Summary:
The opt level was not being passed down to the ThinLTO backend when
invoked via clang (for distributed ThinLTO).
This exposed an issue where the new PM was asserting if the Thin or
regular LTO backend pipelines were invoked with -O0 (not a new issue,
could be provoked by invoking in-process *LTO backends via linker using
new PM and -O0). Fix this similar to the old PM where -O0 only does the
necessary lowering of type metadata (WPD and LowerTypeTest passes) and
then quits, rather than asserting.
Reviewers: xur
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits, pcc
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D61022
llvm-svn: 359025
Summary:
This emits labels around heapallocsite calls and S_HEAPALLOCSITE debug
info in codeview. Currently only changes FastISel, so emitting labels still
needs to be implemented in SelectionDAG.
Reviewers: hans, rnk
Subscribers: aprantl, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60800
llvm-svn: 358783
runtime.
target [teams distribute] simd costructs do not require full runtime for
the correct execution, we can run them without full runtime.
llvm-svn: 358766
All target-parallel-based constructs can be run in SPMD mode from now
on. Even if num_threads clauses or if clauses are used, such constructs
can be executed in SPMD mode.
llvm-svn: 358595
Combined constructs with parallel and if clauses without modifiers may
be executed in SPMD mode since if the condition is true for the target
region, it is also true for parallel region and the threads must be run
in parallel.
llvm-svn: 358503
mode.
After the previous patch with the more correct handling of the number of
threads in parallel regions, the parallel regions with num_threads
clauses can be executed in SPMD mode.
llvm-svn: 358445
[MS] Add metadata for __declspec(allocator)
Original summary:
Emit !heapallocsite in the metadata for calls to functions marked with
__declspec(allocator). Eventually this will be emitted as S_HEAPALLOCSITE debug
info in codeview.
Differential Revision: https://reviews.llvm.org/D60237
llvm-svn: 358307
Summary:
alloca isn’t auto-init’d right now because it’s a different path in clang that
all the other stuff we support (it’s a builtin, not an expression).
Interestingly, alloca doesn’t have a type (as opposed to even VLA) so we can
really only initialize it with memset.
<rdar://problem/49794007>
Subscribers: jkorous, dexonsmith, cfe-commits, rjmccall, glider, kees, kcc, pcc
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60548
llvm-svn: 358243
Summary:
These flags are used when emitting debug info and needed to initialize subprogram and member function attributes (function options) for Codeview. These function options are used to create an accurate compiler type for UDT symbols (class/struct/union) from PDBs.
The Trivial flag was introduced in https://reviews.llvm.org/D45122
It's been pointed out that Trivial and NonTrivial may imply each other and that seems to be the case in the current tests. This change combines them into a single flag -- NonTrivial -- and updates the corresponding unit tests. There is an additional change to llvm to update the flags.
Reviewers: rnk, zturner, dblaikie, probinson, Hui
Reviewed By: dblaikie
Subscribers: aprantl, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59347
llvm-svn: 358219
At least clang 3.6 warns on the original code:
../tools/clang/lib/CodeGen/CGNonTrivialStruct.cpp:829:34: error: suggest braces around initialization of subobject [-Werror,-Wmissing-braces]
return std::array<Address, 1>({Address(nullptr, CharUnits::Zero())});
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
{ }
../tools/clang/lib/CodeGen/CGNonTrivialStruct.cpp:833:34: error: suggest braces around initialization of subobject [-Werror,-Wmissing-braces]
return std::array<Address, 2>({Address(nullptr, CharUnits::Zero()),
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 errors generated.
llvm-svn: 358152
Summary:
https://reviews.llvm.org/D53809 fixed wrong address space(assert in debug build)
generated for event_ret argument. But exactly the same problem exists for
event_wait_list argument. This patch should fix both.
Reviewers: Anastasia, yaxunl
Reviewed By: Anastasia
Subscribers: kristina, ebevhan, cfe-commits
Differential Revision: https://reviews.llvm.org/D59985
llvm-svn: 358151
regions.
Added more complex analysis for number of teams and number of threads in
the target regions, also merged related common code between CGOpenMPRuntime
and CGOpenMPRuntimeNVPTX classes.
llvm-svn: 358126
named metadata.
This fixes a bug where ARC contract wasn't inserting the retainRV
marker when LTO was enabled, which caused objects returned from a
function to be auto-released.
rdar://problem/49464214
Differential Revision: https://reviews.llvm.org/D60302
llvm-svn: 358048
Summary:
Emit !heapallocsite in the metadata for calls to functions marked with
__declspec(allocator). Eventually this will be emitted as S_HEAPALLOCSITE debug
info in codeview.
Reviewers: rnk
Subscribers: jfb, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D60237
llvm-svn: 357928
Added special processing of the memory management directives/clauses for
NVPTX target. For private locals, omp_default_mem_alloc and
omp_thread_mem_alloc result in allocation in local memory.
omp_const_mem_alloc allocates const memory, omp_teams_mem_alloc
allocates shared memory, and omp_cgroup_mem_alloc and
omp_large_cap_mem_alloc allocate global memory.
llvm-svn: 357923
Requires making the llvm::MemoryBuffer* stored by SourceManager const,
which in turn requires making the accessors for that return const
llvm::MemoryBuffer*s and updating all call sites.
The original motivation for this was to use it and fix the TODO in
CodeGenAction.cpp's ConvertBackendLocation() by using the UnownedTag
version of createFileID, and since llvm::SourceMgr* hands out a const
llvm::MemoryBuffer* this is required. I'm not sure if fixing the TODO
this way actually works, but this seems like a good change on its own
anyways.
No intended behavior change.
Differential Revision: https://reviews.llvm.org/D60247
llvm-svn: 357724
Improved classification of address space cast when qualification
conversion is performed - prevent adding addr space cast for
non-pointer and non-reference types. Take address space correctly
from the pointee.
Also pass correct address space from 'this' object using
AggValueSlot when generating addrspacecast in the constructor
call.
Differential Revision: https://reviews.llvm.org/D59988
llvm-svn: 357682
Create method `optForNone()` testing for the function level equivalent of
`-O0` and refactor appropriately.
Differential revision: https://reviews.llvm.org/D59852
llvm-svn: 357638
Also for CUDA, we need to disable producing these fat binary functions when there is no GPU code.
Reviewers: yaxunl, tra
Differential Revision: https://reviews.llvm.org/D60141
llvm-svn: 357526
Skip producing the fat binary functions for HIP when no device code is present.
Reviewers: yaxunl
Differential Review: https://reviews.llvm.org/D60141
llvm-svn: 357520
This ability was removed in r351487, but it's needed when a lambda appears as an
OpaqueValueExpr subexpression of a PseudoObjectExpr.
rdar://49030379
Differential revision: https://reviews.llvm.org/D60099
llvm-svn: 357515
Allow the optimizer to remove unnecessary EH cleanups surrounding calls
to os_log_helper, to save some code size.
As a follow-up, it might be worthwhile to add a BasicNoexcept exception
spec to os_log_helper, and to then teach CGCall to emit direct calls for
callees which can't throw. This could save some compile-time.
Differential Revision: https://reviews.llvm.org/D60108
llvm-svn: 357501
If the pointer is captured by reference, it must be mapped as
_PTR_AND_OBJ kind of mapping to correctly translate the pointer address
on the device.
llvm-svn: 357488
Before this patch, CGLoop would dump all transformations for a loop into
a single LoopID without encoding any order in which to apply them.
rL348944 added the possibility to encode a transformation order using
followup-attributes.
When a loop has more than one transformation, use the follow-up
attribute define the order in which they are applied. The emitted order
is the defacto order as defined by the current LLVM pass pipeline,
which is:
LoopFullUnrollPass
LoopDistributePass
LoopVectorizePass
LoopUnrollAndJamPass
LoopUnrollPass
MachinePipeliner
This patch should therefore not change the assembly output, assuming
that all explicit transformations can be applied, and no implicit
transformations in-between. In the former case,
WarnMissedTransformationsPass should emit a warning (except for
MachinePipeliner which is not implemented yet). The latter could be
avoided by adding 'llvm.loop.disable_nonforced' attributes.
Because LoopUnrollAndJamPass processes a loop nest, generation of the
MDNode is delayed to after the inner loop metadata have been processed.
A temporary LoopID is therefore used to annotate instructions and
RAUW'ed by the actual LoopID later.
Differential Revision: https://reviews.llvm.org/D57978
llvm-svn: 357415
Summary:
Based on a patch by Dustin Howett, modified to not change the ABI for
ELF platforms.
Use more Windows-like section names.
This also makes things more readable by PE/COFF debug tools that assume
sections fit in the first header.
With these changes in, it is now possible to build a working WinObjC
with clang and the WinObjC version of GNUstep libobjc (upstream GNUstep
libobjc + a work around for incremental linking, which can be removed
once LINK.EXE gains a feature to opt sections out of receiving extra
padding during an incremental link).
Patch by Dustin Howett!
Reviewers: DHowett-MSFT
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58724
llvm-svn: 357364
Without this change, linking multiple objects containing block
descriptors together on Windows will generate duplicate symbol errors.
Patch by Dustin Howett!
Differential Revision: https://reviews.llvm.org/D58807
llvm-svn: 357363
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
copy/move constructor/assignment operator functions for non-trivial C
structs.
This commit fixes a bug where the offset of struct fields weren't being
taken into account when computing the addresses passed to calls to the
special functions.
For example, the copy constructor for S1 (__copy_constructor_8_8_s0_s8)
would pass the start addresses of the destination and source structs to
the call to S0's copy constructor (_copy_constructor_8_8_s0) without
adding the offset of field f1 to the addresses.
typedef struct {
id f0;
S0 f1;
} S1;
void test(S1 s1) {
S1 t = s1;
}
rdar://problem/49400610
llvm-svn: 357229
Future versions of MSVC make these intrinsics available on x86 & x64,
according to:
http://lists.llvm.org/pipermail/cfe-dev/2019-March/061711.html
The purpose of these builtins is to emit plain, non-atomic, volatile
stores when /volatile:ms (-cc1 -fms-volatile) is enabled.
llvm-svn: 357220
In https://bugs.llvm.org/show_bug.cgi?id=41206 we observe bad codegen
when embedding a non-trivial C struct within a C struct. This is due to
the fact that name mangling for non-trivial structs marks the two
structs as identical. This diff contains a fix for this issue.
Patch by Dan Zimmerman <daniel.zimmerman@me.com>.
Differential Revision: https://reviews.llvm.org/D59873
llvm-svn: 357184
This is the result of discussions on the list about how to deal with intrinsics
which require codegen to disambiguate them via only the integer/fp overloads.
It causes problems for GlobalISel as some of that information is lost during
translation, while with other operations like IR instructions the information is
encoded into the instruction opcode.
This patch changes clang to emit the new faddp intrinsic if the vector operands
to the builtin have FP element types. LLVM IR AutoUpgrade has been taught to
upgrade existing calls to aarch64.neon.addp with fp vector arguments, and
we remove the workarounds introduced for GlobalISel in r355865.
This is a more permanent solution to PR40968.
Differential Revision: https://reviews.llvm.org/D59655
llvm-svn: 356722
with notail on x86-64.
On x86-64, the epilogue code inserted before the tail jump blocks the
autoreleased return optimization.
rdar://problem/38675807
Differential Revision: https://reviews.llvm.org/D59656
llvm-svn: 356705
For the global variables the allocate directive must specify only the
predefined allocator. This allocator must be translated into the correct
form of the address space for the targets that support different address
spaces.
llvm-svn: 356702
Summary:
[OpenCL] Generate 'unroll.enable' metadata for __attribute__((opencl_unroll_hint))
For both !{!"llvm.loop.unroll.enable"} and !{!"llvm.loop.unroll.full"} the unroller
will try to fully unroll a loop unless the trip count is not known at compile time.
In that case for '.full' metadata no unrolling will be processed, while for '.enable'
the loop will be partially unrolled with a heuristically chosen unroll factor.
See: docs/LanguageExtensions.rst
From https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/attributes-loopUnroll.html
__attribute__((opencl_unroll_hint))
for (int i=0; i<2; i++)
{
...
}
In the example above, the compiler will determine how much to unroll the loop.
Before the patch for __attribute__((opencl_unroll_hint)) was generated metadata
!{!"llvm.loop.unroll.full"}, which limits ability of loop unroller to decide, how
much to unroll the loop.
Reviewers: Anastasia, yaxunl
Reviewed By: Anastasia
Subscribers: zzheng, dmgreen, jdoerfert, cfe-commits, asavonic, AlexeySotkin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59493
llvm-svn: 356571
The attribute pass_dynamic_object_size(n) behaves exactly like
pass_object_size(n), but instead of evaluating __builtin_object_size on calls,
it evaluates __builtin_dynamic_object_size, which has the potential to produce
runtime code when the object size can't be determined statically.
Differential revision: https://reviews.llvm.org/D58757
llvm-svn: 356515
Added initial codegen for the local variables with the #pragma omp
allocate directive. Instead of allocating the variables on the stack,
__kmpc_alloc|__kmpc_free functions are used for memory (de-)allocation.
llvm-svn: 356472
Summary:
This patch refactors several instances of cast<> used in if
conditionals. Since cast<> asserts on failure, the else branch can
never be taken.
In some cases, the fix is to replace cast<> with dyn_cast<>. While
others required the removal of the conditional and some minor
refactoring.
A discussion can be seen here: http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20190318/265044.html
Differential Revision: https://reviews.llvm.org/D59529
llvm-svn: 356441
As background, when constructing a complete object, virtual bases are
constructed first. If an exception is thrown later in the ctor, those
virtual bases are destroyed, so sema marks the relevant constructors and
destructors of virtual bases as referenced. If necessary, they are
emitted.
However, an abstract class can never be used to construct a complete
object. In the Itanium C++ ABI, this works out nicely, because we never
end up emitting the "complete" constructor variant, only the "base"
constructor variant, which can be called by constructors of derived
classes. Clang's Sema::MarkBaseAndMemberDestructorsReferenced is aware
of this optimization, and it does not mark ctors and dtors of virtual
bases referenced when the constructor of an abstract class is emitted.
In the Microsoft ABI, there are no complete/base variants, so before
this change, the constructor of an abstract class could reference ctors
and dtors of a virtual base without marking them referenced. This could
lead to unresolved symbol errors at link time, as reported in PR41065.
The fix is to implement the same optimization as Sema: If the class is
abstract, don't bother initializing its virtual bases. The "is this
class the most derived class" check in the constructor will never pass,
and the virtual base constructor calls are always dead. Skip them.
I think Richard noticed this missed optimization back in 2016 when he
was implementing inheriting constructors. I wasn't able to find any bugs
or email about it, though.
Fixes PR41065
llvm-svn: 356425
Summary:
Because in wasm we merge all catch clauses into one big catchpad, in
case none of the types in catch handlers matches after we test against
each of them, we should unwind to the next EH enclosing scope. For this,
we should NOT use a call to `__cxa_rethrow` but rather a call to our own
rethrow intrinsic, because what we're trying to do here is just to
transfer the control flow into the next enclosing EH pad (or the
caller). Calls to `__cxa_rethrow` should only be used after a call to
`__cxa_begin_catch`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59353
llvm-svn: 356317
If the doacross lop construct is used and the loop counter is declare
outside of the loop, the compiler might crash trying to get the address
of the loop counter. Patch fixes this problem.
llvm-svn: 356198
The constraint "0" in the following asm did not consider the its
relationship with "=y" when try to replace the type of the operands.
asm ("nop" : "=y"(Mu8_1 ) : "0"(Mu8_0 ));
Patch by Xiang Zhang.
Differential Revision: https://reviews.llvm.org/D56990
llvm-svn: 356196
metadata and protocol list
The leading 'l' tells ld64 to remove the symbol name, which can make
debugging difficult.
rdar://problem/47256637
Differential Revision: https://reviews.llvm.org/D59234
llvm-svn: 356156
This reverts commit r353765. After talking with our c stdlib folks, we decided
to use the existing pass_object_size attribute to implement _FORTIFY_SOURCE
wrappers, like Bionic does (I didn't realize that pass_object_size could be used
for this purpose). Sorry for the flip/flop, and thanks to James Y. Knight for
pointing this out to me.
llvm-svn: 356103
array.
If the firstprivate variable is a reference, we may incorrectly classify
the kind of the private copy. Use the type of the private copy instead
of the original shared variable.
llvm-svn: 356098
'_openmp_teams_reductions_buffer_$_.
nvlink does not handle weak linkage correctly, same symbols with the
different sizes are reported as erroneous though the largest size must
be chosen instead. Patch fixes this problem by using Internal linkage
instead of the Common.
llvm-svn: 356072
This patch adds an XCOFF triple object format type into LLVM.
This XCOFF triple object file type will be used later by object file and assembly generation for the AIX platform.
Differential Revision: https://reviews.llvm.org/D58930
llvm-svn: 355989
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
If the variable was declared and marked as declare target, a new offload
entry with size 0 is created. But if later a definition is created and
marked as declare target, this definition is not added to the entry set
and the definition remains not mapped to the target. Patch fixes this
problem allowing to redefine the size and linkage for
previously registered declaration.
llvm-svn: 355960
It hasn't seen active development in years, and it hasn't reached a
state where it was useful.
Remove the code until someone is interested in working on it again.
Differential Revision: https://reviews.llvm.org/D59133
llvm-svn: 355862
expression inside the parentheses is a valid UTF-8 string literal.
Previously clang emitted an expression like @("abc") as a message send
to stringWithUTF8String. This commit makes clang emit the boxed
expression as a compile-time constant instead.
This commit also has the effect of silencing the nullable-to-nonnull
conversion warning clang started emitting after r317727, which
originally motivated this commit (see https://oleb.net/2018/@keypath).
rdar://problem/42684601
Differential Revision: https://reviews.llvm.org/D58729
llvm-svn: 355662
The address space for the Base class pointer when up-casting
from Derived should be taken from the Derived class pointer.
Differential Revision: https://reviews.llvm.org/D53818
llvm-svn: 355606
Summary:
- A device functions could be used as a non-type template parameter in a
global/host function template. However, we should not try to retrieve that
device function and reference it in the host-side debug info as it's
only valid at device side.
Subscribers: aprantl, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58992
llvm-svn: 355551
This allows us to store more info about where we're emitting the remarks
without cluttering LLVMContext. This is needed for future support for
the remark section.
Differential Revision: https://reviews.llvm.org/D58996
Original llvm-svn: 355507
llvm-svn: 355514
This allows us to store more info about where we're emitting the remarks
without cluttering LLVMContext. This is needed for future support for
the remark section.
Differential Revision: https://reviews.llvm.org/D58996
llvm-svn: 355507
Apparently GCC allows this, and there's code relying on it (see bug).
The idea is to allow expression that would have been allowed if they
were cast to int. So I based the code on how such a cast would be done
(the CK_PointerToIntegral case in IntExprEvaluator::VisitCastExpr()).
Differential Revision: https://reviews.llvm.org/D58821
llvm-svn: 355491
This patch includes the necessary code for converting between a fixed point type and integer.
This also includes constant expression evaluation for conversions with these types.
Differential Revision: https://reviews.llvm.org/D56900
llvm-svn: 355462
memory.
If the variable with the constant non-scalar type is firstprivatized in
the target region, the local copy is created with the data copying.
Instead, we allocate the copy in the constant memory and avoid extra
copying in the outlined target regions. This global copy is used in the
target regions without loss of the performance.
llvm-svn: 355418
Part 1 of CSPGO change in Clang. This includes changes in clang options
and calls to llvm PassManager. Tests will be committed in part2.
This change needs the PassManager change in llvm.
Differential Revision: https://reviews.llvm.org/D54176
llvm-svn: 355331
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
This is a recommit of r354873 but with a fix for unqualified lookup error in lldb cmake build bot.
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 355190
When emitting initializers for local structures for code built with
-ftrivial-auto-var-init, replace constant structures with sequences of
stores.
This appears to greatly help removing dead initialization stores to those
locals that are later overwritten by other data.
This also removes a lot of .rodata constants (see PR40605), replacing most
of them with immediate values (for Linux kernel the .rodata size is
reduced by ~1.9%)
llvm-svn: 355181
When we have an annotated local variable after a function returns, we
generate IR that fails verification with the error
> Instruction referencing instruction not embedded in a basic block!
And it means that bitcast referencing alloca doesn't have a parent basic
block.
Fix by checking if we are at an unreachable point and skip emitting
annotations. This approach is similar to the way we emit variable
initializer and debug info.
rdar://problem/46200420
Reviewers: rjmccall
Reviewed By: rjmccall
Subscribers: aprantl, jkorous, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D58147
llvm-svn: 355166
I think the author of the function assumed that `GetInsertBlock()`
wouldn't change from where `atomicPHI` was created, but this isn't
true when `-fsanitize=unsigned-integer-overflow` is enabled (we
generate an overflow/continuation label). Fix by keeping track of the
block we want to return to to complete the cmpxchg loop.
rdar://48406558
Differential revision: https://reviews.llvm.org/D58744
llvm-svn: 355054
initializes a local auto variable or is assigned to a local auto
variable that is declared in the scope that introduced the block
literal.
rdar://problem/13289333
https://reviews.llvm.org/D58514
llvm-svn: 355012
Add .stub to kernel stub function name so that it is different from kernel
name in device code. This is necessary to let debugger find correct symbol
for kernel.
Differential Revision: https://reviews.llvm.org/D58518
llvm-svn: 354948
Summary:
The MS C++ ABI has no constructor variants, but it has destructor
variants, so we should move the deleting destructor variant check
outside the check for "does the ABI have constructor variants".
Fixes PR37561, so basic code coverage works on Windows with C++.
Reviewers: vsk
Subscribers: jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58691
llvm-svn: 354924
enum SanitizerOrdinal has reached maximum capacity, this change extends the capacity to 128 sanitizer checks.
This can eventually allow us to add gcc 8's options "-fsanitize=pointer-substract" and "-fsanitize=pointer-compare".
Fixes: https://llvm.org/PR39425
Differential Revision: https://reviews.llvm.org/D57914
llvm-svn: 354873
When generating initializers for local structures in the
-ftrivial-auto-var-init mode, explicitly wipe the padding bytes with
either 0x00 or 0xAA.
This will allow us to automatically handle the padding when splitting
the initialization stores (see https://reviews.llvm.org/D57898).
Reviewed at https://reviews.llvm.org/D58188
llvm-svn: 354861
ObjCMessageExpr::getInstanceReceiver returns nullptr if the receiver
is 'super'. Make this check more strict, since we don't care about
messages to super here.
rdar://48247290
llvm-svn: 354826
SVN r339438 added support to deduplicate the helpers by using a consistent
naming scheme and using LinkOnceODR semantics. This works on ELF by means of
weak linking semantics, and entirely does not work on PE/COFF where you end up
with multiply defined strong symbols, which is a strong error on PE/COFF.
Assign the functions a COMDAT group so that they can be uniqued by the linker.
This fixes the use of blocks in CoreFoundation on Windows.
llvm-svn: 354678
This patch implements fixed point comparisons with other fixed point types and
integers. This also provides constant expression evaluation for them.
Differential Revision: https://reviews.llvm.org/D57219
llvm-svn: 354621
Add .stub to kernel stub function name so that it is different from kernel
name in device code. This is necessary to let debugger find correct symbol
for kernel
Differential Revision: https://reviews.llvm.org/D58518
llvm-svn: 354615
Summary:
- If a string literal is reused directly, need to add necessary address
space casting if the target requires that.
Reviewers: yaxunl
Subscribers: jvesely, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58509
llvm-svn: 354610
Summary:
Emit direct call of block invoke functions when possible, i.e. in case the
block is not passed as a function argument.
Also doing some refactoring of `CodeGenFunction::EmitBlockCallExpr()`
Reviewers: Anastasia, yaxunl, svenvh
Reviewed By: Anastasia
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58388
llvm-svn: 354568
A faster way to reduce the values in teams reductions was found, the
codegen is updated to use this faster algorithm and new runtime functions.
llvm-svn: 354479
Summary:
For some reason OpenCL blocks in LLVM IR are represented as function pointers.
These pointers do not point to any real function and never get called. Actually
they point to some structure, which in turn contains pointer to the real block
invoke function.
This patch changes represntation of OpenCL blocks in LLVM IR from function
pointers to pointers to `%struct.__block_literal_generic`.
Such representation allows to avoid unnecessary bitcasts and simplifies
further processing (e.g. translation to SPIR-V ) of the module for targets
which do not support function pointers.
Patch by: Alexey Sotkin.
Reviewers: Anastasia, yaxunl, svenvh
Reviewed By: Anastasia
Subscribers: alexbatashev, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58277
llvm-svn: 354337
Summary:
Blocks that capture themselves (and escape) after initialization currently codegen wrong because this:
bool capturedByInit =
Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
Address Loc =
capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
Already adjusts Loc from thr alloca to a GEP. This code:
if (emission.IsEscapingByRef)
Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
Was trying to do the same adjustment, and a GEP on a GEP (returning an int) triggers an assertion.
<rdar://problem/47943027>
Reviewers: ahatanak
Subscribers: jkorous, dexonsmith, cfe-commits, rjmccall
Tags: #clang
Differential Revision: https://reviews.llvm.org/D58218
llvm-svn: 354147
expression is a discarded-value expression.
Summary:
We used to get this wrong in three ways:
1) During parsing, an expression-statement followed by the }) ending a
statement expression was always treated as producing the value of the
statement expression. That's wrong for ({ if (1) expr; })
2) During template instantiation, various kinds of statement (most
statements not appearing directly in a compound-statement) were not
treated as discarded-value expressions, resulting in missing volatile
loads (etc).
3) In all contexts, an expression-statement with attributes was not
treated as producing the value of the statement expression, eg
({ [[attr]] expr; }).
Also fix incorrect enforcement of OpenMP rule that directives can "only
be placed in the program at a position where ignoring or deleting the
directive would result in a program with correct syntax". In particular,
a label (be it goto, case, or default) should not affect whether
directives are permitted.
Reviewers: aaron.ballman, rjmccall
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57984
llvm-svn: 354090
This provides a code size win on the caller side, since the init
message send is done in the runtime function.
rdar://44987038
Differential revision: https://reviews.llvm.org/D57936
llvm-svn: 354056
__hipRegisterFunction and __hipRegisterVar need to accept device side kernel and variable names
so that HIP runtime can associate kernel stub functions in host code with kernel symbols in fat binaries,
and associate shadow variables in host code with device variables in fat binaries.
Currently, clang assumes kernel functions and device variables have the same name as the kernel
stub functions and shadow variables. However, when host is compiled in windows with MSVC C++
ABI and device is compiled with Itanium C++ ABI (e.g. AMDGPU), kernels and device symbols in fat
binary are mangled differently than host.
This patch gets the device side kernel and variable name by mangling them in the mangle context
of aux target.
Differential Revision: https://reviews.llvm.org/D58163
llvm-svn: 354004
This is the second attempt to port ASan to new PM after D52739. This takes the
initialization requried by ASan from the Module by moving it into a separate
class with it's own analysis that the new PM ASan can use.
Changes:
- Split AddressSanitizer into 2 passes: 1 for the instrumentation on the
function, and 1 for the pass itself which creates an instance of the first
during it's run. The same is done for AddressSanitizerModule.
- Add new PM AddressSanitizer and AddressSanitizerModule.
- Add legacy and new PM analyses for reading data needed to initialize ASan with.
- Removed DominatorTree dependency from ASan since it was unused.
- Move GlobalsMetadata and ShadowMapping out of anonymous namespace since the
new PM analysis holds these 2 classes and will need to expose them.
Differential Revision: https://reviews.llvm.org/D56470
llvm-svn: 353985
Argument evaluation order is different between gcc and clang, so pull out
the Builder calls to make the generated IR independent of the host compiler's
argument evaluation order. Thanks to rnk for reminding me of this clang/gcc
difference.
llvm-svn: 353969
This allows the global visibility controls to be restrictive while still
populating the dynamic symbol table where required.
Differential Revision: https://reviews.llvm.org/D56871
llvm-svn: 353870
This attribute applies to declarations of C stdlib functions
(sprintf, memcpy...) that have known fortified variants
(__sprintf_chk, __memcpy_chk, ...). When applied, clang will emit
calls to the fortified variant functions instead of calls to the
defaults.
In GCC, this is done by adding gnu_inline-style wrapper functions,
but that doesn't work for us for variadic functions because we don't
support __builtin_va_arg_pack (and have no intention to).
This attribute takes two arguments, the first is 'type' argument
passed through to __builtin_object_size, and the second is a flag
argument that gets passed through to the variadic checking variants.
rdar://47905754
Differential revision: https://reviews.llvm.org/D57918
llvm-svn: 353765
We must only set the construction vtable visibility after we create the
vtable initializer, otherwise the global value will be treated as
declaration rather than definition and the visibility won't be set.
Differential Revision: https://reviews.llvm.org/D58010
llvm-svn: 353742
The various EltSize, Offset, DataLayout, and StructLayout arguments
are all computable from the Address's element type and the DataLayout
which the CGBuilder already has access to.
After having previously asserted that the computed values are the same
as those passed in, now remove the redundant arguments from
CGBuilder's Create*GEP functions.
Differential Revision: https://reviews.llvm.org/D57767
llvm-svn: 353629
When a module name is specified as -fmodule-name, that module gets a
clang::Module object, but it won't actually be built or imported; it
will be textual. CGDebugInfo wouldn't detect this and them emit a
DICompileUnit that had a hash but no name and that confused both
dsymutil, LLDB, and myself.
rdar://problem/47926508
Differential Revision: https://reviews.llvm.org/D57976
llvm-svn: 353578
When we are calling `__builtin_constant_p` with ObjC objects of
different classes, we hit the assertion
> Assertion failed: (isa<X>(Val) && "cast<Ty>() argument of incompatible type!"), function cast, file include/llvm/Support/Casting.h, line 254.
It happens because LLVM types for `ObjCInterfaceType` are opaque and
have no name (see `CodeGenTypes::ConvertType`). As the result, for
different ObjC classes we have different `is_constant` intrinsics with
the same name `llvm.is.constant.p0s_s`. When we try to reuse an
intrinsic with the same name, we fail because of type mismatch.
Fix by bitcasting `ObjCObjectPointerType` to `id` prior to passing as an
argument to `__builtin_constant_p`. This results in using intrinsic
`llvm.is.constant.p0i8` and correct types.
rdar://problem/47499250
Reviewers: rjmccall, ahatanak, void
Reviewed By: void, ahatanak
Subscribers: ddunbar, jkorous, hans, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D57427
llvm-svn: 353577
This allows substantially simplifying the expression evaluation code,
because we don't have to special-case lvalues which are actually string
literal initialization.
This currently throws away an optimization where we would avoid creating
an array APValue for string literal initialization. If we really want
to optimize this case, we should fix APValue so it can store simple
arrays more efficiently, like llvm::ConstantDataArray. This shouldn't
affect the memory usage for other string literals. (Not sure if this is
a blocker; I don't think string literal init is common enough for this
to be a serious issue, but I could be wrong.)
The change to test/CodeGenObjC/encode-test.m is a weird side-effect of
these changes: we currently don't constant-evaluate arrays in C, so the
strlen call shouldn't be folded, but lvalue string init managed to get
around that check. I this this is fine.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40430 .
llvm-svn: 353569
Some of these functions take some extraneous arguments, e.g. EltSize,
Offset, which are computable from the Type and DataLayout.
Add some asserts to ensure that the computed values are consistent
with the passed-in values, in preparation for eliminating the
extraneous arguments. This also asserts that the Type is an Array for
the calls named "Array" and a Struct for the calls named "Struct".
Then, correct a couple of errors:
1. Using CreateStructGEP on an array type. (this causes the majority
of the test differences, as struct GEPs are created with i32
indices, while array GEPs are created with i64 indices)
2. Passing the wrong Offset to CreateStructGEP in TargetInfo.cpp on
x86-64 NACL (which uses 32-bit pointers).
Differential Revision: https://reviews.llvm.org/D57766
llvm-svn: 353529
Summary:
Automatic initialization [1] of __block variables was trampling over the block's
headers after they'd been initialized, which caused self-init usage to crash,
such as here:
typedef struct XYZ { void (^block)(); } *xyz_t;
__attribute__((noinline))
xyz_t create(void (^block)()) {
xyz_t myself = malloc(sizeof(struct XYZ));
myself->block = block;
return myself;
}
int main() {
__block xyz_t captured = create(^(){ (void)captured; });
}
This type of code shouldn't be broken by variable auto-init, even if it's
sketchy.
[1] With -ftrivial-auto-var-init=pattern
<rdar://problem/47798396>
Reviewers: rjmccall, pcc, kcc
Subscribers: jkorous, dexonsmith, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57797
llvm-svn: 353495
The patch in r350643 incorrectly sets the COFF emission based on bits
instead of bytes. This patch converts the 32 via CharUnits to bits to
compare the correct values.
Change-Id: Icf38a16470ad5ae3531374969c033557ddb0d323
llvm-svn: 353411
CreateCall/Invoke.
Also, remove the getFunctionType() function from CGCallee, since it
accesses the pointee type of the value. The only use was in EmitCall,
so just inline it into the debug assertion.
This is the last of the changes for Call and Invoke in clang.
Differential Revision: https://reviews.llvm.org/D57804
llvm-svn: 353356
The assert added to EmitCall there was triggering in Windows Chromium
builds, due to a mismatch of the return type.
The MSVC constructor call extension (`this->Foo::Foo()`) was emitting
the constructor call from 'EmitCXXMemberOrOperatorMemberCallExpr' via
calling 'EmitCXXMemberOrOperatorCall', instead of
'EmitCXXConstructorCall'. On targets where HasThisReturn is true, that
was failing to set the proper return type in the call info.
Switching to calling EmitCXXConstructorCall also allowed removing some
code e.g. the trivial copy/move support, which is already handled in
EmitCXXConstructorCall.
Ref: https://bugs.chromium.org/p/chromium/issues/detail?id=928861
Differential Revision: https://reviews.llvm.org/D57794
llvm-svn: 353246
Summary:
Added ability to generate correct debug info data about the variable
address class. Currently, for all the locals and globals the default
values are used, ADDR_local_space(6) for locals and ADDR_global_space(5)
for globals. The values are taken from the table in
https://docs.nvidia.com/cuda/archive/10.0/ptx-writers-guide-to-interoperability/index.html#cuda-specific-dwarf.
We need to emit correct data for address classes of, at least, shared
and constant globals. Currently, all these variables are treated by
the cuda-gdb debugger as the variables in the global address space
and, thus, it require manual data type casting.
Reviewers: echristo, probinson
Subscribers: jholewinski, aprantl, cfe-commits
Differential Revision: https://reviews.llvm.org/D57162
llvm-svn: 353204
Emit{Nounwind,}RuntimeCall{,OrInvoke} have been modified to take a
FunctionCallee as an argument, and CreateRuntimeFunction has been
modified to return a FunctionCallee. All callers have been updated.
Additionally, CreateBuiltinFunction is removed, as it was redundant
with CreateRuntimeFunction after some previous changes.
Differential Revision: https://reviews.llvm.org/D57668
llvm-svn: 353184
edge cases.
Currently, EmitCall emits a call instruction with a function type
derived from the pointee-type of the callee. This *should* be the same
as the type created from the CallInfo parameter, but in some cases an
incorrect CallInfo was being passed.
All of these fixes were discovered by the addition of the assert in
EmitCall which verifies that the passed-in CallInfo matches the
Callee's function type.
As far as I know, these issues caused no bugs at the moment, as the
correct types were ultimately being emitted. But, some would become
problematic when pointee types are removed.
List of fixes:
* arrangeCXXConstructorCall was passing an incorrect value for the
number of Required args, when calling an inheriting constructor
where the inherited constructor is variadic. (The inheriting
constructor doesn't actually get passed any of the user's args, but
the code was calculating it as if it did).
* arrangeFreeFunctionLikeCall was not including the count of the
pass_object_size arguments in the count of required args.
* OpenCL uses other address spaces for the "this" pointer. However,
commonEmitCXXMemberOrOperatorCall was not annotating the address
space on the "this" argument of the call.
* Destructor calls were being created with EmitCXXMemberOrOperatorCall
instead of EmitCXXDestructorCall in a few places. This was a problem
because the calling convention sometimes has destructors returning
"this" rather than void, and the latter function knows about that,
and sets up the types properly (through calling
arrangeCXXStructorDeclaration), while the former does not.
* generateObjCGetterBody: the 'objc_getProperty' function returns type
'id', but was being called as if it returned the particular
property's type. (That is of course the *dynamic* return type, and
there's a downcast immediately after.)
* OpenMP user-defined reduction functions (#pragma omp declare
reduction) can be called with a subclass of the declared type. In
such case, the call was being setup as if the function had been
actually declared to take the subtype, rather than the base type.
Differential Revision: https://reviews.llvm.org/D57664
llvm-svn: 353181
Summary:
This is a follow up for https://reviews.llvm.org/D57278. The previous
revision should have also included Kernel ASan.
rdar://problem/40723397
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D57711
llvm-svn: 353120
A non-lazy class will be initialized eagerly when the Objective-C runtime is
loaded. This is required for certain system classes which have instances allocated in
non-standard ways, such as the classes for blocks and constant strings.
Adding this attribute is essentially equivalent to providing a trivial
+load method but avoids the (fairly small) load-time overheads associated
with defining and calling such a method.
Differential Revision: https://reviews.llvm.org/D56555
llvm-svn: 353116
Summary: this commit adds support to a new dependence type introduced in OpenMP
5.0. The LLVM OpenMP RTL already supports this feature, so we only need to
modify CLANG to take advantage of them.
Differential Revision: https://reviews.llvm.org/D57576
llvm-svn: 353018
Summary:
This adds support for new-PM plugin loading to clang. The option
`-fpass-plugin=` may be used to specify a dynamic shared object file
that adheres to the PassPlugin API.
Tested: created simple plugin that registers an EP callback; with optimization level > 0, the pass is run as expected.
Committed on behalf of Marco Elver
Differential Revision: https://reviews.llvm.org/D56935
llvm-svn: 352972
Summary:
Currently, ASan inserts a call to `__asan_handle_no_return` before every
`noreturn` function call/invoke. This is unnecessary for calls to other
runtime funtions. This patch changes ASan to skip instrumentation for
functions calls marked with `!nosanitize` metadata.
Reviewers: TODO
Differential Revision: https://reviews.llvm.org/D57489
llvm-svn: 352948
This argument was added in r254554 in order to support the
pass_object_size attribute. However, in r296076, the attribute's
presence is now also represented in FunctionProtoType's
ExtParameterInfo, and thus it's unnecessary to pass along a separate
FunctionDecl.
The functions modified are:
RequiredArgs::forPrototype{,Plus}, and
CodeGenTypes::ConvertFunctionType.
After this, it's also (again) unnecessary to have a separate
ConvertFunctionType function ConvertType, so convert callers back to
the latter, leaving the former as an internal helper function.
llvm-svn: 352946
This is similar to import_module, but sets the import field name
instead.
By default, the import field name is the same as the C/asm/.o symbol
name. However, there are situations where it's useful to have it be
different. For example, suppose I have a wasm API with a module named
"pwsix" and a field named "read". There's no risk of namespace
collisions with user code at the wasm level because the generic name
"read" is qualified by the module name "pwsix". However in the C/asm/.o
namespaces, the module name is not used, so if I have a global function
named "read", it is intruding on the user's namespace.
With the import_field module, I can declare my function (in libc) to be
"__read", and then set the wasm import module to be "pwsix" and the wasm
import field to be "read". So at the C/asm/.o levels, my symbol is
outside the user namespace.
Differential Revision: https://reviews.llvm.org/D57602
llvm-svn: 352930
This patch implements parsing and sema for "omp declare mapper"
directive. User defined mapper, i.e., declare mapper directive, is a new
feature in OpenMP 5.0. It is introduced to extend existing map clauses
for the purpose of simplifying the copy of complex data structures
between host and device (i.e., deep copy). An example is shown below:
struct S { int len; int *d; };
#pragma omp declare mapper(struct S s) map(s, s.d[0:s.len]) // Memory region that d points to is also mapped using this mapper.
Contributed-by: Lingda Li <lildmh@gmail.com>
Differential Revision: https://reviews.llvm.org/D56326
llvm-svn: 352906
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every unreachable instruction. However, the
optimizer will remove code after calls to functions marked with
noreturn. To avoid this UBSan removes noreturn from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
_asan_handle_no_return before noreturn functions. This is important for
functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* longjmp (longjmp itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the noreturn attributes are missing and ASan cannot
unpoison the stack, so it has false positives when stack unwinding is
used.
Changes:
Clang-CodeGen now directly insert calls to `__asan_handle_no_return`
when a call to a noreturn function is encountered and both
UBsan-unreachable and ASan are enabled. This allows UBSan to continue
removing the noreturn attribute from functions without any changes to
the ASan pass.
Previously generated code:
```
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
Generated code (for now):
```
call void @__asan_handle_no_return
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
rdar://problem/40723397
Reviewers: delcypher, eugenis, vsk
Differential Revision: https://reviews.llvm.org/D57278
> llvm-svn: 352690
llvm-svn: 352829
Recommit r352791 after tweaking DerivedTypes.h slightly, so that gcc
doesn't choke on it, hopefully.
Original Message:
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352827
This reverts commit f47d6b38c7 (r352791).
Seems to run into compilation failures with GCC (but not clang, where
I tested it). Reverting while I investigate.
llvm-svn: 352800
Instead of calling CUDA runtime to arrange function arguments,
the new API constructs arguments in a local array and the kernels
are launched with __cudaLaunchKernel().
The old API has been deprecated and is expected to go away
in the next CUDA release.
Differential Revision: https://reviews.llvm.org/D57488
llvm-svn: 352799
The FunctionCallee type is effectively a {FunctionType*,Value*} pair,
and is a useful convenience to enable code to continue passing the
result of getOrInsertFunction() through to EmitCall, even once pointer
types lose their pointee-type.
Then:
- update the CallInst/InvokeInst instruction creation functions to
take a Callee,
- modify getOrInsertFunction to return FunctionCallee, and
- update all callers appropriately.
One area of particular note is the change to the sanitizer
code. Previously, they had been casting the result of
`getOrInsertFunction` to a `Function*` via
`checkSanitizerInterfaceFunction`, and storing that. That would report
an error if someone had already inserted a function declaraction with
a mismatching signature.
However, in general, LLVM allows for such mismatches, as
`getOrInsertFunction` will automatically insert a bitcast if
needed. As part of this cleanup, cause the sanitizer code to do the
same. (It will call its functions using the expected signature,
however they may have been declared.)
Finally, in a small number of locations, callers of
`getOrInsertFunction` actually were expecting/requiring that a brand
new function was being created. In such cases, I've switched them to
Function::Create instead.
Differential Revision: https://reviews.llvm.org/D57315
llvm-svn: 352791
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every unreachable instruction. However, the
optimizer will remove code after calls to functions marked with
noreturn. To avoid this UBSan removes noreturn from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
_asan_handle_no_return before noreturn functions. This is important for
functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* longjmp (longjmp itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the noreturn attributes are missing and ASan cannot
unpoison the stack, so it has false positives when stack unwinding is
used.
Changes:
Clang-CodeGen now directly insert calls to `__asan_handle_no_return`
when a call to a noreturn function is encountered and both
UBsan-unreachable and ASan are enabled. This allows UBSan to continue
removing the noreturn attribute from functions without any changes to
the ASan pass.
Previously generated code:
```
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
Generated code (for now):
```
call void @__asan_handle_no_return
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
```
rdar://problem/40723397
Reviewers: delcypher, eugenis, vsk
Differential Revision: https://reviews.llvm.org/D57278
llvm-svn: 352690
objc_alloc and objc_allocWithZone may throw exceptions if the
underlying method does. If we're in a @try block, then make sure we
emit an invoke instead of a call.
rdar://47610407
Differential revision: https://reviews.llvm.org/D57476
llvm-svn: 352687
required.
Function __kmpc_push_target_tripcount should be emitted only if the
offloading entry is going to be emitted (for use in tgt_target...
functions). Otherwise, it should not be emitted.
llvm-svn: 352669
This builtin has the same UI as __builtin_object_size, but has the
potential to be evaluated dynamically. It is meant to be used as a
drop-in replacement for libraries that use __builtin_object_size when
a dynamic checking mode is enabled. For instance,
__builtin_object_size fails to provide any extra checking in the
following function:
void f(size_t alloc) {
char* p = malloc(alloc);
strcpy(p, "foobar"); // expands to __builtin___strcpy_chk(p, "foobar", __builtin_object_size(p, 0))
}
This is an overflow if alloc < 7, but because LLVM can't fold the
object size intrinsic statically, it folds __builtin_object_size to
-1. With __builtin_dynamic_object_size, alloc is passed through to
__builtin___strcpy_chk.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56760
llvm-svn: 352665
This is meant to be used with clang's __builtin_dynamic_object_size.
When 'true' is passed to this parameter, the intrinsic has the
potential to be folded into instructions that will be evaluated
at run time. When 'false', the objectsize intrinsic behaviour is
unchanged.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56761
llvm-svn: 352664
This fixes most references to the paths:
llvm.org/svn/
llvm.org/git/
llvm.org/viewvc/
github.com/llvm-mirror/
github.com/llvm-project/
reviews.llvm.org/diffusion/
to instead point to https://github.com/llvm/llvm-project.
This is *not* a trivial substitution, because additionally, all the
checkout instructions had to be migrated to instruct users on how to
use the monorepo layout, setting LLVM_ENABLE_PROJECTS instead of
checking out various projects into various subdirectories.
I've attempted to not change any scripts here, only documentation. The
scripts will have to be addressed separately.
Additionally, I've deleted one document which appeared to be outdated
and unneeded:
lldb/docs/building-with-debug-llvm.txt
Differential Revision: https://reviews.llvm.org/D57330
llvm-svn: 352514
Introduce an option to request global visibility settings be applied to
declarations without a definition or an explicit visibility, rather than
the existing behavior of giving these default visibility. When the
visibility of all or most extern definitions are known this allows for
the same optimisations -fvisibility permits without updating source code
to annotate all declarations.
Differential Revision: https://reviews.llvm.org/D56868
llvm-svn: 352391
Summary:
The 512-bit cvt(u)qq2tops, cvt(u)qqtopd, and cvt(u)dqtops intrinsics all have the possibility of taking an explicit rounding mode argument. If the rounding mode is CUR_DIRECTION we'd like to emit a sitofp/uitofp instruction and a select like we do for 256-bit intrinsics.
For cvt(u)qqtopd and cvt(u)dqtops we do this when the form of the software intrinsics that doesn't take a rounding mode argument is used. This is done by using convertvector in the header with the select builtin. But if the explicit rounding mode form of the intrinsic is used and CUR_DIRECTION is passed, we don't do this. We shouldn't have this inconsistency.
For cvt(u)qqtops nothing is done because we can't use the select builtin in the header without avx512vl. So we need to use custom codegen for this.
Even when the rounding mode isn't CUR_DIRECTION we should also use select in IR for consistency. And it will remove another scalar integer mask from our intrinsics.
To accomplish all of these goals I've taken a slightly unusual approach. I've added two new X86 specific intrinsics for sitofp/uitofp with rounding. These intrinsics are variadic on the input and output type so we only need 2 instead of 6. This avoids the need for a switch to map them in CGBuiltin.cpp. We just need to check signed vs unsigned. I believe other targets also use variadic intrinsics like this.
So if the rounding mode is CUR_DIRECTION we'll use an sitofp/uitofp instruction. Otherwise we'll use one of the new intrinsics. After that we'll emit a select instruction if needed.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D56998
llvm-svn: 352267
This code doesn't need to traverse types, lambdas, template arguments,
etc to detect trivial recursion. We can do a basic statement traversal
instead. This reduces the time spent compiling CodeGenModule.cpp, the
object file size (mostly reduced debug info), and the final executable
size by a small amount. I measured the exe mostly to check how much of
the overhead is from debug info, object file section headers, etc, vs
actual code.
metric | before | after | diff
time (s) | 47.4 | 38.5 | -8.9
obj (kb) | 12888 | 12012 | -876
exe (kb) | 86072 | 85996 | -76
llvm-svn: 352232
This adds a C/C++ attribute which corresponds to the LLVM IR wasm-import-module
attribute. It allows code to specify an explicit import module.
Differential Revision: https://reviews.llvm.org/D57160
llvm-svn: 352106
Generate DILabel metadata and call llvm.dbg.label after label
statement to associate the metadata with the label.
After fixing PR37395.
After fixing problems in LiveDebugVariables.
After fixing NULL symbol problems in AddressPool when enabling
split-dwarf-file.
After fixing PR39094.
After landing D54199 and D54465 to fix Chromium build failed.
Differential Revision: https://reviews.llvm.org/D45045
llvm-svn: 352025
Summary:
UBSan wants to detect when unreachable code is actually reached, so it
adds instrumentation before every `unreachable` instruction. However,
the optimizer will remove code after calls to functions marked with
`noreturn`. To avoid this UBSan removes `noreturn` from both the call
instruction as well as from the function itself. Unfortunately, ASan
relies on this annotation to unpoison the stack by inserting calls to
`_asan_handle_no_return` before `noreturn` functions. This is important
for functions that do not return but access the the stack memory, e.g.,
unwinder functions *like* `longjmp` (`longjmp` itself is actually
"double-proofed" via its interceptor). The result is that when ASan and
UBSan are combined, the `noreturn` attributes are missing and ASan
cannot unpoison the stack, so it has false positives when stack
unwinding is used.
Changes:
# UBSan now adds the `expect_noreturn` attribute whenever it removes
the `noreturn` attribute from a function
# ASan additionally checks for the presence of this attribute
Generated code:
```
call void @__asan_handle_no_return // Additionally inserted to avoid false positives
call void @longjmp
call void @__asan_handle_no_return
call void @__ubsan_handle_builtin_unreachable
unreachable
```
The second call to `__asan_handle_no_return` is redundant. This will be
cleaned up in a follow-up patch.
rdar://problem/40723397
Reviewers: delcypher, eugenis
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D56624
llvm-svn: 352003
We can't use any other string, anyway, because its type wouldn't
match the type of the PredefinedExpr.
With this change, we don't compute a "nice" name for the __func__ global
when it's used in the initializer for a constant. This doesn't seem like
a great loss, and I'm not sure how to fix it without either storing more
information in the AST, or somehow threading through the information
from ExprConstant.cpp.
This could break some situations involving BlockDecl; currently,
CodeGenFunction::EmitPredefinedLValue has some logic to intentionally
emit a string different from what Sema computed. This code skips that
logic... but that logic can't work correctly in general anyway. (For
example, sizeof(__func__) returns the wrong result.) Hopefully this
doesn't affect practical code.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40313 .
Differential Revision: https://reviews.llvm.org/D56821
llvm-svn: 351766
These intrinsics can always be replaced with generic integer comparisons without any regression in codegen, even for -O0/-fast-isel cases.
Noticed while cleaning up vector integer comparison costs for PR40376.
A future commit will remove/autoupgrade the existing VPCOM/VPCOMU llvm intrinsics.
llvm-svn: 351687
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
With commit r351627, LLVM gained the ability to apply (existing) IPO
optimizations on indirections through callbacks, or transitive calls.
The general idea is that we use an abstraction to hide the middle man
and represent the callback call in the context of the initial caller.
It is described in more detail in the commit message of the LLVM patch
r351627, the llvm::AbstractCallSite class description, and the
language reference section on callback-metadata.
This commit enables clang to emit !callback metadata that is
understood by LLVM. It does so in three different cases:
1) For known broker functions declarations that are directly
generated, e.g., __kmpc_fork_call for the OpenMP pragma parallel.
2) For known broker functions that are identified by their name and
source location through the builtin detection, e.g.,
pthread_create from the POSIX thread API.
3) For user annotated functions that carry the "callback(callee, ...)"
attribute. The attribute has to include the name, or index, of
the callback callee and how the passed arguments can be
identified (as many as the callback callee has). See the callback
attribute documentation for detailed information.
Differential Revision: https://reviews.llvm.org/D55483
llvm-svn: 351629
Summary:
This attribute will allow users to opt specific functions out of
speculative load hardening. This compliments the Clang attribute
named speculative_load_hardening. When this attribute or the attribute
speculative_load_hardening is used in combination with the flags
-mno-speculative-load-hardening or -mspeculative-load-hardening,
the function level attribute will override the default during LLVM IR
generation. For example, in the case, where the flag opposes the
function attribute, the function attribute will take precendence.
The sticky inlining behavior of the speculative_load_hardening attribute
may cause a function with the no_speculative_load_hardening attribute
to be tagged with the speculative_load_hardening tag in
subsequent compiler phases which is desired behavior since the
speculative_load_hardening LLVM attribute is designed to be maximally
conservative.
If both attributes are specified for a function, then an error will be
thrown.
Reviewers: chandlerc, echristo, kristof.beyls, aaron.ballman
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54909
llvm-svn: 351565