This is a very thin wrapper over a std::vector<DWARFDIE> and does
not seem to provide any real value over just using a container
directly.
Differential Revision: https://reviews.llvm.org/D59165
llvm-svn: 355974
This is not used outside of the private implementation of the class,
so hiding in the implementation file is a nice way of simplifying
the external interface.
Differential Revision: https://reviews.llvm.org/D59164
llvm-svn: 355973
ICF can cause multiple symbols to start at the same virtual address.
I plan to handle this shortly, but I wanted to correct the comment for
now.
Deleted an obsolete comment about adjusting the offset for the magic
number at the beginning of the debug info stream. This adjustment is
handled at a lower level now.
llvm-svn: 355943
Summary:
This patch marks the inline namespaces from DWARF as inline and also ensures that looking
up declarations now follows the lookup rules for inline namespaces.
Reviewers: aprantl, shafik, serge-sans-paille
Reviewed By: aprantl
Subscribers: eraman, jdoerfert, lldb-commits
Tags: #c_modules_in_lldb, #lldb
Differential Revision: https://reviews.llvm.org/D59198
llvm-svn: 355897
Summary: DW_OP_GNU_addr_index has been renamed as DW_OP_addrx in the standard. clang produces DW_OP_addrx tags and with this change lldb starts to process them.
Reviewers: aprantl, jingham, davide, clayborg, serge-sans-paille
Reviewed By: aprantl
Subscribers: jdoerfert, dblaikie, labath, shafik, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D59004
llvm-svn: 355629
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
This was reverted because it breaks the GreenDragon bot, but
the reason for the breakage is lost, so I'm resubmitting this
now so we can find out what the problem is.
llvm-svn: 355528
Summary:
This file implements some general purpose data structures, and so it
belongs to the Utility module.
Reviewers: zturner, jingham, JDevlieghere, clayborg, espindola
Subscribers: emaste, mgorny, javed.absar, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D58970
llvm-svn: 355509
Given that we have a target named Symbols, one wonders why a
file named Symbols.cpp is not in this target. To be clear,
the functions exposed from this file are really focused on
*locating* a symbol file on a given host, which is where the
ambiguity comes in. However, it makes more sense conceptually
to be in the Symbols target. While some of the specific places
to search for symbol files might change depending on the Host,
this is not inherently true in the same way that, for example,
"accessing the file system" or "starting threads" is
fundamentally dependent on the Host.
PDBs, for example, recently became a reality on non-Windows platforms,
and it's theoretically possible that DSYMs could become a thing on non
MacOSX platforms (maybe in a remote debugging scenario). Other types of
symbol files, such as DWO, DWP, etc have never been tied to any Host
platform anyway.
After this patch, there is only one remaining dependency from
Host to Target.
Differential Revision: https://reviews.llvm.org/D58730
llvm-svn: 355032
COFF files are modelled in lldb as having one big container section
spanning the entire module image, with the actual sections being
subsections of that. In this model, the base address is simply the
address of the first byte of that section.
This also removes the hack where ObjectFilePECOFF was using the
m_file_offset field to communicate this information. Using file offset
for this purpose is completely wrong, as that is supposed to indicate
where is this ObjectFile located in the file on disk. This field is only
meaningful for fat binaries, and should normally be 0.
Both PDB plugins have been updated to use GetBaseAddress instead of
GetFileOffset.
llvm-svn: 354258
Host had a function to get the UnixSignals instance corresponding
to the current host architecture. This means that Host had to
include a file from Target. To break this dependency, just make
this a static function directly in UnixSignals. We already have
the function UnixSignals::Create(ArchSpec) anyway, so we just
need to have UnixSignals::CreateForHost() which determines which
value to pass for the ArchSpec.
The goal here is to eventually break the Host->Target->Host
circular dependency.
Differential Revision: https://reviews.llvm.org/D57780
llvm-svn: 354168
This patch properly extracts the full submodule path as well as its
search paths from DWARF import decls and passes it on to the
ClangModulesDeclVendor.
rdar://problem/47970144
Differential Revision: https://reviews.llvm.org/D58090
llvm-svn: 353961
Summary:
This is coming from the discussion in D55356 (the most interesting part
happened on the mailing list, so it isn't reflected on the review page).
In short the issue is that lldb assumes that all bytes of a module image
in memory will be backed by a "section". This isn't the case for PECOFF
files because the initial bytes of the module image will contain the
file header, which does not correspond to any normal section in the
file. In particular, this means it is not possible to implement
GetBaseAddress function for PECOFF files, because that's supposed point
to the first byte of that header.
If my (limited) understanding of how PECOFF files work is correct, then
the OS is expecded to load the entire module into one continuous chunk
of memory. The address of that chunk (+/- ASLR) is given by the "image
base" field in the COFF header, and it's size by "image size". All of
the COFF sections are then loaded into this range.
If that's true, then we can model this behavior in lldb by creating a
"container" section to represent the entire module image, and then place
other sections inside that. This would make be consistent with how MachO
and ELF files are modelled (except that those can have multiple
top-level containers as they can be loaded into multiple discontinuous
chunks of memory).
This change required a small number of fixups in the PDB plugins, which
assumed a certain order of sections within the object file (which
obivously changes now). I fix this by changing the lookup code to use
section IDs (which are unchanged) instead of indexes. This has the nice
benefit of removing spurious -1s in the plugins as the section IDs in
the pdbs match the 1-based section IDs in the COFF plugin.
Besides making the implementation of GetBaseAddress possible, this also
improves the lookup of addresses in the gaps between the object file
sections, which will now be correctly resolved as belonging to the
object file.
Reviewers: zturner, amccarth, stella.stamenova, clayborg, lemo
Reviewed By: clayborg, lemo
Subscribers: JDevlieghere, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D56537
llvm-svn: 353916
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
Summary:
This patch makes virtual bases to be added in the correct order to the bases
list. It is important because `VTableContext` (`MicrosoftVTableContext` in our
case) uses then the order of virtual bases in the list to restore the virtual
table indexes. These indexes are used then to resolve the layout of the virtual
bases.
We haven't enough information about offsets of virtual bases regarding to the
object (moreover, in a common case we can't rely on such information, see the
example here: https://reviews.llvm.org/D53506#1272306 ), but there should be
enough information to restore the layout of the virtual bases from the indexes
in runtime. After D53506 this information is used whenever possible, so there
should be no problems with virtual bases' fields reading.
Reviewers: zturner, rnk, stella.stamenova
Subscribers: abidh, teemperor, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D56904
llvm-svn: 353806
Unlike std::make_unique, which is only available since C++14,
std::make_shared is available since C++11. Not only is std::make_shared
a lot more readable compared to ::reset(new), it also performs a single
heap allocation for the object and control block.
Differential revision: https://reviews.llvm.org/D57990
llvm-svn: 353764
Summary:
This adds support for auto-detection of path style to SymbolFileBreakpad
(similar to how r351328 did the same for DWARF). We guess each file
entry separately, as we have no idea which file came from which compile
units (and different compile units can have different path styles). The
breakpad generates should have already converted the paths to absolute
ones, so this guess should be reasonable accurate, but as always with
these kinds of things, it is hard to give guarantees about anything.
In an attempt to bring some unity to the path guessing logic, I move the
guessing logic from inside SymbolFileDWARF into the FileSpec class and
have both symbol files use it to implent their desired behavior.
Reviewers: clayborg, lemo, JDevlieghere
Subscribers: aprantl, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D57895
llvm-svn: 353702
Summary:
This patch teaches SymbolFileBreakpad to parse the line information in
breakpad files and present it to lldb.
The trickiest question here was what kind of "compile units" to present
to lldb, as there really isn't enough information in breakpad files to
correctly reconstruct those.
A couple of options were considered
- have the entire file be one compile unit
- have one compile unit for each FILE record
- have one compile unit for each FUNC record
The main drawback of the first approach is that all of the files would
be considered "headers" by lldb, and so they wouldn't be searched if
target.inline-breakpoint-strategy=never. The single compile unit would
also be huge, and there isn't a good way to name it.
The second approach will create mostly correct compile units for cpp
files, but it will still be wrong for headers. However, the biggest
drawback here seemed to be the fact that this can cause a compile unit
to change mid-function (for example when a function from another file is
inlined or another file is #included into a function). While I don't
know of any specific thing that would break in this case, it does sound
like a thing that we should avoid.
In the end, we chose the third option, as it didn't seem to have any
major disadvantages, though it was not ideal either. One disadvantage
here is that this generates a large number of compile units, and there
is still a question on how to name it. We chose to simply name it after
the first line record in that function. This should be correct 99.99% of
the time, though it can produce somewhat strange results if the very
first line record comes from an #included file.
Reviewers: clayborg, zturner, lemo, markmentovai
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56595
llvm-svn: 353404
stored relative to VFRAME
Summary:
This patch makes LLDB able to retrieve proper values for function arguments and
local variables stored in PDB relative to VFRAME register.
Patch contains retrieval of corresponding FPO table entries from PDB and a
generic translator from FPO programs to DWARF expressions to get correct VFRAME
value.
Patch also improves variables-locations.test and makes this test passable on
x86.
Patch By: leonid.mashinsky
Reviewers: zturner, asmith, stella.stamenova, aleksandr.urakov
Reviewed By: zturner
Subscribers: arphaman, labath, mgorny, aprantl, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D55122
llvm-svn: 352845
This is a continuation of my quest to make the size 0 a supported value.
This reapplies r352394 with additional PDB parser fixes prepared by
Pavel Labath!
Differential Revision: https://reviews.llvm.org/D57273
llvm-svn: 352521
Summary:
This patch adds the basic support of methods reconstruction by native PDB
plugin. It contains only most obvious changes (it processes LF_ONEMETHOD and
LF_METHOD records), some things still remain unsolved:
- mangled names retrieving;
- support of template methods.
Reviewers: zturner, labath, lemo, stella.stamenova
Reviewed by: zturner
Differential Revision: https://reviews.llvm.org/D56126
llvm-svn: 352464
Summary:
This addresses the issues raised in D56844. It removes the accessors from the
breakpad record structures by making the fields public. Also, I refactor the
UUID parsing code to remove hard-coded constants.
Reviewers: lemo
Subscribers: clayborg, lldb-commits
Differential Revision: https://reviews.llvm.org/D57037
llvm-svn: 352021
This patch extends SymbolFileBreakpad::AddSymbols to include the symbols
from the FUNC records too. These symbols come from the debug info and
have a size associated with them, so they are given preference in case
there is a PUBLIC record for the same address.
To achieve this, I first pre-process the symbols into a temporary
DenseMap, and then insert the uniqued symbols into the module's symtab.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D56590
llvm-svn: 351781
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This centralizes parsing of breakpad records, which was previously
spread out over ObjectFileBreakpad and SymbolFileBreakpad.
For each record type X there is a separate breakpad::XRecord class, and
an associated parse function. The classes just store the information in
the breakpad records in a more accessible form. It is up to the users to
determine what to do with that data.
This separation also made it possible to write some targeted tests for
the parsing code, which was previously unaccessible, so I write a couple
of those too.
Reviewers: clayborg, lemo, zturner
Reviewed By: clayborg
Subscribers: mgorny, fedor.sergeev, lldb-commits
Differential Revision: https://reviews.llvm.org/D56844
llvm-svn: 351541
Summary:
If we opened a file which was produced on system with different path
syntax, we would parse the paths from the debug info incorrectly.
The reason for that is that we would parse the paths as they were
native. For example this meant that on linux we would treat the entire
windows path as a single file name with no directory component, and then
we would concatenate that with the single directory component from the
DW_AT_comp_dir attribute. When parsing posix paths on windows, we would
at least get the directory separators right, but we still would treat
the posix paths as relative, and concatenate them where we shouldn't.
This patch attempts to remedy this by guessing the path syntax used in
each compile unit. (Unfortunately, there is no info in DWARF which would
give the definitive path style used by the produces, so guessing is all
we can do.) Currently, this guessing is based on the DW_AT_comp_dir
attribute of the compile unit, but this can be refined later if needed
(for example, the DW_AT_name of the compile unit may also contain some
useful info). This style is then used when parsing the line table of
that compile unit.
This patch is sufficient to make the line tables come out right, and
enable breakpoint setting by file name work correctly. Setting a
breakpoint by full path still has some kinks (specifically, using a
windows-style full path will not work on linux because the path will be
parsed as a linux path), but this will require larger changes in how
breakpoint setting works.
Reviewers: clayborg, zturner, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D56543
llvm-svn: 351328
The code in LLDB assumes that CompilerType and friends use the size 0
as a sentinel value to signal an error. This works for C++, where no
zero-sized type exists, but in many other programming languages
(including I believe C) types of size zero are possible and even
common. This is a particular pain point in swift-lldb, where extra
code exists to double-check that a type is *really* of size zero and
not an error at various locations.
To remedy this situation, this patch starts by converting
CompilerType::getBitSize() and getByteSize() to return an optional
result. To avoid wasting space, I hand-rolled my own optional data
type assuming that no type is larger than what fits into 63
bits. Follow-up patches would make similar changes to the ValueObject
hierarchy.
rdar://problem/47178964
Differential Revision: https://reviews.llvm.org/D56688
llvm-svn: 351214
This parameter was only ever used with the Module set, and
since a SymbolFile is tied to a module, the parameter turns
out to be entirely unnecessary. Furthermore, it doesn't make
a lot of sense to ask a caller to ask SymbolFile which is tied
to Module X to find types for Module Y, but that possibility
was open with the previous interface. By removing this
parameter from the API, it makes it harder to use incorrectly
as well as easier for an implementor to understand what it
needs to do.
llvm-svn: 351133
Every callsite was passing an empty SymbolContext, so this parameter
had no effect. Inside the DWARF implementation of this function,
however, there was one codepath that checked members of the
SymbolContext. Since no call-sites actually ever used this
functionality, it was essentially dead code, so I've deleted this
code path as well.
llvm-svn: 351132
This method took a SymbolContext but only actually cared about the
case where the m_function member was set. Furthermore, it was
intended to be implemented to parse blocks recursively despite not
documenting this in its name. So we change the name to indicate
that it should be recursive, while also limiting the function
parameter to be a Function&. This lets the caller know what is
required to use it, as well as letting new implementers know what
kind of inputs they need to be prepared to handle.
llvm-svn: 351131
Previously all of these functions accepted a SymbolContext&.
While a CompileUnit is one member of a SymbolContext, there
are also many others, and by passing such a monolithic parameter
in this way it makes the requirements and assumptions of the
API unclear for both callers as well as implementors.
All these methods need is a CompileUnit. By limiting the
parameter type in this way, we simplify the code as well as
make it self-documenting for both implementers and users.
Differential Revision: https://reviews.llvm.org/D56564
llvm-svn: 350943
Summary:
This commit adds the glue code necessary to integrate the
SymbolFileBreakpad into the plugin system. Most of the methods are
stubbed out. The only method implemented method is AddSymbols, which
parses the PUBLIC "section" of the breakpad "object file", and fills out
the Module's symtab.
To enable testing this, I've made two additional changes:
- dump Symtab from the SymbolVendor class. The symtab was already being
dumped as a part of the object file dump, but that happened before
symbol vendor kicked in, so it did not reflect any symbols added
there.
- add ability to explicitly specify the external symbol file in
lldb-test (so that the object file could be linked with the breakpad
symbol file). To make things simpler, I've changed lldb-test from
consuming multiple inputs (and dumping their symbols) to having it
just process a single file per invocation. This was not a problem
since everyone was using it that way already.
Reviewers: clayborg, zturner, lemo, markmentovai, amccarth
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D56173
llvm-svn: 350924
The function SymbolFile::ParseTypes previously accepted a SymbolContext.
This makes it extremely difficult to implement faithfully, because you
have to account for all possible combinations of members being set in
the SymbolContext. On the other hand, no clients of this function
actually care about implementing this function to this strict of a
standard. AFAICT, there is actually only 1 client in the entire
codebase, and it is the function ParseAllDebugSymbols, which is itself
only called for testing purposes when dumping information. At this
call-site, the only field it sets is the CompileUnit, meaning that an
implementer of a SymbolFile need not worry about any examining or
handling any other fields which might be set.
By restricting this API to accept exactly a CompileUnit& and nothing
more, we can simplify the life of new SymbolFile plugin implementers by
making it clear exactly what the necessary and sufficient set of
functionality they need to implement is, while at the same time removing
some dead code that tried to handle other types of SymbolContext fields
that were never going to be set anyway.
Differential Revision: https://reviews.llvm.org/D56462
llvm-svn: 350889
Typedefs are represented as S_UDT records in the globals stream. This
creates a strange situation where "types" are actually represented as
"symbols", so they need special handling.
In order to test this, we don't just use lldb and print out some
variables causing the AST to get created, because variables whose type
is a typedef will have debug info referencing the original type, not the
typedef. So we use lldb-test instead which will parse all debug info in
the entire file. This exposed some problems with lldb-test and the
native reader, mainly that certain types of obscure symbols which we can
find when iterating every single record would trigger crashes. These
have been fixed as well so that lldb-test can be used to test this
functionality.
Differential Revision: https://reviews.llvm.org/D56461
llvm-svn: 350888
ParseDeclsForContext was originally created to serve the very specific
case where the context is a function block. It was never intended to be
used for arbitrary DeclContexts, however due to the generic name, the
DWARF and PDB plugins implemented it in this way "just in case". Then,
lldb-test came along and decided to use it in that way.
Related to this, there are a set of functions in the SymbolFile class
interface whose requirements and expectations are not documented. For
example, if you call ParseCompileUnitFunctions, there's an inherent
requirement that you create entries in the underlying clang AST for
these functions as well as their signature types, because in order to
create an lldb_private::Function object, you have to pass it a
CompilerType for the parameter representing the signature.
On the other hand, there is no similar requirement (either inherent or
documented) if one were to call ParseDeclsForContext. Specifically, if
one calls ParseDeclsForContext, and some variable declarations, types,
and other things are added to the clang AST, is it necessary to create
lldb::Variable, lldb::Type, etc objects representing them? Nobody knows.
There is, however, an accidental requirement, because since all of the
plugins implemented this just in case, lldb-test came along and used
ParsedDeclsForContext, and then wrote check lines that depended on this.
When I went to try and implemented the NativePDB reader, I did not
adhere to this (in fact, from a layering perspective I went out of my
way to avoid it), and as a result the existing DIA PDB tests don't work
when the native PDB reader is enabled, because they expect that calling
ParseDeclsForContext will modify the *module's* view of symbols, and not
just the internal AST.
All of this confusion, however, can be avoided if we simply stick to
using ParseDeclsForContext for its original intended use case (blocks),
and use a different function (ParseAllDebugSymbols) for its intended use
case which is, unsuprisingly, to parse all the debug symbols (which is
all lldb-test really wanted to do anyway).
In the future, I would like to change ParseDeclsForContext to
ParseDeclsForFunctionBlock, then delete all of the dead code inside that
handles other types of DeclContexts (and probably even assert if the
DeclContext is anything other than a block).
A few PDB tests needed to be fixed up as a result of this, and this also
exposed a couple of bugs in the DIA PDB reader (doesn't matter much
since it should be going away soon, but worth mentioning) where the
appropriate AST entries weren't being created always.
Differential Revision: https://reviews.llvm.org/D56418
llvm-svn: 350764
Summary:
The main difference between the classes was supposed to be the fact that
one is backed by llvm::SmallVector, and the other by std::vector.
However, over the years, they have accumulated various other differences
too.
This essentially removes the std::vector version, as that is pretty much
identical to llvm::SmallVector<T, 0>, and combines their interfaces. It
does not attempt to do a more significant refactoring, even though there
is still a lot of duplication in this file, as it is hard to tell which
quirk of some API is depended on by somebody (and, a previous, more
ambitious attempt at this in D16769 has failed).
I also add some tests, including one which demonstrates one of the
quirks/bugs of the API I have noticed in the process.
Reviewers: clayborg, teemperor, tberghammer
Subscribers: mgorny, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56170
llvm-svn: 350380
Summary:
instead of returning the architecture through by-ref argument and a
boolean value indicating success, we can just return the ArchSpec
directly. Since the ArchSpec already has an invalid state, it can be
used to denote the failure without the additional bool.
Reviewers: clayborg, zturner, espindola
Subscribers: emaste, arichardson, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56129
llvm-svn: 350291
This is a first step towards getting lldb-test symbols working
with the native plugin. There is a remaining issue, which is
that the plugin expects that ParseDeclsForContext will also
create lldb symbols rather than just the decls, but the native
pdb plugin doesn't currently do this. This will be addressed
in a followup patch.
llvm-svn: 350243
There were several problems preventing this from working. The
first is that when the PDB had an absolute path to the main
source file, we would construct an invalid path by prepending the
compilation directory to it anyway. So we needed to check if the
path is already absolute first.
Second, LLDB assumes that the zero'th item in the support file list
is the main compilation unit. We were respecting this requirement,
but LLDB *also* requires that file to appear somewhere in the list
starting from index 1 as well. So the main compilation file should
appear in the support file list twice. And when parsing a line
table, it expects the LineEntry records to be constructed using
the 1-based index. With these two fixes we can now set breakpoints
by file and line using the native PDB reader.
llvm-svn: 350240
Summary:
r346165 introduced a bug, where we would fail to parse the size of an
array if that size happened to match an existing die offset.
The logic was:
if (DWARFDIE count = die.GetReferencedDie(DW_AT_count))
num_elements = compute_vla_size(count);
else
num_elements = die.GetUsigned(DW_AT_count); // a fixed-size array
The problem with this logic was that GetReferencedDie did not take the
form class of the attribute into account, and would happily return a die
reference for any form, if its value happened to match some die.
As this behavior is inconsistent with how llvm's DWARFFormValue class
operates, I chose to fix the problem by making our version of this class
match the llvm behavior. For this to work, I had to add an explicit form
class check to the .apple_XXX tables parsing code, because they do
(incorrectly?) use data forms as die references.
Reviewers: aprantl, clayborg
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D55991
llvm-svn: 350086
Previously we would create these for local variables but not for
global variables.
Also updated existing tests which created global variables to check
for them in the resulting AST.
llvm-svn: 349854
We had a use after free where we were assigning the result of a function
that returned a string to a StringRef. After fixing this use after
free, one of the DIA PDB tests now passes with the native PDB reader,
so we enable the test under native mode as well. The goal is to
eventually make all the tests pass under both, at which point we can
disable them all under DIA mode.
llvm-svn: 349673
We reconstruct the AST hierarchy by trying to hack up a mangled
name for the parent type using the child type's mangled name.
This was failing for enums because their tag type is represented
with two letters ("W4") instead of one letter ("T", "U", etc) as
it is with classes, structs, and unions. After accounting for
this we can now correctly determine when an enum is nested
inside of a namespace or a class.
llvm-svn: 349565
Previously the code that parsed debug info to create lldb's Symbol
objects such as Variable, Type, Function, etc was tightly coupled
to the AST reconstruction code. This made it difficult / impossible
to implement functions such as ParseDeclsForContext() that were only
supposed to be operating on clang AST's. By splitting these apart,
the logic becomes much cleaner and we have a clear separation of
responsibilities.
llvm-svn: 349383
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
This patch adds support for parsing and evaluating local variables.
using the native pdb plugin.
Differential Revision: https://reviews.llvm.org/D55575
llvm-svn: 349067
Previously CreateParameterDeclaration was always using the translation
unit DeclContext. We would later go and add parameters to the
FunctionDecl, but internally clang makes a copy when you do this, and
we'd end up with ParmVarDecl's at the global scope as well as in the
function scope.
This fixes the issue. It's hard to say whether this will introduce
a behavioral change in name lookup, but I know there have been several
hacks introduced in previous years to deal with collisions between
various types of variables, so there's a chance that this patch could
obviate one of those hacks.
Differential Revision: https://reviews.llvm.org/D55571
llvm-svn: 348941
Previously we would create an lldb::Function object for each function
parsed, but we would not add these to the clang AST. This is a first
step towards getting local variable support working, as we first need an
AST decl so that when we create local variable entries, they have the
proper DeclContext.
Differential Revision: https://reviews.llvm.org/D55384
llvm-svn: 348631
VarStreamArray was built on the assumption that it is backed by a
StreamRef, and offset 0 of that StreamRef is the first byte of the first
record in the array.
This is a logical and intuitive assumption, but unfortunately we have
use cases where it doesn't hold. Specifically, a PDB module's symbol
stream is prefixed by 4 bytes containing a magic value, and the first
byte of record data in the array is actually at offset 4 of this byte
sequence.
Previously, we would just truncate the first 4 bytes and then construct
the VarStreamArray with the resulting StreamRef, so that offset 0 of the
underlying stream did correspond to the first byte of the first record,
but this is problematic, because symbol records reference other symbol
records by the absolute offset including that initial magic 4 bytes. So
if another record wants to refer to the first record in the array, it
would say "the record at offset 4".
This led to extremely confusing hacks and semantics in loading code, and
after spending 30 minutes trying to get some math right and failing, I
decided to fix this in the underlying implementation of VarStreamArray.
Now, we can say that a stream is skewed by a particular amount. This
way, when we access a record by absolute offset, we can use the same
values that the records themselves contain, instead of having to do
fixups.
Differential Revision: https://reviews.llvm.org/D55344
llvm-svn: 348499
Summary:
This patch contains several small fixes, which makes it possible to evaluate
expressions on Windows using information from PDB. The changes are:
- several sanitize checks;
- make IRExecutionUnit::MemoryManager::getSymbolAddress to not return a magic
value on a failure, because callers wait 0 in this case;
- entry point required to be a file address, not RVA, in the ObjectFilePECOFF;
- do not crash on a debuggee second chance exception - it may be an expression
evaluation crash. Also fix detection of "crushed" threads in tests;
- create parameter declarations for functions in AST to make it possible to call
debugee functions from expressions;
- relax name searching rules for variables, functions, namespaces and types. Now
it works just like in the DWARF plugin;
- fix endless recursion in SymbolFilePDB::ParseCompileUnitFunctionForPDBFunc.
Reviewers: zturner, asmith, stella.stamenova
Reviewed By: stella.stamenova, asmith
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53759
llvm-svn: 348136
This reverts commit dec87759523b2f22fcff3325bc2cd543e4cda0e7.
This commit caused the tests on Windows to run forever rather than complete.
Reverting until the commit can be fixed to not stall.
llvm-svn: 348009
Summary:
This patch contains several small fixes, which makes it possible to evaluate
expressions on Windows using information from PDB. The changes are:
- several sanitize checks;
- make IRExecutionUnit::MemoryManager::getSymbolAddress to not return a magic
value on a failure, because callers wait 0 in this case;
- entry point required to be a file address, not RVA, in the ObjectFilePECOFF;
- do not crash on a debuggee second chance exception - it may be an expression
evaluation crash;
- create parameter declarations for functions in AST to make it possible to call
debugee functions from expressions;
- relax name searching rules for variables, functions, namespaces and types. Now
it works just like in the DWARF plugin;
- fix endless recursion in SymbolFilePDB::ParseCompileUnitFunctionForPDBFunc.
Reviewers: zturner, asmith, stella.stamenova
Reviewed By: stella.stamenova, asmith
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53759
llvm-svn: 347962
Summary:
This patch adds possibility of searching a public symbol with name and type in
a symbol file, not only in a symtab. It is helpful when working with PE, because
PE's symtabs contain only imported / exported symbols only. Such a search is
required for e.g. evaluation of an expression that calls some function of
the debuggee.
Reviewers: zturner, asmith, labath, clayborg, espindola
Reviewed By: clayborg
Subscribers: davide, emaste, arichardson, aleksandr.urakov, jingham,
lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53368
llvm-svn: 347960
A skeleton compilation unit may contain the DW_AT_str_offsets_base attribute
that points to the first string offset of the CU contribution to the
.debug_str_offsets. At the same time, when we use split dwarf,
the corresponding split debug unit also
may use DW_FORM_strx* forms pointing to its own .debug_str_offsets.dwo.
In that case, DWO does not contain DW_AT_str_offsets_base, but LLDB
still need to know and skip the .debug_str_offsets.dwo section header to
access the offsets.
The patch implements the support of DW_AT_str_offsets_base.
Differential revision: https://reviews.llvm.org/D54844
llvm-svn: 347859
The issue happens because starting from DWARF v5
DW_AT_addr_base attribute should be used
instead of DW_AT_GNU_addr_base. LLDB does not do that and
we end up reading the .debug_addr header as section content
(as addresses) instead of skipping it and reading the real addresses.
Then LLDB is unable to match 2 similar locations and
thinks they are different.
Differential revision: https://reviews.llvm.org/D54751
llvm-svn: 347842
When trying to fix the bots we expected that the cast would be needed in
different places. Ultimately it turned out only the
SymbolFileDWARFDebugMap was affected so, as Pavel correctly notes, it
makes more sense to do the cast just there instead of in teh FS.
llvm-svn: 347660
After a recent change in LLVM the TimePoint encoding become more
precise, exceeding the precision of the TimePoint obtained from the
DebugMap. This patch adds a flag to the GetModificationTime helper in
the FileSystem to return the modification time with less precision.
Thanks to Davide for bisecting this failure on the LLDB bots.
llvm-svn: 347615
Originally we created our 64-bit UID scheme by using the first byte as
sort of a "tag" to represent what kind of symbol this was, and we
re-used the PDB_SymType enumeration for this. For native pdb support,
this is not really the right abstraction layer, because what we really
want is something that tells us *how* to find the symbol. This means,
specifically, is in the globals stream / public stream / module stream /
TPI stream / etc, and for whichever one it is in, where is it within
that stream?
A good example of why the old namespacing scheme was insufficient is
that it is more or less impossible to create a uid for a field list
member of a class/struction/union/enum that tells you how to locate
the original record.
With this new scheme, the first byte is no longer a PDB_SymType enum
but a new enum created specifically to identify where in the PDB
this record lives. This gives us much better flexibility in
what kinds of symbols the uids can identify.
llvm-svn: 347018
Test cases were updated to not use the local compilation dir which
is different between development pc and build bots.
Original commit message:
[LLDB] - Support the single file split DWARF.
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52403
llvm-svn: 346855
Summary:
While parsing a childless compile unit DIE we could crash if the DIE was
followed by any extra data (such as a superfluous end-of-children
marker). This happened because the break-on-depth=0 check was performed
only when parsing the null DIE, which was not correct because with a
childless root DIE, we could reach the end of the unit without ever
encountering the null DIE.
If the compile unit contribution ended directly after the CU DIE,
everything would be fine as we would terminate parsing due to reaching
EOF. However, if the contribution contained extra data (perhaps a
superfluous end-of-children marker), we would crash because we would
treat that data as the begging of another compile unit.
This fixes the crash by moving the depth=0 check to a more generic
place, and also adds a regression test.
Reviewers: clayborg, jankratochvil, JDevlieghere
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D54417
llvm-svn: 346849
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52296
llvm-svn: 346848
clang-cl does not emit these, but MSVC does, so we need to be able to
handle them.
Because clang-cl does not generate them, it was a bit hard to write a
test. So what I had to do was get an PDB file with some S_CONSTANT
records in using cl and link, dump it using llvm-pdbutil dump -globals
-sym-data to get the bytes of the records, generate the same object file
using clang-cl but with -S to emit an assembly file, and replace all the
S_LDATA32 records with the bytes of the S_CONSTANT records. This way, we
can compile the file using llvm-mc and link it with lld-link.
Differential Revision: https://reviews.llvm.org/D54452
llvm-svn: 346787
In a previous patch, we pre-processed the TPI stream in order to build
the reverse mapping from nested type -> parent type so that we could
accurately reconstruct a DeclContext hierarchy.
However, there were some issues. An LF_NESTTYPE record is really just a
typedef, so although it happens to be used to indicate the name of the
nested type and referring to the global record which defines the type,
it is also used for every other kind of nested typedef. When we rebuild
the DeclContext hierarchy, we want it to be as accurate as possible,
which means that if we have something like:
struct A {
struct B {};
using C = B;
};
We don't want to create two CXXRecordDecls in the AST each with the
exact same definition. We just want to create one for B and then
define C as an alias to B. Previously, however, it would not be able
to distinguish between the two cases and it would treat A::B and
A::C as being two classes each with separate definitions. We address
the first half of improving the pre-processing logic so that only
actual definitions are treated this way.
Later, in a followup patch, we can handle the case of nested
typedefs since we're already going to be enumerating the field list
anyway and this patch introduces the general framework for
distinguishing between the two cases.
Differential Revision: https://reviews.llvm.org/D54357
llvm-svn: 346786
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
This was originally submitted in a patch which fixed two unrelated
bugs at the same time. This portion of the fix was reverted because
it broke several other things. However, the fix employed originally
was totally wrong, and attempted to change something in the ValueObject
printer when actually the bug was in the NativePDB plugin. We need
to mark forward enum decls as having external storage, otherwise
we won't be asked to complete them when the time comes. This patch
implements the proper fix, and updates tests accordingly.
llvm-svn: 346517
Bitfields are represented as LF_MEMBER records whose TypeIndex
points to an LF_BITFIELD record that describes the bit width,
bit offset, and underlying type of the bitfield. All we need to
do is resolve these when resolving record types.
llvm-svn: 346511
Moved the declaration of m_kind below the declaration of cvclass,
cvunion and cvenum. This order is necessary because in one of the
constructors the initialization of m_kind depends on the value of
cvclass.
third_party/llvm/llvm/tools/lldb/source/Plugins/SymbolFile/NativePDB/PdbUtil.cpp:50:7: error: field 'cvclass' will be initialized after field 'm_kind' [-Werror,-Wreorder]
: cvclass(std::move(c)),
^
third_party/llvm/llvm/tools/lldb/source/Plugins/SymbolFile/NativePDB/PdbUtil.cpp:51:14: error: field 'cvclass' is uninitialized when used here [-Werror,-Wuninitialized]
m_kind(cvclass.Kind == TypeRecordKind::Struct ? Struct : Class) {}
llvm-svn: 346435
In order to accurately put a type into the correct location in the AST
we construct from debug info, we need to be able to determine what
DeclContext (namespace, global, nested class, etc) that it goes into.
PDB doesn't contain this mapping. It does, however, contain the reverse
mapping. That is, for a given class type T, you can determine all
classes Q1, Q2, ..., Qn that are nested inside of T. We need to know,
for a given class type Q, what type T is it nested inside of.
This patch builds this map as a pre-processing step when we first
load the PDB by scanning every type. Initial tests show that while
this can be slow in debug builds of LLDB, it is quite fast in release
builds (less than 2 seconds for a ~1GB PDB, and it only needs to happen
once).
Furthermore, having this pre-processing step in place allows us to
repurpose it for building up other kinds of indexing to it down the
line. For the time being, this gives us very accurate reconstruction
of the DeclContext hierarchy.
Differential Revision: https://reviews.llvm.org/D54216
llvm-svn: 346429
This patch introduces the simple MSVCUndecoratedNameParser. It is needed for
parsing names of PDB symbols corresponding to template instantiations. For
example, for the name `operator<<A>'::`2'::B::operator> we can't just split the
name with :: (as it is implemented for now) to retrieve its scopes. This parser
processes such names in a more correct way.
Differential Revision: https://reviews.llvm.org/D52461
llvm-svn: 346213
Clang recently improved its DWARF support for C VLA types. The DWARF
now looks like this:
0x00000051: DW_TAG_variable [4]
DW_AT_location( fbreg -32 )
DW_AT_name( "__vla_expr" )
DW_AT_type( {0x000000d3} ( long unsigned int ) )
DW_AT_artificial( true )
...
0x000000da: DW_TAG_array_type [10] *
DW_AT_type( {0x000000cc} ( int ) )
0x000000df: DW_TAG_subrange_type [11]
DW_AT_type( {0x000000e9} ( __ARRAY_SIZE_TYPE__ ) )
DW_AT_count( {0x00000051} )
Without this patch LLDB will naively interpret the DIE offset 0x51 as
the static size of the array, which is clearly wrong. This patch
extends ValueObject::GetNumChildren to query the dynamic properties of
incomplete array types.
See the testcase for an example:
4 int foo(int a) {
5 int vla[a];
6 for (int i = 0; i < a; ++i)
7 vla[i] = i;
8
-> 9 pause(); // break here
10 return vla[a-1];
11 }
(lldb) fr v vla
(int []) vla = ([0] = 0, [1] = 1, [2] = 2, [3] = 3)
(lldb) quit
rdar://problem/21814005
Differential Revision: https://reviews.llvm.org/D53530
llvm-svn: 346165
In January Davide sent an e-mail to the mailing list to suggest removing
unmaintained language plugins such as Go and Java. The plan was to have
some cool down period to allow users to speak up, however after that the
plugins were never actually removed.
This patch removes the OCaml debugger plugin.
The plugin can be added again in the future if it is mature enough both
in terms of testing and maintenance commitment.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013171.html
Differential revision: https://reviews.llvm.org/D54060
llvm-svn: 346159
In January Davide sent an e-mail to the mailing list to suggest removing
unmaintained language plugins such as Go and Java. The plan was to have
some cool down period to allow users to speak up, however after that the
plugins were never actually removed.
This patch removes the Java debugger plugin.
The plugin can be added again in the future if it is mature enough both
in terms of testing and maintenance commitment.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013171.html
Differential revision: https://reviews.llvm.org/D54059
llvm-svn: 346158
In January Davide sent an e-mail to the mailing list to suggest removing
unmaintained language plugins such as Go and Java. The plan was to have
some cool down period to allow users to speak up, however after that the
plugins were never actually removed.
This patch removes the Go debugger plugin.
The plugin can be added again in the future if it is mature enough both
in terms of testing and maintenance commitment.
Discussion on the mailing list:
http://lists.llvm.org/pipermail/lldb-dev/2018-January/013171.html
Differential revision: https://reviews.llvm.org/D54057
llvm-svn: 346157
This is useful for investigating the clang ast as you reconstruct
it via by parsing debug info. It can also be used to write tests
against.
Differential Revision: https://reviews.llvm.org/D54072
llvm-svn: 346149
This adds support for DW_RLE_base_addressx, DW_RLE_startx_endx,
DW_RLE_startx_length, DW_FORM_rnglistx.
Differential revision: https://reviews.llvm.org/D53929
llvm-svn: 345958
Summary:
This patch adds possibility of searching a public symbol with name and type in a
symbol file. It is helpful when working with PE, because PE's symtabs contain
only imported / exported symbols only. Such a search is required for e.g.
evaluation of an expression that calls some function of the debuggee.
Reviewers: zturner, asmith, labath, clayborg, espindola
Reviewed By: clayborg
Subscribers: emaste, arichardson, aleksandr.urakov, jingham, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53368
llvm-svn: 345957
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
This patch should not introduce any behavior changes. It consists of
mostly one of two changes:
1. Replacing fall through comments with the LLVM_FALLTHROUGH macro
2. Inserting 'break' before falling through into a case block consisting
of only 'break'.
We were already using this warning with GCC, but its warning behaves
slightly differently. In this patch, the following differences are
relevant:
1. GCC recognizes comments that say "fall through" as annotations, clang
doesn't
2. GCC doesn't warn on "case N: foo(); default: break;", clang does
3. GCC doesn't warn when the case contains a switch, but falls through
the outer case.
I will enable the warning separately in a follow-up patch so that it can
be cleanly reverted if necessary.
Reviewers: alexfh, rsmith, lattner, rtrieu, EricWF, bollu
Differential Revision: https://reviews.llvm.org/D53950
llvm-svn: 345882
This patch removes the Exists method from FileSpec and updates its uses
with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53845
llvm-svn: 345854
This adds basic support for getting function signature types
into LLDB's type system, including into clang's AST. There are
a few edge cases which are not correctly handled, mostly dealing
with nested classes, but this isn't specific to functions and
apply equally to variable types. Note that no attempt has been
made yet to deal with member function types, which will happen
in subsequent patches.
Differential Revision: https://reviews.llvm.org/D53951
llvm-svn: 345848
This patch removes the GetByteSize method from FileSpec and updates its
uses with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53788
llvm-svn: 345812
This patch extends the FileSystem class with a bunch of functions that
are currently implemented as methods of the FileSpec class. These
methods will be removed in future commits and replaced by calls to the
file system.
The new functions are operated in terms of the virtual file system which
was recently moved from clang into LLVM so it could be reused in lldb.
Because the VFS is stateful, we turned the FileSystem class into a
singleton.
Differential revision: https://reviews.llvm.org/D53532
llvm-svn: 345783
This is NFC to clean up the `DWARFFormValue::ExtractValue`.
It groups similar `DW_FORM_*` and removes an excessive
assignment of `ref_addr_size` (it was assigned right after in any case).
llvm-svn: 345733
This adds the support for DW_FORM_addrx, DW_FORM_addrx1,
DW_FORM_addrx2, DW_FORM_addrx3, DW_FORM_addrx4 forms.
Differential revision: https://reviews.llvm.org/D53813
llvm-svn: 345706
Previous patches added support for dumping global variables of
primitive types, so we now do the same for class types.
For the most part, everything just worked, there was only one
minor bug needing fixed, which was that for variables of modified
types (e.g. const, volatile, etc) we can't resolve the forward
decl in CreateAndCacheType because the PdbSymUid must point to the
LF_MODIFIER which must point to the forward decl. So when it comes
time to call CompleteType, an assert was firing because we expected
to get a class, struct, union, or enum, but we were getting an
LF_MODIFIER instead.
The other issue is that one the newly added tests is for an array
member, which was not yet supported, so we add support for that
now in this patch.
There's probably room for other interesting layout test cases
here, but this at least should test the basics.
Differential Revision: https://reviews.llvm.org/D53822
llvm-svn: 345629
LLDB has the ability to display global variables, even without a running
process, via the target variable command. This is because global
variables are linker initialized, so their values are embedded directly
into the executables. This gives us great power for testing native PDB
functionality in a cross-platform manner, because we don't actually need
a running process. We can just create a target using an EXE file, and
display global variables. And global variables can have arbitrarily
complex types, so in theory we can fully exercise the type system,
record layout, and data formatters for native PDB files and PE/COFF
executables on any host platform, as long as our type does not require a
dynamic initializer.
This patch adds basic support for finding variables by name, and adds an
exhaustive test for fundamental data types and pointers / references to
fundamental data types.
Subsequent patches will extend this to typedefs, classes, pointers to
functions, and other cases.
Differential Revision: https://reviews.llvm.org/D53731
llvm-svn: 345373
This is similar to D53597, but following up with 2 more enums.
After this, all flag enums should be strongly typed all the way
through to the symbol files plugins.
Differential Revision: https://reviews.llvm.org/D53616
llvm-svn: 345314
When we get the `resolve_scope` parameter from the SB API, it's a
`uint32_t`. We then pass it through all of LLDB this way, as a uint32.
This is unfortunate, because it means the user of an API never actually
knows what they're dealing with. We can call it something like
`resolve_scope` and have comments saying "this is a value from the
`SymbolContextItem` enumeration, but it makes more sense to just have it
actually *be* the correct type in the actual C++ type system to begin
with. This way the person reading the code just knows what it is.
The reason to use integers instead of enumerations for flags is because
when you do bitwise operations on enumerations they get promoted to
integers, so it makes it tedious to constantly be casting them back
to the enumeration types, so I've introduced a macro to make this
happen magically. By writing LLDB_MARK_AS_BITMASK_ENUM after defining
an enumeration, it will define overloaded operators so that the
returned type will be the original enum. This should address all
the mechanical issues surrounding using rich enum types directly.
This way, we get a better debugger experience, and new users to
the codebase can get more easily acquainted with the codebase because
their IDE features can help them understand what the types mean.
Differential Revision: https://reviews.llvm.org/D53597
llvm-svn: 345313
We currently had a 2-step process where we had to call
SetBaseClassesForType and DeleteBaseClasses. Every single caller
followed this exact 2-step process, and there was manual memory
management going on with raw pointers. We can do better than this
by storing a vector of unique_ptrs and passing this around.
This makes for a cleaner API, and we only need to call one method
so there is no possibility of a user forgetting to call
DeleteBaseClassSpecifiers.
In addition to this, it also makes for a *simpler* API. Part of
why I wanted to do this is because when I was implementing the native
PDB interface I had to spend some time understanding exactly what I
was deleting and why. ClangAST has significant mental overhead
associated with it, and reducing the API surface can go along
way to making it simpler for people to understand.
Differential Revision: https://reviews.llvm.org/D53590
llvm-svn: 345312
With the fix: do not forget to hanlde the DW_RLE_start_end, which seems was
omited/forgotten/removed by mistake.
Original commit message:
The patch implements the support for DW_RLE_base_address and DW_RLE_offset_pair
.debug_rnglists entries
Differential revision: https://reviews.llvm.org/D53140
----
Added : /lldb/trunk/lit/Breakpoint/Inputs/debug_rnglist_offset_pair.yaml
Added : /lldb/trunk/lit/Breakpoint/debug_rnglist_offset_pair.test
Modified : /lldb/trunk/source/Plugins/SymbolFile/DWARF/DWARFDebugInfoEntry.cpp
Modified : /lldb/trunk/source/Plugins/SymbolFile/DWARF/DWARFDebugRanges.cpp
Modified : /lldb/trunk/source/Plugins/SymbolFile/DWARF/DWARFDebugRanges.h
Modified : /lldb/trunk/source/Plugins/SymbolFile/DWARF/SymbolFileDWARF.cpp
Modified : /lldb/trunk/source/Plugins/SymbolFile/DWARF/SymbolFileDWARF.h
llvm-svn: 345251
The patch implements the support for DW_RLE_base_address and DW_RLE_offset_pair
.debug_rnglists entries
Differential revision: https://reviews.llvm.org/D53140
llvm-svn: 345127
This adds support to LLDB for named types (class, struct, union, and
enum). This is true cross platform support, and hits the PDB file
directly without a dependency on Windows. Tests are added which
compile a program with certain interesting types and then use
load the target in LLDB and use "type lookup -- <TypeName>" to
dump the layout of the type in LLDB without a running process.
Currently only fields are parsed -- we do not parse methods. Also
we don't deal with bitfields or virtual bases correctly. Those
will make good followups.
Differential Revision: https://reviews.llvm.org/D53511
llvm-svn: 345047
This implements the support for .debug_loclists section, which is
DWARF 5 version of .debug_loc.
Currently, clang is able to emit it with the use of D53365.
Differential revision: https://reviews.llvm.org/D53436
llvm-svn: 345016
Summary:
This patch improves performance of `SymbolFilePDB` on huge executables
in two ways:
- cache names of public symbols by address. When creating variables we are
trying to get a mangled name for each one, and in `GetMangledForPDBData`
we are enumerating all public symbols, which takes O(n) for each variable.
With the cache we can retrieve a mangled name in O(log(n));
- cache section contributions. When parsing variables for context we are
enumerating all variables and check if the current one is belonging
to the current compiland. So we are retrieving a compiland ID
for the variable. But in `PDBSymbolData::getCompilandId` for almost every
variable we are enumerating all section contributions to check if the variable
is belonging to it, and get a compiland ID from the section contribution
if so. It takes O(n) for each variable, but with caching it takes about
O(log(n)). I've placed the cache in `SymbolFilePDB` and have created
`GetCompilandId` there. It actually duplicates `PDBSymbolData::getCompilandId`
except for the cache part. Another option is to support caching
in `PDBSymbolData::getCompilandId` and to place cache in `DIASession`, but it
seems that the last one doesn't imply such functionality, because
it's a lightweight wrapper over DIA and whole its state is only a COM pointer
to the DIA session. Moreover, `PDBSymbolData::getCompilandId` is used only
inside of `SymbolFilePDB`, so I think that it's not a bad place to do such
things. With this patch `PDBSymbolData::getCompilandId` is not used at all.
This bottlenecks were found with profiling. I've discovered these on a simple
demo project of Unreal Engine (x86 executable ~72M, PDB ~82M).
This patch doesn't change external behavior of the plugin, so I think that
there's no need for additional testing (already existing tests should warn us
about regress, if any).
Reviewers: zturner, asmith, labath
Reviewed By: asmith
Subscribers: Hui, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53375
llvm-svn: 345013
As discussed with Greg at the dev meeting, we need to ensure we have the
module lock in the SymbolFile. Usually the symbol file is accessed
through the symbol vendor which ensures that the necessary locks are
taken. However, there are a few methods that are accessed by the
expression parser and were lacking the lock.
This patch adds the locking where necessary and everywhere else asserts
that we actually already own the lock.
Differential revision: https://reviews.llvm.org/D52543
llvm-svn: 344945
This is mostly some cleanup done in the process of implementing
some basic support for types. I tried to split up the patch a
bit to get some of the NFC portion of the patch out into a separate
commit, and this is the result of that. It moves some code around,
deletes some spurious namespace qualifications, removes some
unnecessary header includes, forward declarations, etc.
llvm-svn: 344913
DWARF5 describes DW_RLE_start_end as:
This is a form of bounded range entry that has two target address operands.
Each operand is the same size as used in DW_FORM_addr. These indicate
the starting and ending addresses, respectively, that define the address range
for which the following location is valid.
The patch implements the support.
Differential revision: https://reviews.llvm.org/D53193
llvm-svn: 344674
It merges DWARFDebugInfoEntry's m_empty_children into m_has_children.
m_empty_children was implemented by rL144983.
As Greg confirmed m_has_children was used to represent what was in the DWARF in
the byte that follows the DW_TAG. m_empty_children was used for DIEs that said
they had children but actually only contain a single NULL tag. It is fine to
not differentiate between the two.
Also changed assert()->lldbassert() for m_abbr_idx 16-bit overflow check as
that could be a tough bug to catch if it ever happens.
I have checked all calls of HasChildren() that this change should not matter to
them. The code even wants to know if there are any children - it does not
matter how the children presence is coded in the binary.
Patch written based on suggestions by Greg Clayton.
Differential Revision: https://reviews.llvm.org/D53321
llvm-svn: 344644
xbolva00 bugreported $subj in: https://reviews.llvm.org/D46810#1247410
It can happen only from the line:
m_die_array.back().SetEmptyChildren(true);
In the case DW_TAG_compile_unit has DW_CHILDREN_yes but there is only 0 (end of
list, no children present). Therefore the assertion can fortunately happen only
with a hand-crafted DWARF or with DWARF from some suboptimal compilers.
Differential Revision: https://reviews.llvm.org/D53255
llvm-svn: 344605
This adds -- before any filenames, so that /U doesn't get interpreted
as a command line.
It also adds better error checking, so that we don't get assertions
on the failure path when a file fails to parse as a PDB.
llvm-svn: 344429
This was originally reverted due to some test failures on
Linux. Those problems turned out to require several additional
patches to lld and clang in order to fix, which have since been
submitted. This patch is resubmitted unchanged. All tests now
pass on both Linux and Windows.
llvm-svn: 344409
LLDB does not support this DWARF5 form atm.
At least gcc emits it in some cases when doing optimization
for abbreviations.
As far I can tell, clang does not support it yet, though
the rest LLVM code already knows about it.
The patch adds the support.
Differential revision: https://reviews.llvm.org/D52689
llvm-svn: 344328
This was originally causing some test failures on non-Windows
platforms, which required fixes in the compiler and linker. After
those fixes, however, other tests started failing. Reverting
temporarily until I can address everything.
llvm-svn: 344279
While it doesn't make a *ton* of sense for POSIX paths to be
in PDBs, it's possible to occur in real scenarios involving
cross compilation.
The tools need to be able to handle this, because certain types
of debugging scenarios are possible without a running process
and so don't necessarily require you to be on a Windows system.
These include post-mortem debugging and binary forensics (e.g.
using a debugger to disassemble functions and examine symbols
without running the process).
There's changes in clang, LLD, and lldb in this patch. After
this the cross-platform disassembly and source-list tests pass
on Linux.
Furthermore, the behavior of LLD can now be summarized by a much
simpler rule than before: Unless you specify /pdbsourcepath and
/pdbaltpath, the PDB ends up with paths that are valid within
the context of the machine that the link is performed on.
Differential Revision: https://reviews.llvm.org/D53149
llvm-svn: 344269
The existing SymbolFilePDB only works on Windows, as it is written
against a closed-source Microsoft SDK that ships with their debugging
tools.
There are several reasons we want to bypass this and go straight to the
bits of the PDB, but just to list a few:
More room for optimization. We can't see inside the implementation of
the Microsoft SDK, so we don't always know if we're doing things in the
most efficient way possible. For example, setting a breakpoint on main
of a big program currently takes several seconds. With the
implementation here, the time is unnoticeable.
We want to be able to symbolize Windows minidumps even if not on
Windows. Someone should be able to debug Windows minidumps as if they
were on Windows, given that no running process is necessary.
This patch is a very crude first attempt at filling out some of the
basic pieces.
I've implemented FindFunctions, ParseCompileUnitLineTable, and
ResolveSymbolContext for a limited subset of possible parameter values,
which is just enough to get it to display something nice for the
breakpoint location.
I've added several tests exercising this functionality which are limited
enough to work on all platforms but still exercise this functionality.
I'll try to add as many tests of this nature as I can, but at some
point we'll need a live process.
For now, this plugin is enabled always on non-Windows, and by setting
the environment variable LLDB_USE_NATIVE_PDB_READER=1 on Windows.
Eventually, once it's at parity with the Windows implementation, we'll
delete the Windows DIA-based implementation.
Differential Revision: https://reviews.llvm.org/D53002
llvm-svn: 344154
There are several places that call `FindRanges`,
all of them use `Slide` to adjust the ranges found
by the base address.
All except one, which does the same manually in a loop.
Patch updates it to use `Slide` for consistency.
llvm-svn: 344122
This adds a basic support of the .debug_rnglists section.
Only the DW_RLE_start_length and DW_RLE_end_of_list entries are supported.
Differential revision: https://reviews.llvm.org/D52981
llvm-svn: 344119
This patch teaches lldb to detect when there are missing frames in a
backtrace due to a sequence of tail calls, and to fill in the backtrace
with artificial tail call frames when this happens. This is only done
when the execution history can be determined from the call graph and
from the return PC addresses of calls on the stack. Ambiguous sequences
of tail calls (e.g anything involving tail calls and recursion) are
detected and ignored.
Depends on D49887.
Differential Revision: https://reviews.llvm.org/D50478
llvm-svn: 343900
This is a follow-up to https://reviews.llvm.org/D46362.
When evaluating a complex expression in DWARFExpression::Evaluate,
file addresses must be resolved to load addresses before we can
perform operations such as DW_OP_deref on them.
For this the address goes through three steps
1. Read the file address as stored in the DWARF
2. Link/relocate the file address (when reading from a .dSYM, this is a no-op)
3. Convert the file address to a load address.
D46362 implemented step (3) by resolving the file address using the
Module that the original DWARF came from. In the case of a dSYM that
is correct, but when reading from .o files, we need to look up
relocated/linked addresses, so the right place to look them up is the
current frame's module. This patch fixes that by setting the
expression's Module to point to the linked debugmap object.
A word a bout the unorthodox testcase: The motivating testcase for
this fix is in Swift, but I managed to hand-modify LLVM-IR for a
trivial C program to exhibit the same problem, so we can fix this in
llvm.org.
rdar://problem/44689915
Differential Revision: https://reviews.llvm.org/D52678
llvm-svn: 343612
Summary:
This patch implements restoring of the calling convention from PDB.
It is necessary for expressions evaluation, if we want to call a function
of the debuggee process with a calling convention other than ccall.
Reviewers: clayborg, zturner, labath, asmith
Reviewed By: clayborg
Subscribers: teemperor, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D52501
llvm-svn: 343084
Summary:
This patch adds some symbol tag checks before using the `IPDBRawSymbol`
interface to improve safety and readability.
Reviewers: zturner
Reviewed By: zturner
Subscribers: lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51967
llvm-svn: 342208
This patch improves the support of DWARF5.
Particularly the reporting of source code locations.
Differential revision: https://reviews.llvm.org/D51935
llvm-svn: 342153
- gcc warning about using binary or for or-ing two comparisons (a == b | a == c)
- llvm style prefers static functions to functions in an anonymous namespace
llvm-svn: 342051
Summary:
This commit fixes following problems after rL341782:
- Broken SymbolFilePDBTests
- Warning on comparison of integers of different signs
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51162
llvm-svn: 341942
Summary:
This patch adds an implementation of retrieving of declarations and declaration
contexts based on PDB symbols.
PDB has different type symbols for const-qualified types, and this
implementation ensures that only one declaration was created for both const
and non-const types, but creates different compiler types for them.
The implementation also processes the case when there are two symbols
corresponding to a variable. It's possible e.g. for class static variables,
they has one global symbol and one symbol belonging to a class.
PDB has no info about namespaces, so this implementation parses the full symbol
name and tries to figure out if the symbol belongs to namespace or not,
and then creates nested namespaces if necessary.
Reviewers: asmith, zturner, labath
Reviewed By: asmith
Subscribers: aleksandr.urakov, teemperor, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51162
llvm-svn: 341782
Summary:
This patch allows to resolve a symbol context block info even if a function
info was not requested. Also it adds the correct resolving of nested blocks
(the previous implementation used function blocks instead of them).
Reviewers: zturner, asmith, labath
Reviewed By: asmith
Subscribers: lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51104
llvm-svn: 340901
Summary:
In this patch I've tried to combine the best ideas from D49368 and D49410,
so it implements following:
- Completion of UDTs from a PDB with a filling of a layout info;
- Pointers to members;
- Fixes the bug relating to a virtual base offset reading from `vbtable`.
The offset was treated as an unsigned, but it can be a negative sometimes.
- Support of MSInheritance attribute
Reviewers: asmith, zturner, rnk, labath, clayborg, lldb-commits
Reviewed By: zturner
Subscribers: aleksandr.urakov, stella.stamenova, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D49980
llvm-svn: 339649
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
The current version of SymbolFilePDB::ParseVariableForPDBData function
always initializes variables with an empty location. This patch adds the
converter of a location information from PDB to a DWARF expression, so
it becomes possible to watch values of variables of primitive data
types. At the moment the converter supports only Static, TLS, RegRel,
Enregistered and Constant PDB location types, but it seems that it's
enough for most cases. There are still some problems with retrieving
values of variables (e.g. we can't watch variables of composite types),
but they look not relevant to the conversion to DWARF.
Patch by: Aleksandr Urakov
Differential revision: https://reviews.llvm.org/D49018
llvm-svn: 336988
Summary:
This patch fixes a problem with retrieving a function symbol by an
address in a nested block. In the current implementation of
ResolveSymbolContext function it retrieves a symbol with
PDB_SymType::None and then checks if found symbol's tag equals to
PDB_SymType::Function. So, if nested block's symbol was found,
ResolveSymbolContext does not resolve a function.
Reviewers: asmith, labath, zturner
Reviewed By: asmith, labath
Differential Revision: https://reviews.llvm.org/D47939
Patch by Aleksandr Urakov <aleksandr.urakov@jetbrains.com>
llvm-svn: 335822
When running the test suite with .debug_names a bunch of tests were
failing because GetCompleteObjCClass was not yet implemented for
DebugNamesDWARFIndex. This patch adds the required logic.
We use the .debug_names to find the Objective-C class and then rely on
DW_AT_APPLE_objc_complete_type to find the complete type. If we can't
find it or the attribute is not supported, we return a list of potential
complete types.
Differential revision: https://reviews.llvm.org/D48596
llvm-svn: 335776
Our DWARF parsing code had a workaorund for Objective-C "self" not
being marked as artifial by the compiler. Clang has been doing this
since 2010, so let's just drop the workaround.
llvm-svn: 335313
This fixes a silly bug where we were accidentally freeing the memory
used to store the decompressed .debug_names data. I had actually
considered this scenario when writing the class and put appropriate
precautions in place -- I just failed to wire it all up correctly.
This was only an issue for compressed sections because in case of
uncompressed ones we would access the data straight out of the mmapped
object file.
llvm-svn: 334717
SetFile has an optional style argument which defaulted to the native
style. This patch makes that argument mandatory so clients of the
FileSpec class are forced to think about the correct syntax.
At the same time this introduces a (protected) convenience method to
update the file from within the FileSpec class that keeps the current
style.
These two changes together prevent a potential pitfall where the style
might be forgotten, leading to the path being updated and the style
unintentionally being changed to the host style.
llvm-svn: 334663
With the recent changes in FileSpec to use LLVM's path style, it is
possible to delegate a bunch of common path operations to LLVM's path
helpers. This means we only have to maintain a single implementation and
at the same time can benefit from the efforts made by the rest of the
LLVM community.
This is part one of a set of patches. There was no obvious way to split
this so I just worked from top to bottom.
Differential revision: https://reviews.llvm.org/D48084
llvm-svn: 334615
This method is used to find complete definitions of a type when one
parses a compile unit with only forward declaration available.
Since it is only accessed from DWARFASTParserClang, it was not
possible/easy to trigger this codepath from lldb-test. Therefore, I
adapt add a debug-names variant to an existing dotest test to cover this
scenario.
llvm-svn: 334516
The getDIESectionOffset function is not correct for split dwarf files
(and will probably be removed in D48009).
This patch implements correct section offset computation for split and
non-split compile units -- we first need to check if the referenced unit
is a skeleton unit, and if it is, we add the die offset to the full unit
base offset (as the full unit is the one which contains the die).
llvm-svn: 334402
This also fixes a bug where SymbolFileDWARF was returning the same
function multiple times - this can happen if both mangled and demangled
names match the regex. Other lookup lookup functions had code to handle
this case, but it was forgotten here.
llvm-svn: 334277
Summary:
This patch implements the non-regex variant of GetFunctions. To share
more code with the Apple implementation, I've extracted the common
filtering code from that class into a utility function on the DWARFIndex
base class.
The new implementation also searching the accelerator table multiple
times -- previously it could happen that the apple table would return
the same die more than once if one specified multiple search flags in
name_type_mask. This way, I separate table iteration from filtering, and
so we can be sure each die is inserted at most once.
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47881
llvm-svn: 334273
Summary:
The patch adds support of splitted functions (when MSVC is used with PGO) and function-level linking feature.
SymbolFilePDB::ParseCompileUnitLineTable function relies on fact that ranges of compiled source files in the binary are continuous and don't intersect each other. The function creates LineSequence for each file and inserts it into LineTable, and implementation of last one relies on continuity of the sequence. But it's not always true when function-level linking enabled, e.g. in added input test file test-pdb-function-level-linking.exe there is xstring's std__basic_string_char_std__char_traits_char__std__allocator_char_____max_size (.00454820) between test-pdb-function-level-linking.cpp's foo (.00454770) and main (.004548F0).
To fix the problem this patch renews the sequence on each address gap.
Reviewers: asmith, zturner
Reviewed By: asmith
Subscribers: aleksandr.urakov, labath, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D47708
llvm-svn: 334260
This implements just one of the GetTypes overloads. The other is not
testable from lldb-test so I'm leaving it unimplemented until I figure
out what to do with testing.
llvm-svn: 334190
Summary:
It possible that a single module has indexed and non-indexed compile
units. In this case, we can use the fast indexed lookup for the first
ones and fall back to the manual index for the others.
This patch implements this functionality by adding a units_to_avoid
argument to the ManualDWARFIndex constructor. Any units present in that
list will be ignored for the purposes of manual index. Individual
DebugNamesDWARFIndex then always consult both the manual fallback index
as well as the index in the .debug_names section.
Reviewers: JDevlieghere, clayborg
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47832
llvm-svn: 334185
Summary:
This patch adds the ability to lookup variables to the DWARF v5 index
class.
During review we discovered an inconsistency between how the existing
two indexes handle looking up qualified names of the variables:
- manual index would return a value if the input string exactly matched
the demangled name of some variable.
- apple index ignored the context and returned any variable with the
same base name.
So, this patch also rectifies that situation:
- it removes all context handling from the index classes. The
GetGlobalVariables functions now just take a base name. For manual
index, this meant we can stop putting demangled names into the
variable index (this matches the behavior for functions).
- context extraction is put into SymbolFileDWARF, so that it is common
to all indexes.
- additional filtering based on the context is also done in
SymbolFileDWARF. This is done via a simple substring search, which is
not ideal, but it matches what we are doing for functions (cf.
Module::LookupInfo::Prune).
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47781
llvm-svn: 334181
Summary:
This patch adds the skeleton for implementing the DWARF v5 name index
class. All of the methods are stubbed out and will be implemented in
subsequent patches. The interesting part of the patch is the addition of
a "ignore-file-indexes" setting to the dwarf plugin which enables a
user to force using manual indexing path in lldb (for example as a
debugging aid). I have also added a test that verifies that file indexes
are used by default.
Reviewers: JDevlieghere, clayborg, jingham
Subscribers: mgorny, mehdi_amini, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47629
llvm-svn: 334088
Summary:
The patch adds support of splitted functions (when MSVC is used with PGO) and function-level linking feature.
SymbolFilePDB::ParseCompileUnitLineTable function relies on fact that ranges of compiled source files in the binary are continuous and don't intersect each other. The function creates LineSequence for each file and inserts it into LineTable, and implementation of last one relies on continuity of the sequence. But it's not always true when function-level linking enabled, e.g. in added input test file test-pdb-function-level-linking.exe there is xstring's std__basic_string_char_std__char_traits_char__std__allocator_char_____max_size (.00454820) between test-pdb-function-level-linking.cpp's foo (.00454770) and main (.004548F0).
To fix the problem this patch renews the sequence on each address gap.
Reviewers: asmith, zturner
Reviewed By: asmith
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D47708
llvm-svn: 334030