 = getelementptr inbounds i32* %3, i64 1
store i32 3, i32* %4
%5 = getelementptr inbounds i32* %4, i64 1
store i32 4, i32* %5
%6 = getelementptr inbounds i32* %5, i64 1
store i32 5, i32* %6
...
This piece of code crashes llvm when trying to apply instcombine on
desktop. On embedded devices this could happen with a much lower limit
of recursiveness. Some instructions (getelementptr and bitcasts) make
the function recursively call itself on their uses, which is what makes
the example above consume so much stack (it becomes a recursive
depth-first tree visit with a very big depth).
The patch changes the algorithm to be semantically equivalent, but
iterative instead of recursive and the visiting order to be from a
depth-first visit to a breadth-first visit (visit all the instructions
of the current level before the ones of the next one).
Now if a lot of memory is required a heap allocation is done instead of
the the stack allocation, avoiding the possible crash.
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4355
Patch by Marcello Maggioni! We don't generally commit large stress test
that look for out of memory conditions, so I didn't request that one be
added to the patch.
llvm-svn: 212133
This patch enables transforms for
(x + (~(y | c) + 1) --> x - (y | c) if c is odd
Differential Revision: http://reviews.llvm.org/D4210
llvm-svn: 211881
This patch enables transforms for
(x + (~(y | c) + 1) --> x - (y | c) if c is even
Differential Revision: http://reviews.llvm.org/D4209
llvm-svn: 211765
This patch enables transforms for following patterns.
(x + (~(y & c) + 1) --> x - (y & c)
(x + (~((y >> z) & c) + 1) --> x - ((y>>z) & c)
Differential Revision: http://reviews.llvm.org/D3733
llvm-svn: 211266
* Find factorization opportunities using identity values.
* Find factorization opportunities by treating shl(X, C) as mul (X, shl(C))
* Keep NSW flag while simplifying instruction using factorization.
This fixes PR19263.
Differential Revision: http://reviews.llvm.org/D3799
llvm-svn: 211261
InstCombineMulDivRem has:
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
InstCombineAddSub has:
// W*X + Y*Z --> W * (X+Z) iff W == Y
These two transforms could fight with each other if C1*CI would not fold
away to something simpler than a ConstantExpr mul.
The InstCombineMulDivRem transform only acted on ConstantInts until
r199602 when it was changed to operate on all Constants in order to
let it fire on ConstantVectors.
To fix this, make this transform more careful by checking to see if we
actually folded away C1*CI.
This fixes PR20079.
llvm-svn: 211258
These will be used for custom lowering and for library
implementations of various math functions, so it's useful
to expose these as builtins.
llvm-svn: 211247
Summary:
As a starting step, we only use one simple heuristic: if the sign bits
of both a and b are zero, we can prove "add a, b" do not unsigned
overflow, and thus convert it to "add nuw a, b".
Updated all affected tests and added two new tests (@zero_sign_bit and
@zero_sign_bit2) in AddOverflow.ll
Test Plan: make check-all
Reviewers: eliben, rafael, meheff, chandlerc
Reviewed By: chandlerc
Subscribers: chandlerc, llvm-commits
Differential Revision: http://reviews.llvm.org/D4144
llvm-svn: 211084
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.
Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.
Piggyback a minor refactor in InstCombineCasts.cpp
Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll
llvm-svn: 211004
The messages were
"PR19753: Optimize comparisons with "ashr exact" of a constanst."
"Added support to optimize comparisons with "lshr exact" of a constant."
They were not correctly handling signed/unsigned operation differences,
causing pr19958.
llvm-svn: 210393
addrspacecast X addrspace(M)* to Y addrspace(N)*
-->
bitcast X addrspace(M)* to Y addrspace(M)*
addrspacecast Y addrspace(M)* to Y addrspace(N)*
Updat all affected tests and add several new tests in addrspacecast.ll.
This patch is based on http://reviews.llvm.org/D2186 (authored by Matt
Arsenault) with fixes and more tests.
llvm-svn: 210375
As discussed in cfe commit r210279, the correct little-endian
semantics for the vec_perm Altivec interfaces are implemented by
reversing the order of the input vectors and complementing the permute
control vector. This converts the desired permute from little endian
element order into the big endian element order that the underlying
PowerPC vperm instruction uses. This is represented with a
ppc_altivec_vperm intrinsic function.
The instruction combining pass contains code to convert a
ppc_altivec_vperm intrinsic into a vector shuffle operation when the
intrinsic has a permute control vector (mask) that is a constant.
However, the vector shuffle operation assumes that vector elements are
in natural order for their endianness, so for little endian code we
will get the wrong result with the existing transformation.
This patch reverses the semantic change to vec_perm that was performed
in altivec.h by once again swapping the input operands and
complementing the permute control vector, returning the element
ordering to little endian.
The correctness of this code is tested by the new perm.c test added in
a previous patch, and by other tests in the test suite that fail
without this patch.
llvm-svn: 210282
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
llvm-svn: 210186
The code was actually correct. Sorry for the confusion. I have expanded the
comment saying why the analysis is valid to avoid me misunderstaning it
again in the future.
llvm-svn: 210052
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Differential Revision: http://reviews.llvm.org/D3777
llvm-svn: 210006
original fix would actually trigger the *exact* same crasher as the
original bug for a different reason. Awesomesauce.
Working on test cases now, but wanted to get bots healthier.
llvm-svn: 209860
across PHI nodes. The code was computing the Idxs from the 'GEP'
variable's indices when what it wanted was Op1's indices. This caused an
ASan heap-overflow for me that pin pointed the issue when Op1 had more
indices than GEP did. =] I'll let Louis add a specific test case for
this if he wants.
llvm-svn: 209857
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
llvm-svn: 209843
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
llvm-svn: 209755
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
llvm-svn: 209746
Detected by Daniel Jasper, Ilia Filippov, and Andrea Di Biagio
Fixed the argument order to select (the mask semantics to blendv* are the
inverse of select) and fixed the tests
Added parenthesis to the assert condition
Ran clang-format
llvm-svn: 209667
Summary:
Implemented an InstCombine transformation that takes a blendv* intrinsic
call and translates it into an IR select, if the mask is constant.
This will eventually get lowered into blends with immediates if possible,
or pblendvb (with an option to further optimize if we can transform the
pblendvb into a blend+immediate instruction, depending on the selector).
It will also enable optimizations by the IR passes, which give up on
sight of the intrinsic.
Both the transformation and the lowering of its result to asm got shiny
new tests.
The transformation is a bit convoluted because of blendvp[sd]'s
definition:
Its mask is a floating point value! This forces us to convert it and get
the highest bit. I suppose this happened because the mask has type
__m128 in Intel's intrinsic and v4sf (for blendps) in gcc's builtin.
I will send an email to llvm-dev to discuss if we want to change this or
not.
Reviewers: grosbach, delena, nadav
Differential Revision: http://reviews.llvm.org/D3859
llvm-svn: 209643
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
This patch fixes 3 issues introduced by r209049 that only showed up in on
the sanitizer buildbots. One was a typo in a compare. The other is a check to
confirm that the single differing value in the two incoming GEPs is the same
type. The final issue was the the IRBuilder under some circumstances would
build PHIs in the middle of the block.
llvm-svn: 209065
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
rdar://15547484
llvm-svn: 209049
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Z3 Verifications code for above transform
http://rise4fun.com/Z3/Pmsh
Differential Revision: http://reviews.llvm.org/D3717
llvm-svn: 208848
Summary:
This gets rid of a sub instruction by moving the negation to the
constant when valid.
Reviewers: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3773
llvm-svn: 208827
In transformation:
BinOp(shuffle(v1,undef), shuffle(v2,undef)) -> shuffle(BinOp(v1, v2),undef)
type of the undef argument must be same as type of BinOp.
llvm-svn: 208531
Do not apply transformation:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
if operands v1 and v2 are of different size.
This change fixes PR19717, which was caused by r208488.
llvm-svn: 208518
This patch enables transformations:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
BinOp(shuffle(v1), const1) -> shuffle(BinOp, const2)
They allow to eliminate extra shuffles in some cases.
Differential Revision: http://reviews.llvm.org/D3525
llvm-svn: 208488
The instcomine logic to handle vpermilvar's pd and 256 variants was incorrect.
The _256 variants have indexes into the individual 128 bit lanes and in all
cases it also has to mask out unused bits.
llvm-svn: 207577
right intrinsics.
A packed logical shift right with a shift count bigger than or equal to the
element size always produces a zero vector. In all other cases, it can be
safely replaced by a 'lshr' instruction.
llvm-svn: 207299
This excludes avx512 as I don't have hardware to verify. It excludes _dq
variants because they are represented in the IR as <{2,4} x i64> when it's
actually a byte shift of the entire i{128,265}.
This also excludes _dq_bs as they aren't at all supported by the backend.
There are also no corresponding instructions in the ISA. I have no idea why
they exist...
llvm-svn: 207058
Summary:
Since the upper 64 bits of the destination register are undefined when
performing this operation, we can substitute it and let the optimizer
figure out that only a copy is needed.
Also added range merging, if an instruction copies a range that can be
merged with a previous copied range.
Added test cases for both optimizations.
Reviewers: grosbach, nadav
CC: llvm-commits
Differential Revision: http://reviews.llvm.org/D3357
llvm-svn: 207055
Don't replace shifts greater than the type with the maximum shift.
This isn't hit anywhere in the tests, and somewhere else is replacing
these with undef.
llvm-svn: 207000
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
With a constant mask a vpermil* is just a shufflevector. This patch implements
that simplification. This allows us to produce denser code. It should also
allow more folding down the line.
llvm-svn: 206801
header files and into the cpp files.
These files will require more touches as the header files actually use
DEBUG(). Eventually, I'll have to introduce a matched #define and #undef
of DEBUG_TYPE for the header files, but that comes as step N of many to
clean all of this up.
llvm-svn: 206777