Replace if() with a switch(). Because random changes in the code seem to
suppress the crash.
Story so far:
r325966 - Crash introduced.
r325969 - Speculative fix had no effect.
r325978 - Tried to bisect the offending function, crash suddenly disappeared.
r326016 - After another random change in the code, bug appeared again.
llvm-svn: 326021
When a lifetime-extended temporary is on a branch of a conditional operator,
materialization of such temporary occurs after the condition is resolved.
This change allows us to understand, by including the MaterializeTemporaryExpr
in the construction context, the target for temporary materialization in such
cases.
Differential Revision: https://reviews.llvm.org/D43483
llvm-svn: 326019
In order to bind a temporary to a const lvalue reference, a no-op cast is added
to make the temporary itself const, and only then the reference is taken
(materialized). Skip the no-op cast when looking for the construction context.
Differential Revision: https://reviews.llvm.org/D43481
llvm-svn: 326016
When a constructor of a temporary with a single argument is treated
as a functional cast expression, skip the functional cast expression
and provide the correct construction context for the temporary.
Differential Revision: https://reviews.llvm.org/D43480
llvm-svn: 326015
When constructing a temporary that is going to be lifetime-extended through a
MaterializeTemporaryExpr later, CFG elements for the respective constructor
can now be queried to obtain the reference to that MaterializeTemporaryExpr
and therefore gain information about lifetime extension.
This may produce multi-layered construction contexts when information about
both temporary destruction and lifetime extension is available.
Differential Revision: https://reviews.llvm.org/D43477
llvm-svn: 326014
Split the presumably offending function in two to see which part of it causes
the crash to occur.
The crash was introduced in r325966.
r325969 did not help.
llvm-svn: 325978
ConstructionContexts introduced in D42672 are an additional piece of information
included with CFGConstructor elements that help the client of the CFG (such as
the Static Analyzer) understand where the newly constructed object is stored.
The patch refactors the ConstructionContext class to prepare for including
multi-layered contexts that are being constructed gradually, layer-by-layer,
as the AST is traversed.
Differential Revision: https://reviews.llvm.org/D43428
llvm-svn: 325966
Constructors of C++ temporary objects that have destructors now can be queried
to discover that they're indeed constructing temporary objects.
The respective CXXBindTemporaryExpr, which is also repsonsible for destroying
the temporary at the end of full-expression, is now available at the
construction site in the CFG. This is all the context we need to provide for
temporary objects that are not lifetime extended. For lifetime-extended
temporaries, more context is necessary.
Differential Revision: https://reviews.llvm.org/D43056
llvm-svn: 325210
When the current function returns a C++ object by value, CFG elements for
constructors that construct the return values can now be queried to discover
that they're indeed participating in construction of the respective return value
at the respective return statement.
Differential Revision: https://reviews.llvm.org/D42875
llvm-svn: 324952
Now that we make it possible to query the CFG constructor element to find
information about the construction site, possible cleanup work represented by
ExprWithCleanups should not prevent us from providing this information.
This allows us to have a correct construction context for variables initialized
"by value" via elidable copy-constructors, such as 'i' in
iterator i = vector.begin();
Differential Revision: https://reviews.llvm.org/D42719
llvm-svn: 324798
CFG elements for constructors of fields and base classes that are being
initialized before the body of the whole-class constructor starts can now be
queried to discover that they're indeed participating in initialization of their
respective fields or bases before the whole-class constructor kicks in.
CFG construction contexts are now capable of representing CXXCtorInitializer
triggers, which aren't considered to be statements in the Clang AST.
Differential Revision: https://reviews.llvm.org/D42700
llvm-svn: 324796
Constructors of simple variables now can be queried to discover that they're
constructing into simple variables.
Differential Revision: https://reviews.llvm.org/D42699
llvm-svn: 324794
This patch adds a new CFGStmt sub-class, CFGConstructor, which replaces
the regular CFGStmt with CXXConstructExpr in it whenever the CFG has additional
information to provide regarding what sort of object is being constructed.
It is useful for figuring out what memory is initialized in client of the
CFG such as the Static Analyzer, which do not operate by recursive AST
traversal, but instead rely on the CFG to provide all the information when they
need it. Otherwise, the statement that triggers the construction and defines
what memory is being initialized would normally occur after the
construct-expression, and the client would need to peek to the next CFG element
or use statement parent map to understand the necessary facts about
the construct-expression.
As a proof of concept, CFGConstructors are added for new-expressions
and the respective test cases are provided to demonstrate how it works.
For now, the only additional data contained in the CFGConstructor element is
the "trigger statement", such as new-expression, which is the parent of the
constructor. It will be significantly expanded in later commits. The additional
data is organized as an auxiliary structure - the "construction context",
which is allocated separately from the CFGElement.
Differential Revision: https://reviews.llvm.org/D42672
llvm-svn: 324668
CFG wass built in non-deterministic order due to the fact that indirect
goto labels' declarations (LabelDecl's) are stored in the llvm::SmallSet
container. LabelDecl's are pointers, whose order is not deterministic,
and llvm::SmallSet sorts them by their non-deterministic addresses after
"small" container is exceeded. This leads to non-deterministic processing
of the elements of the container.
The fix is to use llvm::SmallSetVector that was designed to have
deterministic iteration order.
Patch by Ilya Palachev!
Differential Revision: https://reviews.llvm.org/D40073
llvm-svn: 318754
This makes -Wunreachable-code work for programs containing SEH (except for
__finally, which is still missing for now).
__try is modeled like try (but simpler since it can only have a single __except
or __finally), __except is fairly similar to catch (but simpler, since it can't
contain declarations). __leave is implemented similarly to break / continue.
Use the existing addTryDispatchBlock infrastructure (which
FindUnreachableCode() in ReachableCode.cpp uses via cfg->try_blocks_begin()) to
mark things in the __except blocks as reachable.
Re-use TryTerminatedBlock. This means we add EH edges from calls to the __try
block, but not from all other statements. While this is incomplete, it matches
LLVM's SEH codegen support. Also, in practice, BuildOpts.AddEHEdges is always
false in practice from what I can tell, so we never even insert the call EH
edges either.
https://reviews.llvm.org/D36914
llvm-svn: 311561
This patch introduces a new CFG element CFGLoopExit that indicate when a loop
ends. It does not deal with returnStmts yet (left it as a TODO).
It hidden behind a new analyzer-config flag called cfg-loopexit (false by
default).
Test cases added.
The main purpose of this patch right know is to make loop unrolling and loop
widening easier and more efficient. However, this information can be useful for
future improvements in the StaticAnalyzer core too.
Differential Revision: https://reviews.llvm.org/D35668
llvm-svn: 311235
Summary:
This mimics the implementation for the implicit destructors. The
generation of this scope leaving elements is hidden behind
a flag to the CFGBuilder, thus it should not affect existing code.
Currently, I'm missing a test (it's implicitly tested by the clang-tidy
lifetime checker that I'm proposing).
I though about a test using debug.DumpCFG, but then I would
have to add an option to StaticAnalyzer/Core/AnalyzerOptions
to enable the scope leaving CFGElement,
which would only be useful to that particular test.
Any other ideas how I could make a test for this feature?
Reviewers: krememek, jordan_rose
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15031
llvm-svn: 307759
Summary:
I've included a unit test with a function template containing a variable
of incomplete type. Clang compiles this without errors (the standard
does not require a diagnostic in this case). Without the fix, this case
triggers the crash.
Reviewers: klimek
Reviewed By: klimek
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D30636
llvm-svn: 297129
Previously, -Wtautological-overlap-compare did not warn on cases where the
boolean expression was in an assignment or return statement. This patch
should cause all boolean statements to be passed to the tautological compare
checks in the CFG analysis.
This is one of the issues from PR13101
llvm-svn: 290920
mirror the description in the standard. Per DR1295, this means that binding a
const / rvalue reference to a bit-field no longer "binds directly", and per
P0135R1, this means that we materialize a temporary in reference binding
after adjusting cv-qualifiers and before performing a derived-to-base cast.
In C++11 onwards, this should have fixed the last case where we would
materialize a temporary of the wrong type (with a subobject adjustment inside
the MaterializeTemporaryExpr instead of outside), but we still have to deal
with that possibility in C++98, unless we want to start using xvalues to
represent materialized temporaries there too.
llvm-svn: 289250
Summary:
CXXDeleteExpr::getDestroyedType() can return a null QualType if the destroyed
type is a dependent type. This patch protects against this.
Reviewers: klimek
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27350
llvm-svn: 288665
When there is 'do { } while (0);' in the code the ExplodedGraph and UnoptimizedCFG did not match.
Differential Revision: https://reviews.llvm.org/D24759
llvm-svn: 283095
Fix a crash under -Wthread-safety when finding the destructor for a
lifetime-extending reference.
A patch by Nandor Licker!
Differential Revision: https://reviews.llvm.org/D22419
llvm-svn: 277522
Summary:
CFG generation is expected to fail in this case, but it should not crash.
Also added a test that reproduces the crash.
Reviewers: klimek
Subscribers: cfe-commits
Patch by Martin Boehme!
Differential Revision: http://reviews.llvm.org/D21895
llvm-svn: 274834
This prevents spurious dead store warnings when a C++ lambda is casted to a block.
I've also added several tests documenting our still-incomplete support for lambda-to-block
casts.
rdar://problem/22236293
llvm-svn: 254107
Summary:
VisitReturnStmt would create a new block with including Dtors, so the Dtors created
in VisitCompoundStmts would be in an unreachable block.
Example:
struct S {
~S();
};
void f()
{
S s;
return;
}
void g()
{
S s;
}
Before this patch, f has one additional unreachable block containing just the
destructor of S. With this patch, both f and g have the same blocks.
Reviewers: krememek
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13973
llvm-svn: 253107
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
Prior to this patch, -Wtautological-overlap-compare would only warn us
if there was a sketchy logical comparison between variables and
IntegerLiterals. This patch makes -Wtautological-overlap-compare aware
of EnumConstantDecls, so it can apply the same logic to them.
llvm-svn: 249053
This fixes PR16833, in which the analyzer was using large amounts of memory
for switch statements with large case ranges.
rdar://problem/14685772
A patch by Aleksei Sidorin!
Differential Revision: http://reviews.llvm.org/D5102
llvm-svn: 248318
Turns out the one place that relied on the implicit copy ctor was safe
because it created an object in a state where the dtor was a no-op, but
that's more luck that good management.
Sure up the API by defining move construction and using it, which
implicitly disallows the unreliable copy operations.
llvm-svn: 244968
In llvm commit r243581, a reverse range adapter was added which allows
us to change code such as
for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
in to
for (const FieldDecl *I : llvm::reverse(Fields))
This commit changes a few of the places in clang which are eligible to use
this new adapter.
llvm-svn: 243663
StmtRange was just a convenient wrapper for two StmtIterators before
we had real range support. This removes some of the implicit conversions
StmtRange had leading to slightly more verbose code but also should make
more obvious what's going on. No functional change intended.
llvm-svn: 242615
Summary:
This patch is part of http://llvm-reviews.chandlerc.com/D2181.
In-class initializers are appended to the CFG when CFGBuilder::addInitializer is called.
Reviewers: jordan_rose, rsmith
Reviewed By: jordan_rose
Subscribers: cfe-commits, klimek
Differential Revision: http://reviews.llvm.org/D2370
llvm-svn: 238913
When checking if a function is noreturn, consider a codepath to be noreturn if
the path destroys a class and the class destructor, base class destructors, or
member field destructors are marked noreturn.
Differential Revision: http://reviews.llvm.org/D9454
llvm-svn: 238382
As we only create temp dtor decision branches when a temp dtor needs to
be run (as opposed to for each logical branch in the original
expression), we must include the information about all previous logical
branches when we annotate the temp dtor decision branch.
llvm-svn: 215188
If the truth value of a LHS is known, we can build the knowledge whether
a temporary destructor is executed or not into the CFG. This is needed
by the return type analysis.
llvm-svn: 215118
Changes to the original patch:
- model the CFG for temporary destructors in conditional operators so that
the destructors of the true and false branch are always exclusive. This
is necessary because we must not have impossible paths for the path
based analysis to work.
- add multiple regression tests with ternary operators
Original description:
Fix modelling of non-lifetime-extended temporary destructors in the
analyzer.
Changes to the CFG:
When creating the CFG for temporary destructors, we create a structure
that mirrors the branch structure of the conditionally executed
temporary constructors in a full expression.
The branches we create use a CXXBindTemporaryExpr as terminator which
corresponds to the temporary constructor which must have been executed
to enter the destruction branch.
2. Changes to the Analyzer:
When we visit a CXXBindTemporaryExpr we mark the CXXBindTemporaryExpr as
executed in the state; when we reach a branch that contains the
corresponding CXXBindTemporaryExpr as terminator, we branch out
depending on whether the corresponding CXXBindTemporaryExpr was marked
as executed.
llvm-svn: 215096
This reverts commit r214962 because after the change the
following code doesn't compile with -Wreturn-type -Werror.
#include <cstdlib>
class NoReturn {
public:
~NoReturn() __attribute__((noreturn)) { exit(1); }
};
int check() {
true ? NoReturn() : NoReturn();
}
llvm-svn: 214998
1. Changes to the CFG:
When creating the CFG for temporary destructors, we create a structure
that mirrors the branch structure of the conditionally executed
temporary constructors in a full expression.
The branches we create use a CXXBindTemporaryExpr as terminator which
corresponds to the temporary constructor which must have been executed
to enter the destruction branch.
2. Changes to the Analyzer:
When we visit a CXXBindTemporaryExpr we mark the CXXBindTemporaryExpr as
executed in the state; when we reach a branch that contains the
corresponding CXXBindTemporaryExpr as terminator, we branch out
depending on whether the corresponding CXXBindTemporaryExpr was marked
as executed.
llvm-svn: 214962
MaterializeTemporaryExpr already contains information about the lifetime
of the temporary; if the lifetime is not the full statement, we do not
want to emit a destructor at the end of the full statement for it.
llvm-svn: 214292
lambda expressions (other than their capture initializers) nor blocks. Do walk
into default argument expressions and default initializer expressions.
These bugs were causing us to produce broken CFGs whenever a lambda expression
was used to initialize a libstdc++ std::function object!
llvm-svn: 214050
Fixes a crash in Retain Count checker error reporting logic by handing
the allocation statement retrieval from a BlockEdge program point.
Also added a simple CFG dump routine for debugging.
llvm-svn: 210960
will never be true in a well-defined context. The checking for null pointers
has been moved into the caller logic so it does not rely on undefined behavior.
llvm-svn: 210498
The assignment needs to be before the destruction of the temporary.
This patch calls out to addStmt, which invokes VisitDeclStmt, which has
all the correct logic for handling temporaries.
llvm-svn: 207985
which warns on compound conditionals that always evaluate to the same value.
For instance, (x > 5 && x < 3) will always be false since no value for x can
satisfy both conditions.
This patch also changes the CFG to use these tautological values for better
branch analysis. The test for -Wunreachable-code shows how this change catches
additional dead code.
Patch by Anders Rönnholm.
llvm-svn: 205665
Taking a hint from -Wparentheses, use an extra '()' as a sigil that
a dead condition is intentionally dead. For example:
if ((0)) { dead }
When this sigil is found, do not emit a dead code warning. When the
analysis sees:
if (0)
it suggests inserting '()' as a Fix-It.
llvm-svn: 205069
This is to support some analyses, like -Wunreachable-code, that
will need to recover the original unprunned CFG edges in order
to suppress issues that aren't really bugs in practice.
There are two important changes here:
- AdjacentBlock replaces CFGBlock* for CFG successors/predecessors.
This has the size of 2 pointers, instead of 1. This is unlikely
to have a significant memory impact on Sema since a single
CFG usually exists at one time, but could impact the memory
usage of the static analyzer. This could possibly be optimized
down to a single pointer with some cleverness.
- Predecessors can now contain null predecessors, which means
some analyses doing a reverse traversal will need to take into
account. This already exists for successors, which contain
successor slots for specific branch kinds (e.g., 'if') that
expect a fixed number of successors, even if a branch is
not reachable.
llvm-svn: 202325
In an expression like "new (a, b) Foo(x, y)", two things happen:
- Memory is allocated by calling a function named 'operator new'.
- The memory is initialized using the constructor for 'Foo'.
Currently the analyzer only models the second event, though it has special
cases for both the default and placement forms of operator new. This patch
is the first step towards properly modeling both events: it changes the CFG
so that the above expression now generates the following elements.
1. a
2. b
3. (CFGNewAllocator)
4. x
5. y
6. Foo::Foo
The analyzer currently ignores the CFGNewAllocator element, but the next
step is to treat that as a call like any other.
The CFGNewAllocator element is not added to the CFG for analysis-based
warnings, since none of them take advantage of it yet.
llvm-svn: 199123
Summary:
If a noreturn destructor is executed while returning a value from a function,
the resulting CFG has had two edges to the exit block. This crashed the analyzer,
because it expects that blocks with no terminators have only one outgoing edge.
I added code to avoid creating the second edge in this case.
PS: The crashes did not manifest themselves always, as usually the
NoReturnFunctionChecker would stop program evaluation before the analyzer hit
the assertion, but in the case of lifetime extended temporaries, the checker
failed to do that (which is a separate bug in itself).
Reviewers: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1513
llvm-svn: 190125
This paves the way for adding support for modeling the destructor of a
region before it is deleted. The statement "delete <expr>" now generates
this series of CFG elements:
1. <expr>
2. [B1.1]->~Foo() (Implicit destructor)
3. delete [B1.1]
Patch by Karthik Bhat!
llvm-svn: 189828