crossing and generally work more like the blend emission code in the new
vector shuffle lowering.
My goal is to have the new vector shuffle lowering just produce VSELECT
nodes that are either matched here to BLENDI or are legal and matched in
the .td files to specific blend instructions. That seems much cleaner as
there are other ways to produce a VSELECT anyways. =]
No *observable* functionality changed yet, mostly because this code
appears to be near-dead. The behavior of this lowering routine did
change though. This code being mostly dead and untestable will change
with my next commit which will also point some new tests at it.
llvm-svn: 218588
AVX-512.
There is no interesting logic yet. Everything ends up eventually
delegating to the generic code to split the vector and shuffle the
halves. Interestingly, that logic does a significantly better job of
lowering all of these types than the generic vector expansion code does.
Mostly, it lets most of the cases fall back to nice AVX2 code rather
than all the way back to SSE code paths.
Step 2 of basic AVX-512 support in the new vector shuffle lowering. Next
up will be to incrementally add direct support for the basic instruction
set to each type (adding tests first).
llvm-svn: 218585
assertion, making the name generic, and improving the documentation.
Step 1 in adding very primitive support for AVX-512. No functionality
changed yet.
llvm-svn: 218584
vectors.
Someone will need to build the AVX512 lowering, which should follow
AVX1 and AVX2 *very* closely for AVX512F and AVX512BW resp. I've added
a dummy test which is a port of the v8f32 and v8i32 tests from AVX and
AVX2 to v8f64 and v8i64 tests for AVX512F and AVX512BW. Hopefully this
is enough information for someone to implement proper lowering here. If
not, I'll be happy to help, but right now the AVX-512 support isn't
a priority for me.
llvm-svn: 218583
lowerings.
This was hopelessly broken. First, the x86 backend wants '-1' to be the
element value representing true in a boolean vector, and second the
operand order for VSELECT is backwards from the actual x86 instructions.
To make matters worse, the backend is just using '-1' as the true value
to get the high bit to be set. It doesn't actually symbolically map the
'-1' to anything. But on x86 this isn't quite how it works: there *only*
the high bit is relevant. As a consequence weird non-'-1' values like
0x80 actually "work" once you flip the operands to be backwards.
Anyways, thanks to Hal for helping me sort out what these *should* be.
llvm-svn: 218582
A new thread arriving while a pending signal notification
is outstanding will (1) add the new thread to the list of
stops expected before the deferred signal notification is
fired, (2) send a stop request for the new thread, and
(3) track the new thread as currently running.
llvm-svn: 218578
Clang uses two types to talk about a C++ class, the
NonVirtualBaseLLVMType and the LLVMType. Previously, we would allow one
of these to be packed and the other not.
This is problematic. If both don't agree on a common subset of fields,
then routines like getLLVMFieldNo will point to the wrong field. Solve
this by copying the 'packed'-ness of the complete type to the
non-virtual subobject. For this to work, we need to take into account
the non-virtual subobject's size and alignment when we are computing the
layout of the complete object.
This fixes PR21089.
llvm-svn: 218577
new vector shuffle target DAG combines -- it helps to actually test for
the value you want rather than just using an integer in a boolean
context.
Have I mentioned that I loathe implicit conversions recently? :: sigh ::
llvm-svn: 218576
of widening masks.
We can't widen a zeroing mask unless both elements that would be merged
are either zeroed or undef. This is the only way to widen a mask if it
has a zeroed element.
Also clean up the code here by ordering the checks in a more logical way
and by using the symoblic values for undef and zero. I'm actually torn
on using the symbolic values because the existing code is littered with
the assumption that -1 is undef, and moreover that entries '< 0' are the
special entries. While that works with the values given to these
constants, using the symbolic constants actually makes it a bit more
opaque why this is the case.
llvm-svn: 218575
If there is a store followed by a store with the same value to the same location, then the store is dead/noop. It can be removed.
This problem is found in spec2006-197.parser.
For example,
stur w10, [x11, #-4]
stur w10, [x11, #-4]
Then one of the two stur instructions can be removed.
Patch by David Xu!
llvm-svn: 218569
See http://reviews.llvm.org/D5495 for more details.
These are changes that are part of an effort to support building llgs, within the AOSP source tree, using the Android.mk
build system, when using the llvm/clang/lldb git repos from AOSP replaced with the experimental ones currently in
github.com/tfiala/aosp-{llvm,clang,lldb,compiler-rt}.
llvm-svn: 218568
llvm::huge_valf is defined in a header file, so it is initialized
multiple times in every compiled unit upon program startup.
With non-VC compilers huge_valf is set to a HUGE_VALF which the
compiler can probably optimize out.
With VC numeric_limits<float>::infinity() does not return a number
but a runtime structure member which therotically may change
between calls so the compiler does not optimize out the
initialization and it happens many times. It can be easily seen by
placing a breakpoint on the initialization line.
This patch moves llvm::huge_valf initialization to a source file
instead of the header.
llvm-svn: 218567
If too many parameters are involved in accesses used to create RTCs
we might end up with enormous compile times and RTC expressions.
The reason is that the lexmin/lexmax is dependent on all these
parameters and isl might need to create a case for every "ordering"
of them (e.g., p0 <= p1 <= p2, p1 <= p0 <= p2, ...).
The exact number of parameters allowed in accesses is defined by the
command line option -polly-rtc-max-parameters=XXX and set by default
to 8.
Differential Revision: http://reviews.llvm.org/D5500
llvm-svn: 218566
I spotted this by inspection when debugging something else, so I have no
test case what-so-ever, and am not even sure it is possible to
realistically trigger the bug. But this is what was intended here.
llvm-svn: 218565
and in the target shuffle combining when trying to widen vector
elements.
Previously only one of these was correct, and we didn't correctly
propagate zeroing target shuffle masks (which have a different sentinel
value from undef in non- target shuffle masks now). This isn't just
a missed optimization, this caused us to drop zeroing shuffles on the
floor and miscompile code. The added test case is one example of that.
There are other fixes to the test suite as a consequence of this as well
as restoring the undef elements in some of the masks that were lost when
I brought sanity to the actual *value* of the undef and zero sentinels.
I've also just cleaned up some of the PSHUFD and PSHUFLW and PSHUFHW
combining code, but that code really needs to go. It was a nice initial
attempt, but it isn't very principled and the recursive shuffle combiner
is much more powerful.
llvm-svn: 218562
to significantly more sane sentinels. Notably, everywhere else in the
backend's representation of shuffles uses '-1' to represent undef. The
target shuffle masks really shouldn't diverge from that, especially as
in a few places they are manipulated by shared code.
This causes us to lose some undef lanes in various test masks. I want to
get these back, but technically it isn't invalid and there are a *lot*
of bugs here so I want to try to establish a saner baseline for fixing
some of the bugs by aligning the specific senitnel values used.
llvm-svn: 218561
Tested two pending stops before notification, where one of the pending stop
requirements was already known to be stopped.
Tested pending thread stop before notification, then reporting thread with
pending stop died and verifies pending notification is made.
llvm-svn: 218559
Glad I did - caught a bug where the auto variable was not a reference
to a set and instead was a copy. I need to review rules on that!
llvm-svn: 218558
This is purely refactoring. No functional changes intended. PowerPC is the only target
that is currently using this interface.
The ultimate goal is to allow targets other than PowerPC (certainly X86 and Aarch64) to turn this:
z = y / sqrt(x)
into:
z = y * rsqrte(x)
And:
z = y / x
into:
z = y * rcpe(x)
using whatever HW magic they can use. See http://llvm.org/bugs/show_bug.cgi?id=20900 .
There is one hook in TargetLowering to get the target-specific opcode for an estimate instruction
along with the number of refinement steps needed to make the estimate usable.
Differential Revision: http://reviews.llvm.org/D5484
llvm-svn: 218553
Otherwise we can end up silently skipping an import. If we happen to be
building another module at the time, we may build a mysteriously broken
module and not know why it seems to be missing symbols.
llvm-svn: 218552
Users of getSectionContents shouldn't try to pass in BSS or virtual
sections. In all instances, this is a bug in the code calling this
routine.
N.B. Some COFF implementations (like CL) will mark their BSS sections as
taking space on disk. This would confuse COFFObjectFile into thinking
the section is larger than the file.
llvm-svn: 218549
So in fully linked images when a call is made through a stub it now gets a
comment like the following in the disassembly:
callq 0x100000f6c ## symbol stub for: _printf
indicating the call is to a symbol stub and which symbol it is for. This is
done for branch reference types and seeing if the branch target is in a stub
section and if so using the indirect symbol table entry for that stub and
using that symbol table entries symbol name.
llvm-svn: 218546
files in this directory. If it should be defined anywhere, it should be defined
when building lib/LTO/LTOCodeGenerator.cpp, but we've not had it defined there
for quite some time, so that doesn't really seem to be very important. (It also
would slow down the modules build by creating extra module variants.)
llvm-svn: 218544
lldb sets the variable SHARED_LIBRARY to 1, which breaks this conditional,
because older versions of CMake interpret
if ("${t}" STREQUAL "SHARED_LIBRARY")
as meaning
if ("${t}" STREQUAL "1")
in this case. Change the conditional so it does the right thing with both old
and new CMakes.
llvm-svn: 218542
It makes no sense to link in sanitizer runtimes in this case: the user
probably doesn't want to see any system/toolchain libs in his link if he
provides these flags, and the link will most likely fail anyway - as sanitizer
runtimes depend on libpthread, libdl, libc etc.
Also, see discussion in https://code.google.com/p/address-sanitizer/issues/detail?id=344
llvm-svn: 218541
that managed to elude all of my fuzz testing historically. =/
Something changed to allow this code path to actually be exercised and
it was doing bad things. It is especially heavily exercised by the
patterns that emerge when doing AVX shuffles that end up lowered through
the 128-bit code path.
llvm-svn: 218540
Reviewed at http://reviews.llvm.org/D4527
Fixed a test case failure on 32-bit Linux, I did right shift on intptr_t, instead it should have been uintptr_t.
llvm-svn: 218538