breakpoint as "file address" so that the address breakpoint will track that
module even if it gets loaded in a different place. Also fixed the Address
breakpoint resolver so that it handles this tracking correctly.
llvm-svn: 253308
Python 3 has lots of new debug asserts, and some of these were
firing on PythonFile. Specifically related to handling of invalid
files.
llvm-svn: 253261
This is a first pass at a cleanup of that code, modernizing the "type X clear" commands, and providing the basic infrastructure I plan to use all over
More cleanup will come over the next few days
llvm-svn: 253125
Change Test-rdar-12481949.py to expect GetValueAsUnsigned() to return
0xffffffff if the variable is an int32_t (signed, 4 byte integer) with
value of -1. The previous expectation where we expected the value to be
0xffffffffffffffff doesn't make sense as nothing explains why we would
treat it as an 8 byte value.
This CL also removes a hack from Scalar::ULongLong what was most likely
added to get this test passing as it only worked in case the value of
the variable is -1 and didn't make any sense even in that case.
Differential revision: http://reviews.llvm.org/D14611
llvm-svn: 253027
Summary:
- Reason of both bugs:
1. For the very first frame, Unwinder doesn't check the validity
of Full UnwindPlan before creating StackFrame from it:
When 'process launch' command is run after setting a breakpoint
in inferior, the Unwinder runs and saves only Frame 0 (the frame
in which breakpoint was set) in thread's StackFrameList i.e.
m_curr_frames_sp. However, it doesn't check the validity of the
Full UnwindPlan for this frame by unwinding 2 more frames further.
2. Unwinder doesn't update the CFA value of Cursor when Full UnwindPlan
fails and FallBack UnwindPlan succeeds in providing valid CFA values
for frames:
Sometimes during unwinding of stack frames, the Full UnwindPlan
inside the RegisterContextLLDB object may fail to provide valid
CFA values for these frames. Then the Fallback UnwindPlan is used
to unwind the frames.
If the Fallback UnwindPlan succeeds, then it provides a valid new
CFA value. The RegisterContextLLDB::m_cfa field of Cursor object
is updated during the Fallback UnwindPlan execution. However,
UnwindLLDB misses the implementation to update the 'cfa' field
of this Cursor with this valid new CFA value.
- This patch fixes both these issues.
- Remove XFAIL in test files corresponding to these 2 Bugs
Change-Id: I932ea407545ceee2d628f946ecc61a4806d4cc86
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: jingham, lldb-commits, jasonmolenda
Subscribers: lldb-commits, ovyalov, tberghammer
Differential Revision: http://reviews.llvm.org/D14226
llvm-svn: 253026
correctly handle stepping over one breakpoint directly onto another breakpoint.
This isn't fixing that bug, but rather just changing 252963 to not use breakpoints
if it is only stepping one instruction.
llvm-svn: 253008
This is a helper class which supports a number of
features including exception to string formatting with
backtrace handling and auto-restore of exception state
upon scope exit.
Additionally, unit tests are included to verify the
feature set of the class.
llvm-svn: 252994
of addresses, and the range has no branches, instead of running to the last instruction and
single-stepping over that, run to the first instruction after the end of the range. If there
are no branches in the current range, then the bytes right after it have to be in the current
function, and have to be instructions not data in code, so this is safe. And it cuts down one
extra stepi per source range step.
Incidentally, this also works around a bug in the llvm Intel assembler where it treats the "rep"
prefix as a separate instruction from the repeated instruction. If that were at the end of a
line range, then we would put a trap in place of the repeated instruction, which is undefined
behavior. Current processors just ignore the repetition in this case, which changes program behavior.
Since there would never be a line range break after the rep prefix, always doing the range stepping
to the beginning of the new range avoids this problem.
<rdar://problem/23461686>
llvm-svn: 252963
PyCallable is a class that exists solely within the swig wrapper
code. PythonCallable is a more generic implementation of the same
idea that can be used by any Python-related interop code, and lives
in PythonDataObjects.h
The CL is mostly mechanical, and it doesn't cover every possible
user of PyCallable, because I want to minimize the impact of this
change (as well as making it easier to figure out what went wrong
in case this causes a failure). I plan to finish up the rest of
the changes in a subsequent patch, culminating in the removal of
PyCallable entirely.
llvm-svn: 252906
A very expected layout: source tree is in ~/src/llvm, the build directory is in
~/src/llvm-build, and the install location is in /usr/local/{lib,include}.
The DWARF information in /usr/local/lib/libLLVM.a for ilist.h points to
~/src/llvm-build/include/llvm/ADT/ilist.h. Now, when someone includes
"llvm/ADT/ilist.h" and links against /usr/local/lib/libLLVM.a. Disaster.
The DWARF information in libUser.so for ilist.h points to two locations: the one
in /usr/include, and the one in ~/src/llvm-build/include. LLDB gets confused.
Let's uniquify fully-qualified names and never trip on such a thing.
Differential Revision: http://reviews.llvm.org/D14549
llvm-svn: 252898
This adds PythonTuple and PythonCallable classes to PythonDataObjects.
Additionally, unit tests are provided that exercise this functionality,
including invoking manipulating and checking for validity of tuples,
and invoking and checking for validity of callables using a variety
of different syntaxes.
The goal here is to eventually replace the code in python-wrapper.swig
that directly uses the Python C API to deal with callables and name
resolution with this code that can be more easily tested and debugged.
llvm-svn: 252787
It used to be a unique pointer, and there could be a case where ClangASTSource
held onto a copy of the pointer but Target::Destroy destroyed the unique pointer
in the mean time.
I also ensured that there is a validity check on the target (which confirms that
a ClangASTImporter can be generated) before the target's shared pointer is
copied into ClangASTSource.
This race condition caused a crash if Target::Destroy was called and then later
the target objecct was deleted.
llvm-svn: 252665
This latter determination may or may not be possible on a per-language basis; and neither is mandatory to implement for any language
Use this knowledge in the ValueObjectPrinter to generalize the notion of IsObjCNil() and the respective printout
llvm-svn: 252663
Fixed a crash that would happen if you tried to get the name of a constructor or destructor by calling "getDeclName()" instead of calling getName() (which would assert and crash).
Added the ability to get function arguments names from SBFunction.
llvm-svn: 252622
"Modify internal breakpoints so they resolve just like external
breakpoints do. This allow you to set symbol and file + line internal
breakpoints and have them get updated correctly."
<rdar://problem/16931767>
llvm-svn: 252584
triple for a process. He writes, "Changes to the way setting the
triple works on a target so that if the target has passed a fully
specified triple, and the newly passed triple is not a revamp of
the current one, and the current one is fully specified, then do
not replace the existing triple."
Triple handling got a bit more complicated on mac with the addition
of ios/watchos/tvos and their simulators, and tracking the correct
os versions for them so expressions are compiled with the expected
APIs available to the user.
<rdar://problem/19820698>
llvm-svn: 252583
Also, add an async error message if the dyld solib loaded callback function
can't find an ABI (which results in no solibs being loaded in the process).
This is a big error and we should call attention to it.
<rdar://problem/23471384>
llvm-svn: 252581
They get treated as special RLE encoding symbols and packets get
corrupted. Most other packet types already know about this apparently,
but QEnvironment missed these two.
Should fix PR25300.
llvm-svn: 252521
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503